• Tidak ada hasil yang ditemukan

BAB V KESIMPULAN DAN SARAN

B. Saran

1. Perlu dilakukan optimasi penambahan gliserol sebagai plasticizer.

2. Perlu dilakukan uji hispatologi sel kulit untuk mengetahui ada tidaknya efek inflamasi dan mengamati proses penyembuhan luka secara mikroskopis.

3. Perlu dilakukan uji dengan membandingkan efek penyembuhan luka selulosa kitosan gliserol dengan selulosa bakteri.

4. Pemotongan kulit tikus dilakukan dengan menggunakan metode yang lebih baik untuk mendapatkan diameter luka awal yang sama, serta metode pengamatan yang lebih baik.

5. Perlu dilakukan uji penyembuhan luka dengan lama pemberian hingga luka sembuh 100%.

6. Perlu dilakukan uji terhadap residu klor yang terdapat dalam selulosa. 7. Perlu dilakukan uji karakteristik lebih lanjut menggunakan GPC,

DAFTAR PUSTAKA

Abbas, A.O.M., 2010, Chitosan for Biomedical Applications, Dissertation, Pharmacy and Pharmaceutical Sciences Commons, University of Iowa, Iowa.

Aiba, S., 1992, Studies on chitosan : 4. lysozymic hydrolysis of partially N- acetylated chitosans. International Journal of Biological Macromolecules

14 (4), 225-228.

Aisah, N., 2003, Pembuatan Komposit Polimer Berpenguat Serat Sintetik untuk Bahan Genteng, Skripsi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor.

Allen, D.T., 2008, Methods In Cell Biology : Introduction to Electron Microscopy for Biologists, Elsevier Inc., San Diego, p.112.

Anicuta, S.G., Dobre, L., Stroesca, M., Jipa, I., 2010, Fourier Transform Infrared (FTIR) Spectroscopy for Characterization of Antimicrobial Films Containing Chitosan, Analele UniversităŃii din Oradea Fascicula: Ecotoxicologie, Zootehnie şi Tehnologii de Industrie Alimentară, 1234- 1240.

Astawan, M., 2008, Beras Makanan Pokok, http://bumiganesa.com/?p=229 , diakses pada tanggal 12 April 2012.

Australian dound Management Association, 2008, General Wound Care, NdS Health, Sydney, pp. 3.

Ben, E.S., Zulianis, dan Halim, A., 2007, Studi Awal Pemisahan Amilosa dan Amilopektin Pati Singkong dengan Fraksinasi Butanol – Air, Jurnal Sains dan Teknologi Farmasi, Vol. 12, No. 1, halaman 1-11.

Bhuvaneshwari, S., Sruthi, D., Sivasubramanian, V., Kalyani, N., Sugunabai, J., 2011, Development and Characterization of Chitosan Film, International Journal of Engineering Research and Applications (IJERA), ISSN: 2248-

9622 Vol. 1, Issue 2, pp.292-299

Boateng, J.S., Matthews, K.R., Stevens, H.N.E., dan Eccleston, G.M., 2007, dound Healing Dressings and Drug Delivery Systems : A Review, Journal of Pharmaceutical Sciences, Vol 97, No.8, August, 2892-2922.

Brown, E.E., 2007, Bacterial Cellulose/Thermoplastic Polymer Nanocomposite,

Dissertation, Department of Chemical Engineering, dashington State University, dahington.

Brown, M.E., 2001, Introduction of Thermal Analysis : Techniques and Applications, 2nd Edition, Kluwer Academic Publishers, Dordrecht, pp. 55- 56.

Brown, M.R., 2007, Cellulose: Molecular and Structural Biology, Springer, Dortrecht, pp. xiii.

Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Arguella-Monal, d., Desbrieres, J., dan Rinaudo, M., 2001, An Infrared Investigation in Relation with Chitin and Chitosan Characterization, Polymer 42, 3569-3580.

Cardenas, G., dan Miranda, P., 2004, FTIR and TGA Studies of Chitosan Nanocomposite Films, J. Chil. Chem. Soc., 49, N 4, págs: 291-295.

Chawla, P.R., Bajaj. I.B., Survase, S.A., dan Singhal, R.S., 2009, Microbial Cellulose: Fermentative Production and Applications, Food Technol. Biotechnol. 47 (2) 107–124.

Ciechańska, D., 2004, Multifunctional Bacterial Cellulose/Chitosan Composite Materials for Medical Applications, Fibres & Textiles, Vol. 12, No. 4 (48). Ciechańska, D., dietecha, J., Kaźmierczak, D., dan Kazimierczak, J., 2010,

Biosynthesis of Modified Bacterial Cellulose in a Tubular Form, Fibres & Textiles in Eastern Europe, Vol. 18, No. 5 (82) pp. 98-104.

Cooper, M.L., Laxer, J.A., Hansbrough, J.F., 1991, The Cytotoxic Effects of Commonly Used Topical Antimicrobial Agents on Human Fibroblasts and Keratinocytes, J Trauma, 31(6), 775-84

Czaja, d.K., Young, D.J., Kawecki, M., dan Brown, R.M, 2006, The Future Prospects of Microbial Cellulose in Biomedical Applications,

Biomacromolecules, 2007, 8 (1), pp 1–12.

USDA, 2009, Nutrient Data For 20444: Rice, White, Long grain, Regular, Raw, Unenriched,

http://ndb.nal.usda.gov/ndb/foods/show/6388?fg=&man=&lfacet=&format= Full&count=&max=25&offset=&sort=&qlookup=rice, diakses pada tanggal 8 April 2013.

Echlin, P., 2009. Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis, Springer Science and Business Media, LLC, pp.11-12, 18.

Engler, N., dan Gilbert, S., 2010, Skin Care and Repair, Harvard Medical School Publication, Harvard, p. 2.

Farage, M.A., Miller, K.d., Maibach, H.I., 2010, Textbook of Aging Skin, Springer-Verlag Berlin, Heidelberg, p.26.

Fernandes, S.C.M., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D., Neto., C.P., Gandini, A., Desbrieres, J., 2009, Novel Transparent Nanocomposite Films Based on Chitosan and Bacterial Cellulose, Green Chem., 11, 2039-2029. Foudad, D.R.G., 2008, Chitosan as an Antimicrobial Compound: Modes of Action

and Resistance Mechanisms, Dissertation, Mathematisch- Naturwissenschaftlichen Fakultat, Rheinischen Friedrich-dilhelms University, Bonn.

Gadag dan Shetty, 2006, Engineering Chemistry, International Publishing House Pvt. Ltd, New Delhi, p. 178.

Gama,M., 2012, Bacterial Nanocellulose: A Sophisticated Multifunctional Material, Taylor & Francis Group, Boca Raton, pp.146.

Goh, d.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A. dan Bhat, R., 2012, Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha), International Food Research Journal 19(1): 153-158.

Grafft, J.A., dan Sarff, R., 2012, EMS for Secure Facilities, Delmar Cengange Learning, Clifton Park, pp. 130-131.

Kamide, K., 2005, Cellulose and Celluse Derivatives Molecular Characterization and its Application, Elsevier B.V., Amsterdam, pp. 1-2.

Kaushish, J.P., 2010, Manufacturing Process, 2nd Edition, PHI Learning Private Limited, New Delhi, p. 749.

Khan, T.A., Peh, K.K., dan Ch’ng, H.S., 2000, Mechanical, Bioadhesive Strength and Biological Evaluations of Chitosan films for dound Dressing, J Pharm Pharmaceut Sci, 3(3):303-311.

Klaykruayat, B., Siralertmukul, K., dan Srikulkit, K., 2010, Chemical modification of Chitosan with Cationic Hyperbranched Dendritic Polyamidoamine and its Antimicrobial Activity on Cotton Fabric,

Carbohydrate Polymers 80, 197–207.

Klemm, D., Schamauder, H.P., dan Heinze, T., 2010, Cellulose, Biopolymers, Vol 6, InTech, Cairo, 275-287.

Kusmiati, Rachmawati, F., Siregar, S., Nuswantara, S., dan Malik, A., 2006, Produksi Beta-1,3 Glukan dari Agrobacterium dan Aktivitas Penyembuhan Luka Terbuka Pada Tikus Putih, Makara, Sains, Vol. 10, No. 1, April 2006: 24-29.

Kuusipalo, J., Kaunisto, M., Laine, A., dan Kellomaki, M., 2005, Chitosan as a Coating Additive in Paper and Paperboard, TAPPI Journal Vol. 4(8):17-21. Laily L., Atariansah, Nurani, D., Istini., S., Susanti, I., dan Hartoto., L, 2004,

Kinetika Fermentasi Produksi Selulosa Bakteri oleh Acetobacter pasteurianum pada Kultur Kocok, Jurnal AI A:har Indonesia, Vol.3 , No.3. September 2004,07-13.

Lee, K.Y., Ha, d.S., dan Park, d.H., 1995, Blood compatibility and biodegradability of partially N acylated chitosan derivatives. Biomaterials

16 (16), 1211-1216.

Liu, S.Q., 2007, Bioregenerative Engineering: Principles and Applications, John diley & Sons, Inc., New Jersey, pp. 483-485.

Liu, X., Gao, G., Dong, L., Ye, G., dan Gu, Y., 2009, Correlation between hydrogen-bonding interaction and mechanical properties of polyimide fibers, Polym Adv Technol 20:362.

Lina, F., Yue , Z., Jin, Z., dan Guang, Y., 2011, Biomedical Engineering – Frontiers and Challenges, InTech, Croatia, pp.251, 258.

Maneerung, T., Tokura, S., dan Rujiravanit, R., 2008, Impregnation of Silvernanoparticles into Bacterial Cellulose for Antimicrobial dound Dressing, Carbohydrate Polymers, Vol.72 , No. 1, p. 48.

Mercier, J.P., Zambelli, G., dan Kurz, d., 2002, Introduction to Materials Science, Elsevier SAS, Paris, p. 432.

Meyer, K.H., 1950, Natural and Synthetic High Polymers: a Textbook and Reference Book for Chemist and Biologist, Interscience Publisher, London, p. 470.

Mohammad, F., 2007, Specialty Polymers, International Publishing House Pvt. Ltd., New Delhi, p. 464.

Moore, Stanitski, dan Jurs, 2008, Chemistry the Molecular Science, Thompson Higher Education, Belmont, pp. 587.

Niekraszewicz, A., 2005, Chitosan Medical Dressing , Fibres & Textiles in Eastern Europe, Vol. 13, No. 6 (54).

Nurmawati, M., 2007, Analisis Derajat Kristalinitas, Ukuran Kristal, dan Bentuk Partikel Mineral Tulang Manusia Berdasarkan variasi Umur dan Jenis Tulang, Skripsi, Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor, Bogor.

Orliac, O., Rouilly, A., Silvestre, F., dan Rigal, L., 2003, Effects of Various Plasticizers on the Mechanical Properties, dater Resistance and Aging of Thermo-moulded Films Made from Sunflower Proteins. Ind Crop Prod;18(2):91–100.

Pardosi, D., 2008, Pembuatan Material Selulosa Bakteri dalam Medium Air Kelapa Melalui Penamabahan Sukrosa, Kitosan, dan Gliserol Menggunakan

Acetobacter xylinum, Tesis, Sekolah Pasca Sarjana, Universitas Sumatera Utara, Medan.

Park, S.Y., Marsh, K.S., dan Rhim, J.d., 2002, Characteristics of Different Molecular deight Chitosan Films Affected by the Type of Organic Solvents, Journal of Food Science-Vol. 67, Nr. 1,194-197.

Paul, d. dan Sharma. C.P., 2004, Chitosan and Alginate dound Dressing : A Short Review, Trends Biomater. Artif. Organs, Vol 18 (1), pp 18-23.

Pearson, F. G., Marchessault, R. H., Liang, C. Y., 1960, Infrared spectra of crystalline polysaccharides, V. Chitin, J. Polym. Sci., 43: 101 116.

Rachmat, A., dan Agustina, F., 2009, Pembuatan Nata De Coco dengan Fortifikasi Limbah Cucian Beras Menggunakan Acetobacter Xylinum,

Skripsi, Jurusan Teknik Kimia, Fakultas Teknik, Universitas Diponegoro, Semarang.

Rechia, L.M., Morona, J.B.J., Zepon, K.M., Soldi, V., dan Kanis, L.A., 2010, Mechanical properties and total hydroxycinnamic derivative release of starch/glycerol/Melissa officinalis extract films, Brazilian Journal of Pharmaceutical Sciences vol. 46, n. 3, jul./set.

Ren, J., 2010, Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing, and Applications, Tsinghua University Press, Beijing, p. 114. Robeson, L.M., 2007, Polymer Blends : A Comprehensive Review, Hanser

Rice, P., 2012, Charging Effects on Image SEM,

http://ncf.colorado.edu/instdocs/quickguides/SEM-ChargingEffects.pdf, diakses pada tanggal 18 Februari 2013

Ruslan, B., 2011, Mahasiswa temukan cucian beras suburkan tanaman,

http://www.antaranews.com/berita/1319814764/mahasiswa-temukan- cucian-beras-suburkan-tanaman, diakses pada tanggal 22 November 2012 Sarjadi, 1999, Patologi Umum dan Sistematik, Edisi 2, EGC, Jakarta, pp.125-128. Sarmento, B., 2012, Chitosan-Base Systems for Biopharmaceuticals: Delivery,

Targeting,and Polymer Therapeutic , John diley & Sons, Chicester, pp. 4- 5, 278.

Satyanarayana, T., Johri, B.R., dan Prakash, A., 2012, Microoganisms in Enviromental Management: Microbes and Environment, Springer, Dortrecht, pp. 138.

Sawyer, L.C., Grubb, D.T., dan Meyers G.F., 2008, Polymer Microscopy,3rd Edition, Springer Science & Business Media, New York, p. 494.

Scott, D., 2010, Skin Care and Repair, Harvard Health Publication, Boston, pp. 2. Sepe, M.O., 1997, Thermal Analysis of Polymers, Rapra Technology Ltd.,

Shawbury, pp. 6,14,17.

Shigemasa dan Minami, 1996, Application of Chitin and Chitosan for Biomaterials, Biotechnol Genet Eng Rev. 1996; 13:383-420.

Slusarska, B.S., Presler, S., dan Danielewicz, D., 2008, Characteristics of Bacteria Cellulose Obtained from Acetobacter xylinum Culture for Application in Papermaking, Fibres & Textiles in Eastern Europe, Vol. 16, No. 4 (69) pp. 108-111.

Smith, P., Lemstra, P.J., dan Pijpers, L.P.L., 1982, Tensile strength of Highly Oriented Polyethylene. II. Effect of Molecular deight Distribution,

Polymer Physics Edition, Vol. 20, 2229-2241.

Smith, B.C., 2011, Fundamentals pf Fourier Transform Infrared Spectroscopy, CRC Press, Boca Raton, p.1.

Struszczyk, H. Microcrystalline chitosan. I., J. Appl. Polymer Sci., 1987, 33, 177– 189.

Stuart, B., 2004, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Chichester, pp. 2-3.

Subyakto, Hermiati, E., Yanto, D.H.Y., Fitria, Budiman, I., Ismadi, Masruchin, N., Subiyanto., B., 2009, Proses Pembuatan Serat Selulosa Berukuran Nano dari Sisal (Agave sisalana) dan Bambu Betung (Dendrocalamus asper),

Berita Selulosa, Vol.44, No.2, 57-65.

Sutarminingsih, C.L., 2004, Teknologi Pengolahan Pangan Peluang Usaha Nata De Coco, Penerbit Kanisius, Yogyakarta, pp. 24.

Tien, B., 2010, Modifying Cellulose to Create Protective Material for Firefighters,

http://cosmos.ucdavis.edu/archives/2010/cluster8/TIEN_Benjamin.pdf, diakses pada tanggal 24 Januari 2012.

Umemura, K., dan Kawai, S., Preparation and characterization of Maillard reacted chitosan films with hemicellulose model compounds, J Appl Polym Sci

108:2481-2487.

dertz, J.L., Bedue, O., dan Mercier, J.P., 2010, Cellulose Science and Technology, CRC Press, Boca Raton, pp. 69.

Yamazaki, M., 2007, The Chemical Modification of Chitosan Films for Improved hemostatic and Bioadhesive Properties, Dissertation, Fiber and Polymer Science, NC State University, North Carolina.

Young, R.A., dan Freedman, T.R., 2000, University Physics, Tenth Edition, Addison desley Longman, Inc., p. 343.

Yunos M.B.Z., dan Rahman, d.A., Effect of Glycerol on Performance Rice Straw/Starch Based Polymer, Journal of Applied Sciences 11(13):2456- 2459.

Zhang, H., Deng, L., Yang, M., Min, S., Yang, L., dan Zhu, L., 2011, Enhancing Effect of Glycerol on the Tensile Properties of Bombyx mori Cocoon Sericin Films, Int. J. Mol. Sci., 12, 3170-3181.

Zhong, Q.P, dan Xia, d.S., 2008, Physicochemical Properties of Edible and Preservative Films from Chitosan/Cassava Starch/Gelatin Blend Plasticized with Glycerol, Biotechnol. 46 (3) 262–269.

Zugenmaier, P., 2008, Crystalline Cellulose and Cellulose Derivatives: Characterization and Structure, Springer-Verlag Berlin, Heidelberg, pp.1-2

LAMPIRAN

Lampiran 1. Perbedaan bahan komposisi pembentukan selulosa per 200 mL limbah Gula Urea Gliserol Kitosan

Membran selulosa tanpa gliserol 20g 1g - -

Membran selulosa ditambah gliserol 20g 1g 0,5 gram - Membran selulosa kitosan 20g 1g 0,5 gram 2 g

Membran kitosan - - 0,5 gram 2 g

Lampiran 2. Perbandingan berat basah selulosa dengan berat kering selulosa Berat basah (gram) Berat kering (gram)

Kontrol non gliserol 132,25 7,26

SD 11,74 0,36

Kontrol gliserol 140,86 7,48

SD 20,25 1,04

Kitosan + gliserol 122,40 4,58

SD 25,68 0,72

Lampiran 3. Perhitungan % yield yang didapatkan masing-masing selulosa 1. Selulosa bakteri

% Yield basah % Yield kering

2. Selulosa bakteri gliserol

% Yield basah % Yield kering

3. Selulosa bakteri gliserol kitosan

% Yield basah % Yield kering

Lampiran 4. Hasil uji tensile strength dan elongasi kontrol selulosa bakteri tanpa penambahan gliserol Series n=5 a0 mm b0 mm Lc mm Fmax Tensile strength (Mpa) Strain at Fmax % x 0.16 5 50 18.59866 22.4802 22.1818 s 0.01414 0 0 1.2231 2.34257 2.1427 v 8,84 0 0 6.58 10.42 20.34

Lampiran 5. Hasil uji tensile strength dan elongasi kontrol selulosa bakteri dengan penambahan gliserol Series n=5 a0 mm mm b0 Lc mm Fmax Tensile strength (Mpa) Strain at Fmax % x 0.216 5 50 16.36958 15.6065 28.11778 s 0.03507 0 0 1.46094 3.68305 6.51478 v 16.24 0 0 8.92 23.60 23.17

Lampiran 6. Hasil uji tensile strength dan elongasi selulosa bakteri dengan penambahan gliserol dan kitosan

Series n=5 a0 mm mm b0 Lc mm Fmax Tensile strength (Mpa) Strain at Fmax % x 0.152 5 50 13.1473 17.0129 8.00636 s 0.0295 0 0 4.00631 2.53226 3.7091 v 19,41 0 0 30,47 14,88 46,33

Lampiran 7. Uji statistik karakteristik polimer dengan SPSS

a. Uji normalitas

Tests of Normality Kelomp

ok

Kolmolorov-Smirnova Shapiro-Wilk

Statistic df Sil. Statistic df Sil.

Tensile strength S .226 5 .200* .949 5 .728 SG .196 5 .200* .928 5 .581 SGK .162 5 .200* .994 5 .991 Elonlasi S .254 5 .200* .940 5 .663 SG .229 5 .200* .908 5 .456 SGK .271 5 .200* .945 5 .703

a. Lilliefors Silnificance Correction

*. This is a lower bocnd of the trce silnificance.

Sig > 0,05 = distribusi normal b. Levene test

Test of Homogeneity of Variances

Levene Statistic df1 df2 Sil.

Tensile strength .937 2 12 .419

Elonlasi 1.374 2 12 .290

c. Anova Test Dependent Variable (I) Kelomp ok (J) Kelomp

ok Mean Difference (I-J) Std. Error Sil.

Tensile strength S SG 6.87378* 1.84264 .003 SGK 5.46736* 1.84264 .012 SG S -6.87378* 1.84264 .003 SGK -1.40642 1.84264 .460 SGK S -5.46736* 1.84264 .012 SG 1.40642 1.84264 .460 Elonlasi S SG -5.93620 3.19508 .088 SGK 14.17544* 3.19508 .001 SG S 5.93620 3.19508 .088 SGK 20.11164* 3.19508 .000 SGK S -14.17544* 3.19508 .001 SG -20.11164* 3.19508 .000

Sig < 0,05 berbeda bermakna

d. Kesimpulan

Parameter tensile strength

S - BB BB SG BB - BTB SGK BB BTB - S SG SGK Parameter elongasi S - BTB BB SG BTB - BB SGK BB BB - S SG SGK Keterangan: BB : Berbeda Bermakna BTB: Berbeda Tidak Bermakna

e. Grafik batang tensile strength dan elongasi

Lampiran 8. Perhitungan persentase kristalinitas menggunakan XRD

% Kristalinitas = Luas kristalin / Luas kristalin + luas amorf

Parameter Kontrol Perlakuan

Luas Area Total 1613,16 1709,02

Luas Amorf

+Kristalin 380,06 216,80

Luas Kristalin 279,92 108,73

Lampiran 9. Perhitungan derajat deasetilasikitosan

(A1660cm-1/ A3450cm-1) x 100

DD = 100 -

1,33 Keterangan:

DD = Derajat deasetilasi kitosan

A1660cm-1 = Absorbansi –NH2 pada bilangan gelombang sekitar 1660 cm-1

A3450cm-1 = Absorbansi –OH pada bilangan gelombang sekitar 3450 cm-1

Bilangan gelombang 1660 cm-1 I = 23,97 Io = 28,07 Absorbansi = 0,068 Bilangan gelombang 3400 cm-1 I = 10,24 Io = 16,05 Absorbansi = 0,19 DD=100 – [( 0,068 / 0,195) x 100/ 1,33] = 73,78 %

Lampiran 10. Perhitungan Intensitas IR a. Bilangan Gelombang 3400

Selulosa :

Io = 13,655 I = 5,956

Intensitas = Log Io/I = log 2,292 = 0,360 Selulosa Gliserol:

Io = 14,630 I = 6,993

Intensitas = Log Io/I = log 2,092 = 0,320 Selulosa Gliserol Kitosan:

Io=9,858 I = 4,624

Intensitas = Log Io/I = log 2,132 = 0,329

b. Bilangan Gelombang 1600

Selulosa Gliserol Kitosan: Io= 9,518 I = 7,289

Lampiran 11. Perbandingan kenaikan temperatur dengan persentase massa tersisa

Temperature % Massa tersisa

(S) %Massa tersisa (SG) %Massa tersisa (SGK)

30 100 100 100 50 99,96 98,67 98,00 75 90,89 95,33 85,11 100 85,23 92,89 71,78 125 82,73 89,78 68,22 150 81,37 88,67 66,67 175 80,92 87,78 65,33 200 80,47 86,67 64,44 225 77,07 83,11 62,89 250 68,00 72,00 59,56 275 60,07 64,89 55,11 300 53,04 58,89 50,22 325 50,09 54,89 43,78 375 49,19 53,33 40,22 400 47,83 53,11 39,56

Lampiran 12. Pengaruh pemberian biomaterial terhadap penutupan luka terbuka

Kelompok Periode Kelembaban Keropeng darna SGK

1 Basah Tidak ada Merah

3 Kering Ada Kuning kecoklatan

5 Kering Ada Coklat

7 Kering Ada Coklat

K

1 Basah Tidak Ada Merah

3 Kering Ada Kuning

5 Kering Ada Coklat

7 Kering Ada Coklat

O

1 Basah Tidak Merah

3 Basah Tidak Kuning terbentuk pus

5 Kering Ada Kuning kecoklatan

Lampiran 13. Uji statistik pengaruh pemberian biomaterial Penutupan luka dengan SPSS a. Tes normalitas Tests of Normality Kel Kolmolorov-Smirnova Shapiro-Wilk

Statistic df Sil. Statistic df Sil.

Lcas3 Y .274 5 .200* .819 5 .114 K .227 5 .200* .910 5 .470 O .258 5 .200* .880 5 .310 Lcas5 Y .202 5 .200* .957 5 .785 K .178 5 .200* .965 5 .842 O .196 5 .200* .955 5 .771 Lcas7 Y .248 5 .200* .960 5 .808 K .230 5 .200* .937 5 .648 O .205 5 .200* .974 5 .902

a. Lilliefors Silnificance Correction

*. This is a lower bocnd of the trce silnificance.

Sig > 0,05 = distribusi normal b. Levene test

Test of Homogeneity of Variances

Levene Statistic df1 df2 Sil.

Lcas3 13.398 2 12 .001

Lcas5 .796 2 12 .474

Lcas7 .129 2 12 .880

Sig > 0,05 = variasi sama

c. Kruskal dallis test luas hari ke 3

Test Statisticsa,b Lcas3

Chi-Sqcare 9.420

df 2

Asymp. Sil. .009

a. Krcskal Wallis Test b. Grocpinl Variable: Kel

d. Uji Mean-dhitney luas hari ke 3

Kelompok perlakuan terhadap kontrol positif

Test Statisticsa,b Lcas3

Chi-Sqcare 9.420

df 2

Asymp. Sil. .009

a. Krcskal Wallis Test b. Grocpinl Variable: Kel

Kelompok perlakuan terhadap kontol negatif

Test Statisticsa,b Lcas3

Chi-Sqcare 9.420

df 2

Asymp. Sil. .009

a. Krcskal Wallis Test b. Grocpinl Variable: Kel

Kelompok kontrol positif terhadap kontol negatif

Test Statisticsa,b Lcas3

Chi-Sqcare 9.420

df 2

Asymp. Sil. .009

a. Krcskal Wallis Test b. Grocpinl Variable: Kel

e. One Way Anova luas hari 5 dan hari 7

Multiple Comparisons LSD

Depende nt

Variable (I) Kel (J) Kel Mean Difference (I-J) Std. Error Sil.

95% Confidence Interval

Lower Bocnd Upper Bocnd

Lcas5 Y K -15.57949 7.44914 .058 -31.8098 .6508 O -1.69021 7.44914 .824 -17.9205 14.5401 K Y 15.57949 7.44914 .058 -.6508 31.8098 O 13.88928 7.44914 .087 -2.3410 30.1196 O Y 1.69021 7.44914 .824 -14.5401 17.9205 K -13.88928 7.44914 .087 -30.1196 2.3410 Lcas7 Y K -7.62348 7.97127 .358 -24.9914 9.7444 O -17.15357 7.97127 .052 -34.5215 .2143 K Y 7.62348 7.97127 .358 -9.7444 24.9914 O -9.53008 7.97127 .255 -26.8980 7.8378 O Y 17.15357 7.97127 .052 -.2143 34.5215 K 9.53008 7.97127 .255 -7.8378 26.8980

Sig < 0,05 berbeda bermakna

f. Kesimpulan pengaruh pemberian biomaterial terhadap penurunan luas luka Hari 3 SGK - BTB BB K BTB - BB O BB BB - SGK K O Hari 5 SGK - BTB BTB K BTB - BTB O BTB BTB - SGK K O Hari 7 SGK - BTB BTB K BTB - BTB O BTB BTB - SGK K O

Lampiran 14. Persentase penurunan diameter luka tikus galur Wistar jantan

a. Perlakuan (SGK) rerata 5 replikasi Hari 3

Diameter awal Diameter

kuadrat Luas area 1,136 ± 0,17 1,2905 ± 0,41 1,0137 ± 0,32

Diameter hari 5 Selisih

diameter Diameter kuadrat Luas Area penurunan luas Persentase luka 0,902 ± 0,12 0,234 ± 0,12 0,8136 ± 0,21 0,639 ± 0,16 35,721± 13,30 Hari 5

Diameter awal Diameter

kuadrat Luas area 1,136 ± 0,18 1,2905 ± 0,43 1,0137 ± 0,33

Diameter hari 5 Selisih

diameter Diameter kuadrat Luas Area penurunan luas Persentase luka 0,854 ± 0,09 0,282 ± 0,12 0,7293 ± 0,15 0,5728 ± 0,12 42,269 ± 10,46 Hari 7

Diameter awal Diameter

kuadrat Luas area 1,12 ± 0,05 1,2544 ± 0,1 0,9852 ± 0,08

Diameter hari 5 Selisih

diameter Diameter kuadrat Luas Area penurunan luas Persentase luka 0,79 ± 0,12 0,275 ± 0,09 0,6241 ± 0,20 0,4902 ± 0,15 49,844 ± 12,58

b. Kontrol Positif rerata 5 replikasi Hari 3

Diameter awal Diameter

kuadrat Luas area 1,084 ± 0,05 1,1751 ± 0,11 0,9229 ± 0,09

Diameter hari 5 Selisih

diameter Diameter kuadrat Luas Area penurunan luas Persentase luka 0,878 ± 0,04 0,206 ± 0,04 0,7709 ± 0,08 0,6055 ± 0,06 34,29 ± 4,74 Hari 5

Diameter awal Diameter

kuadrat Luas area 1,04 ± 0,09 1,0816 ± 0,2 0,8495 ± 0,15

Diameter hari 5 Selisih

diameter Diameter kuadrat Luas Area penurunan luas Persentase luka 0,658 ± 0,08 0,382 ± 0,16 0,433 ± 0,1 0,34 ± 0,08 57,849 ± 14,91 Hari 7

Diameter awal Diameter

kuadrat Luas area 1,122 ± 0,08 1,2589 ± 0,18 0,9887 ± 0,14

Diameter hari 5 Selisih

diameter Diameter kuadrat Luas Area penurunan luas Persentase luka 0,724 ± 0,11 0,398 ± 0,12 0,5242 ± 0,17 0,4117 ± 0,13 57,467 ± 12,72

c. Kontrol negatif rerata 5 replikasi Hari 3

Diameter awal Diameter

kuadrat Luas area 1,054 ± 0,11 1,1109 ± 0,22 0,8725 ± 0,17

Diameter hari 5 Selisih

diameter Diameter kuadrat Luas Area penurunan luas Persentase luka 0,954 ± 0,08 0,1 ± 0,03 0,9101 ± 0,14 0,7148 ± 0,11 17,734 ± 4,24 Hari 5

Diameter awal Diameter

kuadrat Luas area 1,09 ± 0,1 1,1881 ± 0,21 0,9331± 0,17

Diameter hari 5 Selisih

diameter Diameter kuadrat Luas Area penurunan luas Persentase luka 0,814 ± 0,11 0,276 ± 0,07 0,6626 ± 0,18 0,5204 ± 0,14 43,536 ± 9,19 Hari 7

Diameter awal Diameter

kuadrat Luas area 1,06 ± 0,06 1,1578 ± 0,13 0,9093 ± 0,1

Diameter hari 5 Selisih

diameter Diameter kuadrat Luas Area penurunan luas Persentase luka 0,606 ± 0,12 0,47 ± 0,14 0,3672 ± 0,15 0,2884 ± 0,11 66,997 ± 12,51

Lampiran 15. Uji statistik pengaruh pemberian biomaterial penutupan luka antar hari masing-masing kelompok dengan SPSS

a. Kelompok perlakuan (SGK) 1. Uji normalitas

Tests of Normality Kel

Kolmolorov-Smirnova Shapiro-Wilk

Statistic df Sil. Statistic df Sil.

Lcas Y3 .274 5 .200* .819 5 .114

Y5 .202 5 .200* .957 5 .785

Y7 .248 5 .200* .960 5 .808

a. Lilliefors Silnificance Correction

*. This is a lower bocnd of the trce silnificance.

Sig > 0,05 = distribusi normal 2. Levene test

Test of Homogeneity of Variances Lcas

Levene Statistic df1 df2 Sil.

.547 2 12 .593

Sig > 0,05 = variansi sama 3. One Way Anova

Multiple Comparisons Lcas

LSD

(I) Kel (J) Kel Mean Difference (I-J) Std. Error Sil.

95% Confidence Interval

Lower Bocnd Upper Bocnd

Y3 Y5 -6.54856 7.69819 .412 -23.3215 10.2244 Y7 -14.12276 7.69819 .091 -30.8957 2.6502 Y5 Y3 6.54856 7.69819 .412 -10.2244 23.3215 Y7 -7.57420 7.69819 .345 -24.3471 9.1987 Y7 Y3 14.12276 7.69819 .091 -2.6502 30.8957 Y5 7.57420 7.69819 .345 -9.1987 24.3471 4. Kesimpulan Y3 - BTB BTB Y5 BTB - BTB Y7 BTB BTB - Y3 Y5 Y7

b. Kelompok kontrol positif (K) 1. Uji normalitas

Tests of Normality Kel

Kolmolorov-Smirnova Shapiro-Wilk

Statistic df Sil. Statistic df Sil.

Lcas K3 .227 5 .200* .910 5 .470

K5 .178 5 .200* .965 5 .842

K7 .230 5 .200* .937 5 .648

a. Lilliefors Silnificance Correction

*. This is a lower bocnd of the trce silnificance.

Sig > 0,05 = distribusi normal 2. Levene test

Test of Homogeneity of Variances Lcas

Levene Statistic df1 df2 Sil.

3.276 2 12 .073

Sig > 0,05 = variansi sama 3. One Way Anova

Multiple Comparisons Lcas

LSD

(I) Kel (J) Kel Mean Difference (I-J) Std. Error Sil.

95% Confidence Interval

Lower Bocnd Upper Bocnd

K3 K5 -23.55877* 7.36130 .008 -39.5977 -7.5199 K7 -23.17697* 7.36130 .008 -39.2159 -7.1381 K5 K3 23.55877* 7.36130 .008 7.5199 39.5977 K7 .38180 7.36130 .959 -15.6571 16.4207 K7 K3 23.17697* 7.36130 .008 7.1381 39.2159 K5 -.38180 7.36130 .959 -16.4207 15.6571

*. The mean difference is silnificant at the 0.05 level.

4. Kesimpulan

K3 - BB BB

K5 BB - BTB

K7 BB BTB -

c. Kelompok kontrol negatif (O) 1. Uji normalitas

Tests of Normality Kel

Kolmolorov-Smirnova Shapiro-Wilk

Statistic df Sil. Statistic df Sil.

Lcas O3 .258 5 .200* .880 5 .310

O5 .196 5 .200* .955 5 .771

O7 .205 5 .200* .974 5 .902

a. Lilliefors Silnificance Correction

*. This is a lower bocnd of the trce silnificance.

Sig > 0,05 = distribusi normal 2. Levene test

Test of Homogeneity of Variances Lcas

Levene Statistic df1 df2 Sil.

1.322 2 12 .303

Sig > 0,05 = variansi sama 3. One Way Anova

Multiple Comparisons Lcas

LSD

(I) Kel (J) Kel Mean Difference (I-J) Std. Error Sil.

95% Confidence Interval

Lower Bocnd Upper Bocnd

O3 O5 -26.22511* 5.87721 .001 -39.0304 -13.4198 O7 -49.26267* 5.87721 .000 -62.0680 -36.4573 O5 O3 26.22511* 5.87721 .001 13.4198 39.0304 O7 -23.03756* 5.87721 .002 -35.8429 -10.2322 O7 O3 49.26267* 5.87721 .000 36.4573 62.0680 O5 23.03756* 5.87721 .002 10.2322 35.8429

*. The mean difference is silnificant at the 0.05 level.

4. Kesimpulan

O3 - BB BB

O5 BB - BB

O7 BB BB -

Lampiran 16. Gambar pembuatan membran selulosa

Limbah cucian air beras Selulosa hasil fermentasi

S yang telah dikeringkan SG yang telah dikeringkan SGK yang telah dikeringkan

Membran kitosan yang telah dikeringkan

Lampiran 17.Gambar alat yang digunakan dalam analisis karakteristik

polimer

a. Alat untuk analisis tensile strength dan elongasi

c. Alat untuk analisis XRD

d. Alat untuk analisis TGA/DTA

Lampiran 18. Gambar spektra IR selulosa, selulosa gliserol, dan selulosa gliserol kitosan

Spektrogram selulosa gliserol

Lampiran 19. Termogram TGA selulosa, selulosa gliserol, dan selulosa gliserol kitosan

Termogram TGA selulosa non gliserol

Termogram TGA selulosa kitosan gliserol

Lampiran 20. Termogram DTA selulosa, selulosa gliserol, dan selulosa gliserol kitosan

Termogram DTA selulosa gliserol

Lampiran 21. Difraktogram XRD selulosa dan selulosa gliserol kitosan

Difraktogram XRD Selulosa

Lampiran 22. Foto pengamatan makroskopis luka eksisi

a) b) c) d)

Pengamatan makroskopis luka kontrol negatif (a). 1 hari (b). 3 hari (c). 5hari (d). 7 hari

a) b) c) d)

Pengamatan makroskopis luka kontrol positif (a). 1 hari (b). 3 hari (c). 5hari (d). 7 hari

Pengamatan makroskopis luka perlakuan selulosa kitosan gliserol (a). 1 hari (b). 3 hari (c). 5hari (d). 7 hari

BIOGRAFI PENULIS

David Chandra Putra, lahir di Yogyakarta pada tanggal 14 November 1990 dari ayah yang bernama Tjandra Gunawan dan ibu bernama dong Christine. Penulis menyelesaikan pendidikan Sekolah Dasar di SD Tarakanita Bumijo Yogyakarta pada tahun 1997 dan lulus tahun 2003. Kemudian penulis melanjutkan pendidikan di SMP Stella Duce I Yogyakarta dan lulus tahun 2006. Penulis melanjutkan pendidikannya di SMA Kolese John De Britto Yogyakarta dan lulus tahun 2009. Setelah tamat, penulis diterima di Fakultas Farmasi Universitas Sanata Dharma Yogyakarta. Penulis mengikuti kegiatan organisasi mahasiswa seperti Pharmacy Performance, Pharmacy Competition, dan mentor dalam

Pharmacy Days. Di samping itu penulis juga mendalami bahasa Inggris dengan mengikuti International Centre for English Excellence. Selama kuliah, penulis pernah menjadi salah satu peserta dalam Pekan Ilmiah Mahasiswa Nasional XXIV di Makassar.

Dokumen terkait