BAB V PEMBAHASAN, SIMPULAN, DAN SARAN
5.2 Saran
1. Perlu dilakukan penelitian lanjutan dengan sample kelompok tipe histologi meningioma grade III yang lebih besar, sehingga dapat dilakukan analisa statistik hubungan ekspresi p53 pada meningioma.
2. Perlu dilakukan follow up lebih lama untuk kasus meningioma sehingga data rekurensi tumor dan hubungannya dengan ekspresi p53 dapat diketahui dengan lebih baik.
3. Perlu dilakukan metoda PCR (Polymerase Chain Reaction) untuk mengetahui mutasi gen TP53.
DAFTAR PUSTAKA
1. Abarzua, P., LoSardo, J. E., Gubler, M. L., Spathis, R., Lu, Y. A., Felix, A. and Neri, A. (1996). Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene 13, 2477-2482.
2. Adams, J. M. and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.
3. Adams, J. M. and Cory, S. (2002). Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol. 14, 715-720.
4. Aguiar P.H, Agner C, Simm R, Freitas A.B, et al. p53 Protein expression in meningiomas – a clinicopathologic study of 55 patients. Neurosurg Rev (2002) 25:252–257
5. Ahmed R, Soomro I.N., Aziz S.A., Hasan S.H., P53 and PCNA Expression in Benign, typical and Malignant Meningiomas. JPMA. 1999:241-243
6. Al-Khalaf HH, Lach B, Allam A, et al. The p53/p21 DNA damage-signaling pathway is defective in most meningioma cells. J Neurooncol 2007;83:9– 15.
7. Al-Mefty O, Abdulrauf SI, Haddad GF. Meningiomas. In Winn RH (ed): Youmans Neurological Surgery (6th
8. Amatya VJ, Takeshima Y, Inai K. Methylation of p14(ARF) gene in meningiomas and its correlation to the p53 expression and mutation. Mod Pathol 2004;17:705–710.
ed). Philadephia Elsevier Saunders. 2011(131):1426-1449
9. Ashkenazi, A. and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308.
10. Ashkenazi, A. and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308.
11. Attardi, L. D., Reczek, E. E., Cosmas, C., Demicco, E. G., McCurrach, M. E., Lowe, S. W. and Jacks, T. (2000). PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704- 718.
12. Baker SJ, Fearon ER, Nigro JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989;244:217–221. 13. Balint, E. E. and Vousden, K. H. (2001). Activation and activities of the
p53 tumour suppressor protein. Br. J. Cancer 85, 1813-1823.
14. Barbareschi M, Iuzzolino P, Pennella A, Allegranza A, Arrigoni G, Dalla Palma P, et al. p53 protein expression in central nervous system neoplasms. J Clin Pathol 1992;45:583-6.
15. Bennett, M., Macdonald, K., Chan, S. W., Luzio, J. P., Simari, R. And Weissberg, P. (1998). Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290-293.
16. Bouillet, P. and Straser, A. (2002). BH3-only proteins – evolutionarily conserved pro-apoptotic Bcl-2 family members essential for initiating programmed cell death. J. Cell Sci. 115, 1567-1574.
17. Bouvard, V., Zaitchouk, T., Vacher, M., Duthu, A., Canivet, M., Choisy- Rossi, C., Nieruchalski, M. and May, E. (2000). Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene 19, 649-660. 18. Bullock, A. N. and Fersht, A. R. (2001). Rescuing the function of mutant
p53. Nat. Rev. Cancer 1, 68-76.
19. Burns, T. F., Bernhard, E. J. and El-Deiry, W. S. (2001). Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53- dependent apoptosis in vivo. Oncogene 20, 4601-4612.
20. Buzek, J., Latonen, L., Kurki, S., Peltonen, K. and Laiho, M. (2002). Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277. Nucleic Acids Res. 30, 2340-2348.
21. Bykov, V. J., Issaeva, N., Shilov, A., Hultcrantz, M., Pugacheva, E., Chumakov, P., Bergman, J., Wiman, K. G. and Selivanova, G. (2002). Restoration of the tumor suppressor function to mutant p53 by a lowmolecular-
22. Caelles, C., Helmberg, A. and Karin, M. (1994). p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370, 220-223.
23. Chang Z, Guo C.L., Ahronowitz I, Rachamimov A.O., MacCollin M, Nunes F.P., A role for the p53 pathway in the pathology of meningiomas with NF2 loss. J Neurooncol. 2009 February ; 91(3): 265–270.
24. Chang ZN, Guo CL, Ahronowitz I,Stemmer-Rachamimov AO, MacCollin M, Nunes P. A role for the p53 pathway in the pathology of meningiomas with NF2 loss. J Neurooncol. 2009 February ; 91(3): 265– 270.
25. Chong, M. J., Murray, M. R., Gosink, E. C., Russell, H. R., Srinivasan, A., Kapsetaki, M., Korsmeyer, S. J. and McKinnon, P. J. (2000). ATM and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc. Natl. Acad. Sci. USA 97, 889-894.
26. Contente, A., Dittmer, A., Koch, M. C., Roth, J. and Dobbelstein, M. (2002). A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat. Genet. 30, 315-320.
27. Cory, S. and Adams, J. M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647-656.
28. Das A, Tan WL, Smith DR. p53 point mutation is rare in meningiomas from Singaporean patients. Asian J Surg 2005;28:7–10.
29. Ding, H. F., McGill, G., Rowan, S., Schmaltz, C., Shimamura, A. And Fisher, D. E. (1998). Oncogene-dependent regulation of caspase activation by p53 protein in a cell-free system. J. Biol. Chem. 273, 28378-28383.
30. Dumont P, Leu JI, Della Pietra AC 3rd, et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 2003;33:357–365.
31. el-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W. and Vogelstein, B. (1992). Definition of a consensus binding site for p53. Nat. Genet. 1, 45- 49.
32. Erster S, Mihara M, Kim RH, et al. In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 2004;24:6728–6741.
33. Flores, E. R., Tsai, K. Y., Crowley, D., Sengupta, S., Yang, A., McKeon, F. and Jacks, T. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560-564. Foster, B. A., Coffey, H. A., Morin, M. J. and Rastinejad, F. (1999). Pharmacological rescue of mutant p53 conformation and function. Science
34. Friedler, A., Hansson, L. O., Veprintsev, D. B., Freund, S. M., Rippin, T. M., Nikolova, P. V., Proctor, M. R., Rudiger, S. and Fersht, A. R. (2002). A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc. Natl. Acad. Sci. USA 99, 937-942. 35. Fuchs, E. J., McKenna, K. A. and Bedi, A. (1997). p53-dependent DNA
damage-induced apoptosis requires Fas/APO-1-independent activation of CPP32beta. Cancer Res. 57, 2550-2554.
36. Galande, S., Dickinson, L. A., Mian, I. S., Sikorska, M. and Kohwi- Shigematsu, T. (2001). SATB1 cleavage by caspase 6 disrupts PDZ domainmediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol. Cell. Biol. 21, 5591-5604.
37. Giaccia, A. J. and Kastan, M. B. (1998). The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973-2983.
38. Gottlieb, T. M., Martinez Leal, J. F., Seger, R., Taya, Y. and Oren, M. (2002). Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21, 1299-1303.
39. Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jocleil, J., Milliman, C., Erdjument-Bromage, H., Tempst, P. and Korsmeyer, S. J. (1999). Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor- R1/Fas death. J. Biol. Chem. 274, 1156-1163.
40. Gudkov, A. V. (2002). Converting p53 from a killer into a healer. Nat. Med. 8, 1196-1198.
41. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis – the p53 network. Journal of Cell Science 2003:116, 4077-4085.
42. Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296– 299.
43. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. H. and Oren, M. (1995). Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 9, 2170-2183.
44. Hei Y, Zhang XW, Wang Y, et al. The features of pathology and immunohistochemistry in orbital meningiomas. Zhonghua Yan Ke Za Zhi 2006;42:998–1001.
45. Herold, S., Wanzel, M., Beuger, V., Frohme, C., Beul, D., Hillukkala, T., Syvaoja, J., Saluz, H. P., Haenel, F. and Eilers, M. (2002). Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol. Cell 10, 509-521.
46. Hollstein M, Rice K, Greenblatt MS, et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 1994;22:3551–3555.
47. Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 1997;420:25–27.
48. Huang, D. C. and Strasser, A. (2000). BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839-842.
49. Huang, D. C. and Strasser, A. (2000). BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839-842.
50. Jin, S. and Levine, A. J. (2001). The p53 functional circuit. J. Cell Sci. 114, 4139-4120.
51. Kaeser, M. D. and Iggo, R. D. (2002). Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc. Natl. Acad. Sci. USA 99, 95-100.
52. Kamei Y, Watanabe M, nakayama T, Kanamaru K, Waga S, Shiraishi T. Prognostic significance of p53 and p21WAF1/CIP1 immunoreactivity and tumor micronecrosis for recurrence of meningiomas. Journal of Neuro-Oncology 46: 205–213, 2000.
53. Kannan, K., Kaminski, N., Rechavi, G., Jakob-Hirsch, J., Amariglio, N. and Givol, D. (2001). DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1. Oncogene 20, 3449-3455. 54. Kelekar, A. and Thompson, C. B. (1998). Bcl-2-family proteins: the role of
the BH3 domain in apoptosis. Trends Cell Biol. 8, 324-330.
55. Kelekar, A. and Thompson, C. B. (1998). Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8, 324-330.
56. Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257.
57. Kim H, Kwak NJ, Lee JY, et al. Merlin neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem 2004;279:7812–7818.
58. Kim, A. L., Raffo, A. J., Brandt-Rauf, P. W., Pincus, M. R., Monaco, R., Abarzua, P. and Fine, R. L. (1999). Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J. Biol. Chem. 274, 34924-34931.
59. Ku TK, Nguyen DC, Karaman M, et al. Loss of p53 expression correlates with metastatic phenotype and transcriptional profile in a new mouse model of head and neck cancer. Mol Cancer Res 2007;5:351–362.
60. Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R. and Newmeyer, D. D. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331-342.
61. Lantos, PL.; VandenBerg, SR.; Kleihues, P. Tumours of the nervous system. In: Graham, DL.; Lantos, PL., editors. Greenfield's neuropathology. Arnold; London: 2002.
62. Laurie NA, Donovan SL, Shih CS, et al. Inactivation of the p53 pathway in retinoblastoma. Nature 2006;444:61–66.
63. Lawlor, M. A. and Alessi, D. R. (2001). PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J. Cell Sci. 114, 2903-2910. 64. LeBlanc, A., Liu, H., Goodyer, C., Bergeron, C. and Hammond, J. (1999).
Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J. Biol. Chem. 274, 23426-23436.
65. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323–331.
66. Li, H., Zhu, H., Xu, C. J. and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501.
67. Li, H., Zhu, H., Xu, C. J. and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501.
68. Lohrum, M. A. and Vousden, K. H. (1999). Regulation and activation of p53 and its family members. Cell Death Differ. 6, 1162-1168.
69. Louis DN, Scheithauer BW, Budka H, von Deimling A, Kepes JJ. Meningiomas. In: Kleihues P, Cavanee WK, eds. Tumours of the Nervous System. Pathology and Genetics. Lyon, IARC Press,2000
70. Louis DN, Scheithauer BW, Budka H, von Deimling A, Kepes JJ. Meningiomas. In: Kleihues P, Cavanee WK, eds. Tumours of the Nervous System. Pathology and Genetics. Lyon, IARC Press,2000
71. Luu, Y., Bush, J., Cheung, K. J., Jr and Li, G. (2002). The p53 stabilizing compound CP-31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp. Cell Res. 276, 214-222. 72. MacLachlan, T. K. and El-Deiry, W. S. (2002). Apoptotic threshold is
lowered by p53 transactivation of caspase-6. Proc. Natl. Acad. Sci. USA 99, 9492-9497.
73. Malmer B, Feychting M, Lo’nn S, Ahlbom A, Henriksson R. p53 Genotypes and Risk of Glioma and Meningioma. Cancer Epidemiol Biomarkers Prev 2005;14:2220-2223.
74. Marchenko ND, Wolff S, Erster S, et al. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 2007;26:923–934
75. Marchenko, N. D., Zaika, A. and Moll, U. M. (2000). Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202-16212.
76. Marin MC, Jost CA, Brooks LA, et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 2000;25:47–54. 77. Marsden, V. S., O’Connor, D. J., O’Reilly, L. A., Silke, J., Metcalf, D., Ekert, P. G., Huang, D. C. S., Cecconni, F., Kulda, K., Tomaselli, K. J. et al. (2002). Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419, 634-637.
78. Mayo LD, Dixon JE, Durden DL, et al. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 2002;277:5484– 5489.
79. Mayo, L. D. and Donner, D. B. (2002). The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem. Sci. 27, 462-467. 80. Mayo, L. D. and Donner, D. B. (2002). The PTEN, Mdm2, p53 tumor
suppressor-oncoprotein network. Trends Biochem. Sci. 27, 462-467. 81. McCurrach, M. E., Connor, T. M., Knudson, C. M., Korsmeyer, S. J. And
Lowe, S. W. (1997). Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 94, 2345-2349.
82. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P. and Moll, U. M. (2003). p53 Has a Direct Apoptogenic Role at the Mitochondria. Mol. Cell 11, 577-590.
83. Momand J, Zambetti GP, Olson DC et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245.
84. Moroni, M. C., Hickman, E. S., Denchi, E. L., Caprara, G., Colli, E., Cecconi, F., Muller, H. and Helin, K. (2001). Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell Biol. 3, 552-558. Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M. et al. (1998). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033-2045.
85. Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M. et al. (1998). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033-2045.
86. Muzio, M. (1998). Signaling by proteolysis: death receptors induce apoptosis. Int. J. Clin. Lab. Res. 28, 141-147. Nagata, S. and Golstein, P. (1995). The Fas death factor. Science 267, 1449-1456.
87. Nagata, S. and Golstein, P. (1995). The Fas death factor. Science 267, 1449- 1456.
88. Nakano, K. and Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683-694.
89. Nelson, V., Davis, G. E. and Maxwell, S. A. (2001). A putative protein inhibitor of activated STAT (PIASy) interacts with p53 and inhibits p53- mediated transactivation but not apoptosis. Apoptosis 6, 221-234. 90. Nicholson, D. W. and Thornberry, N. A. (2003). Life and death decisions.
Science 299, 214-215.
91. O’Connor, L., Harris, A. W. and Strasser, A. (2000). CD95 (Fas/APO-1) and p53 signal apoptosis independently in diverse cell types. Cancer Res. 60, 1217-1220.
92. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058.
93. Ohkoudo M, Sawa H, Hara M, et al. Expression of p53, MDM2 protein and Ki-67 antigen in recurrent meningiomas. J Neurooncol 1998;38:41– 49.
94. Ohkoudo M, Sawa H, Hara M, Saruta K, Aiso T, Ohki R, Yamamoto H, Maemra E, Shiina Y, Fujii M, Saito I. Expression of p53, MDM2 protein and Ki-67 antigen in recurrent Meningiomas. Journal of Neuro-Oncology 38: 41–49, 1998.
95. Oren, M., Damalas, A., Gottlieb, T., Michael, D., Taplick, J., Leal, J. F., Maya, R., Moas, M., Seger, R., Taya, Y. et al. (2002). Regulation of p53: intricate loops and delicate balances. Biochem. Pharmacol. 64, 865-871. 96. Perry A, Louis DN, Scheithauer BW, Budka H, von Deimling A.
Meningiomas In: Kleihues P, Cavenee WK, editors. World Health Organization Classification of Tumours of the Nervous system 3rd edition, IARC Press: Lyon; 2007. p. 164-72.
97. Perry A, Louis DN, Scheithauer BW, Budka H, von Deimling A. Meningiomas In: Kleihues P, Cavenee WK, editors. World Health Organization Classification of Tumours of the Nervous system 3rd edition, IARC Press: Lyon; 2007. p. 164-72.
98. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM (1998) The prognostic significance of MIB-1, p53, and DNA flow cytometry in completely resected primary meningiomas. Cancer 82:2262–2269
99. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. and Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature 389, 300-305.
100. Post, L. E. (2002). Selectively replicating adenoviruses for cancer therapy: an update on clinical development. Curr. Opin. Invest. Drugs 3, 1768-1772.
101. Prayson RA (1996) Malignant meningioma: a clinicopathologic study of 23 patients including MIB1 and p53 immunohistochemistry. Am J Clin Pathol 105:719–726
102. Pritchard, D. M., Potten, C. S., Korsmeyer, S. J., Roberts, S. and Hickman, J. A. (1999). Damage-induced apoptosis in intestinal epithelia from bcl-2-
null and bax-null mice: investigations of the mechanistic determinants of epithelial apoptosis in vivo. Oncogene 18, 7287-7293.
103. Pritchard, D. M., Potten, C. S., Korsmeyer, S. J., Roberts, S. and Hickman, J. A. (1999). Damage-induced apoptosis in intestinal epithelia from bcl-2- null and bax-null mice: investigations of the mechanistic determinants of epithelial apoptosis in vivo. Oncogene 18, 7287-7293.
104. Pykett MJ, Landers J, George DL. Expression patterns of the p53 tumor suppressor gene and the mdm2 proto-oncogene in human meningiomas. J Neurooncol 1997;32:39–44.
105. Rao S, Sadiya N, Doraiswami S, Prathiba D. Characterization of morphologically benign biologically aggressive meningiomas. Neurology India. 2009(57)6:744-748
106. Robles, A. I., Bemmels, N. A., Foraker, A. B. and Harris, C. C. (2001). APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res. 61, 6660-6664.
107. Rozenfeld-Granot, G., Krishnamurthy, J., Kannan, K., Toren, A., Amariglio, N., Givol, D. and Rechavi, G. (2002). A positive feedback mechanism in the transcriptional activation of Apaf-1 by p53 and the coactivator Zac-1. Oncogene 21, 1469-1476.
108. Samuels-Lev, Y., O’Connor, D. J., Bergamaschi, D., Trigiante, G., Hsieh, J. K., Zhong, S., Campargue, I., Naumovski, L., Crook, T. and Lu, X. (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781-794.
109. Sax, J. K., Fei, P., Murphy, M. E., Bernhard, E., Korsmeyer, S. J. and El- Deiry, W. S. (2002). BID regulation by p53 contributes to chemosensitivity. Nat. Cell Biol. 4, 842-849
110. Selivanova, G., Iotsova, V., Okan, I., Fritsche, M., Strom, M., Groner, B., Grafstrom, R. C. and Wiman, K. G. (1997). Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat. Med. 3, 632-638.
111. Selivanova, G., Ryabchenko, L., Jansson, E., Iotsova, V. and Wiman, K. G. (1999). Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell Biol. 19, 3395-3402.
112. Seo, Y. R., Kelley, M. R. and Smith, M. L. (2002). Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc. Natl. Acad. Sci. USA 99, 14548-14553.
113. Seoane, J., Le, H. V. and Massague, J. (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729-734.
114. Shaul, Y. (2000). c-Abl: activation and nuclear targets. Cell Death Differ. 7, 10-16.
115. Sheen, J. H. and Dickson, R. B. (2002). Overexpression of c-Myc alters G(1)/S arrest following ionizing radiation. Mol. Cell. Biol. 22, 1819-1833. 116. Skulachev, V. P. (1998). Cytochrome c in the apoptotic and antioxidant
117. Skulachev, V. P. (1998). Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 423, 275-280.
118. Smith, M. L. and Fornace, A. J., Jr (2002). Chemotherapeutic targeting of p53. Cancer Biol. Ther. 1, 56-57.
119. Soengas, M. S., Alarcon, R. M., Yoshida, H., Giaccia, A. J., Hakem, R., Mak, T. W. and Lowe, S. W. (1999). Apaf-1 and caspase-9 in p53- dependent apoptosis and tumor inhibition. Science 284, 156-159. Strasser, A., Harris, A. W., Jacks, T. and Cory, S. (1994). DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79, 329-339.
120. Takimoto, R., Wang, W., Dicker, D. T., Rastinejad, F., Lyssikatos, J. And el-Deiry, W. S. (2002). The mutant p53-conformation modifying drug, CP- 31398, can induce apoptosis of human cancer cells and can stabilize wildtype p53 protein. Cancer Biol. Ther. 1, 47-55.
121. Testa, J. R. and Bellacosa, A. (2001). AKT plays a central role in tumorigenesis. Proc. Natl. Acad. Sci. USA 98, 10983-10985.
122. Thornborrow, E. C., Patel, S., Mastropietro, A. E., Schwartzfarb, E. M. and Manfredi, J. J. (2002). A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 21, 990-999.
123. Tommiska J, Eerola H, Heinonen M, et al. Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res 2005;11:5098–5103.
124. Torp SH, Lindboe CF, Grønberg BH, Lydersen S, Sundstrøm S. Prognostic significance of Ki-67/MIB-1 proliferation index in meningiomas. Clin Neuropathol 2005;24:170-4.
125. Urist, M. and Prives, C. (2002). p53 leans on its siblings. Cancer Cell 1, 311- 313.
126. Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T. K., Hampton, G. M. and Wahl, G. M. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogeneinduced genetic instability. Mol. Cell 9, 1031-1044.
127. Varfolomeev, E. E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J. S., Mett, I. L., Rebrikov, D., Brodianski, V. M., Kemper, O. C., Kollet, O. et al. (1998). Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo 1, and DR3 and is lethal prenatally. Immunity 9, 267-276.
128. Verheijen F.M., Sprong M, Kloosterman J.M.E, Blaauw G, Thijssen JH.H, Blankenstein M.A. p53 Mutations in human meningiomas With an overview of literature. Int. J. Biol. Markers, 2000(6):79-91
129. Vogelstein, B., Lane, D. and Levine, A. J. (2000). Surfing the p53 network. Nature 408, 307-310.
130. Vogt Sionov, R. V. and Haupt, Y. (1999). The cellular response to p53: the decision between life and death. Oncogene 18, 6145-6157.
131. Vogt Sionov, R., Hayon, L. I. and Haupt, Y. (2001). The regulation of p53 growth suppression. In Cell Cycle Checkpoints and Cancer (ed. M. V. Blagosklonny), pp. 106-125. Georgetown, Texas: Austin Landes Bioscience.
132. Wang, W., Takimoto, R., Rastinejad, F. and El-Deiry, W. S. (2003). Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol. Cell. Biol. 23, 2171-2181.
133. Wen, S. F., Mahavni, V., Quijano, E., Shinoda, J., Grace, M., Musco- Hobkinson, M. L., Yang, T. Y., Chen, Y., Runnenbaum, I., Horowitz, J. et al. (2003). Assessment of p53 gene transfer and biological activities in a clinical study of adenovirus-p53 gene therapy for recurrent ovarian cancer. Cancer Gene Ther. 10, 224-238.
134. Wu, G. S., Burns, T. F., McDonald, E. R., 3rd, Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R. et al. (1997). KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat. Genet. 17, 141-143.
135. Yin, Y., Liu, Y. X., Jin, Y. J., Hall, E. J. and Barrett, J. C. (2003). PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature 422, 527-531.
136. Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. And Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemis cells that is inhibited by interleukin-6. Nature 352, 345-347.
137. Yu, J., Wang, Z., Kinzler, K. W., Vogelstein, B. and Zhang, L. (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 100, 1931-1936.
138. Yu, J., Wang, Z., Kinzler, K. W., Vogelstein, B. and Zhang, L. (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 100, 1931-1936.
139. Yu, J., Zhang, L., Hwang, P., Kinzler, K. W. and Vogelstein, B. (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673-682.
NO TANGGAL NAMA PASIEN SEX USIA KESIMPULAN LOKASI TUMOR
PERI TUMORAL
EDEMA REKURENSI p53
1 05/02/2010 ABDURAHMAN M 50 ANAPLASTIC CONVEXITY (+3) (+) (+) 2 18/05/2010 ELPINA F 40 FIBROBLASTIC C5,6,7 Th1 (+1) (-) 3 25/04/2011 KHAIRUL M 40 MENINGOTHELIAL PARASAGITAL (+1) (-) 4 21/05/2011 MILIANA F 29 MENINGOTHELIAL PARASAGITAL (+1) (-) 5 10/06/2011 T TUTI LISTHIAWATY F 55 MENINGOTHELIAL SPHENOID RIDGE (+1) (-) 6 30/11/2011 BRITJEN ARITONANG M 19 FIBROBLASTIC PETROCLIVAL (+1) (+) (-) 7 09/02/2013 ARIANI F 45 MENINGOTHELIAL PARASAGITAL (+1) (-) 8 09/02/2012 ROHIM HRP M 36 MENINGOTHELIAL CONVEXITY (+2) (+) 9 15/02/2012 DEDI SANDI M 28 SECRETORY FORAMEN MAGNUM (+1) (+) (-) 10 07/03/2012 SUNARTI F 38 TRANSITIONAL FOSSA POSTERIOR (+1) (-) 11 19/05/2012 DELIDA GINTING F 38 MENINGOTHELIAL CONVEXITY (+1) (-) 12 26/05/2012 ROGINI PERUMAI F 43 MENINGOTHELIAL PARASAGITAL (+1) (-) 13 14/07/2012 SALMI F 32 MENINGOTHELIAL PARASAGITAL (+1) (-) 14 02/08/2012 RISNAWAN F 29 FIBROBLASTIC SPHENOID RIDGE (+1) (-) 15 23/08/2012 TUMINEM F 49 MENINGOTHELIAL OLFACTORY GROOVE (+2) (-) 16 31/08/2012 DARWINSYAH M 46 PSAMMOMATOUS TUBERCULUM SELLAE (+1) (-) 17 13/08/2012 BIBON TAMBUNAN M 52 MENINGOTHELIAL CERVICAL C2-3 (+1) (-) 18 13/08/2012 FARIDA HANUM F 56 MENINGOTHELIAL FOSSA POSTERIOR (+1) (-) 19 29/09/2012 ARNITA F 32 TRANSITIONAL CONVEXITY (+3) (-) 20 13/10/2012 JUMIATI F 40 MENINGOTHELIAL TUBERCULUM SELLAE (+1) (-) 21 08/12/2012 MINTON ARITONANG M 39 ATYPICAL PARASAGITAL (+1) (+) 22 18/01/2013 ABDUL HAKIM M 69 ATYPICAL PARASAGITAL (+1) (+) 23 15/01/2013 SUMAYANI F 46 MENINGOTHELIAL CONVEXITY (+2) (-) 24 21/01/2013 TINA TAMPUBOLON F 42 MENINGOTHELIAL TUBERCULUM SELLAE (+1) (-) 25 06/02/2013 SARIFAH AINI F 39 TRANSITIONAL THORACAL TH8-9 (+1) (-) 26 15/02/2013 KARTINI F 48 MENINGOTHELIAL EN PLAQUE (+1) (-) 27 16/01/2012 NURMALA M 45 MENINGOTHELIAL CONVEXITY (+2) (+) (-) 28 14/02/2011 ANJELITA ZAGOTO F 10 PSAMMOMATOUS CONVEXITY (+1) (-) 29 08/03/2011 SANNUR F 52 TRANSITIONAL CONVEXITY (+1) (-) 30 22/07/2010 RUSLIYANI F 39 MENINGOTHELIAL PARASAGITAL (+2) (-)
LAMPIRAN PERHITUNGAN STATISTIK MENGGUNAKAN SPSS 16.0 DISTRIBUSI FREKUENSI
Statistics
Sex Usia Histologi Lokasi
Rekur
ensi PTEI s100 p53 UMUR
N Valid 30 30 30 30 30 30 30 30 30
Missi
ng 0 0 0 0 0 0 0 0 0
Mean 1,70 3,60 2,30 4,03 1,87 1,40 ,77 1,87 41,20
Median 2,00 4,00 1,00 2,00 2,00 1,00 ,00 2,00 41,00
Mode 2 4 1 1(a) 2 1 0 2 40(a)
Std. Deviation
,466 1,192 1,841 3,243 ,346 ,621 1,22
3 ,346 11,778 a Multiple modes exist. The smallest value is shown
Frequency Table Sex Frequenc y Percent Valid Percent Cumulative Percent Valid Laki-laki 9 30,0 30,0 30,0 Perempua n 21 70,0 70,0 100,0 Total 30 100,0 100,0 Usia Frequenc y Percent Valid Percent Cumulative Percent Valid <20 2 6,7 6,7 6,7 20-29 3 10,0 10,0 16,7 30-39 7 23,3 23,3 40,0 40-49 12 40,0 40,0 80,0 50-59 5 16,7 16,7 96,7 60-69 1 3,3 3,3 100,0
Histologi Frequenc y Percent Valid Percent Cumulative Percent Valid meningothelia l 17 56,7 56,7 56,7 fibroblastic 3 10,0 10,0 66,7 psammomato us 2 6,7 6,7 73,3 transitional 4 13,3 13,3 86,7 secretory 1 3,3 3,3 90,0 atypical 2 6,7 6,7 96,7 anaplastic 1 3,3 3,3 100,0 Total 30 100,0 100,0 Lokasi Frequenc y Percent Valid Percent Cumulative Percent Valid parasagital 8 26,7 26,7 26,7 convexity 8 26,7 26,7 53,3 sphenoid ridge 2 6,7 6,7 60,0 tuberculum sellae 3 10,0 10,0 70,0 foramen magnum 1 3,3 3,3 73,3 petroclival 1 3,3 3,3 76,7 spine 3 10,0 10,0 86,7