• Tidak ada hasil yang ditemukan

Penetapan kadar kalium dan fosfor dalam buah delima merah (Punica granatum L.)

N/A
N/A
Protected

Academic year: 2017

Membagikan "Penetapan kadar kalium dan fosfor dalam buah delima merah (Punica granatum L.)"

Copied!
118
0
0

Teks penuh

(1)

41

(2)

Lampiran 2. Gambar Sampel

Buah delima lokal

(3)

43

Spektrofotometer Serapan Atom (Hitachi Z-2000)

Spektrofotometer UV-VIS Hitachi U-1800

(4)

Lampiran 3 (lanjutan)

(5)

45

1. Bagan alir proses destruksi kering delima lokal dan impor dengan biji

Delima merah

Ditimbang sebanyak 10 gram di atas krus porselen Diarangkan di atas hot plate

Diabukan dalam tanur dengan temperatur awal 100◦C dan perlahan-lahan temperatur dinaikkan hingga suhu 500◦C dengan interval 25◦C setiap 5 menit

Ditambahkan 5 ml asam nitrat(1:1) Diuapkan pada hot plate sampai kering

Hasil

Dilakukan selama 48 jam dan dibiarkan hingga dingin pada desikator

Abu

Dilakukan selama 1 jam dan dibiarkan hingga dingin pada desikator

Dicuci bersih

Dimasukkan kembali ke dalam tanur dengan temperatur awal 100˚C dan perlahan-lahan temperatur dinaikkan hingga suhu 500˚C dengan interval 25˚C setiap 5 menit.

Dipotong menjadi empat bagian Diambil daging buah beserta biji Dihaluskan dengan blender

Sampel yang telah dihaluskan

(6)

1. Bagan alir proses destruksi kering delima lokal dan impor tanpa biji

Delima merah

Ditimbang sebanyak 10 gram di atas krus porselen Diarangkan di atas hot plate

Diabukan dalam tanur dengan temperatur awal 100◦C dan perlahan-lahan temperatur dinaikkan hingga suhu 500◦C dengan interval 25◦C setiap 5 menit

Ditambahkan 5 ml asam nitrat(1:1) Diuapkan pada hot plate sampai kering

Hasil

Dilakukan selama 48 jam dan dibiarkan hingga dingin pada desikator

Abu

Dilakukan selama 1 jam dan dibiarkan hingga dingin pada desikator

Dicuci bersih

Dimasukkan kembali ke dalam tanur dengan temperatur awal 100˚C dan perlahan-lahan temperatur dinaikkan hingga suhu 500˚C dengan interval 25˚C setiap 5 menit.

Dipotong menjadi empat bagian Diambil daging buah beserta biji

Dipisahkan daging buah beserta biji dan dihaluskan dengan blender

(7)

47 Sampel yang telah

didestruksi

Dilarutkan dalam 5 mlasam nitrat (1:1) Dipindahkan ke dalam labu tentukur 100 ml Dibilas krus porselen sebanyak tiga kali dengan akuademineralisata. Dicukupkan dengan akuademineralisata hingga garis tanda

Dimasukkan ke dalam botol Larutan sampel

Disaring dengan kertas saring Whatman No.42

Filtrat

Dibuang 5 ml untuk menjenuhkan kertas saring

Dilakukan analisis kuantitatif dengan Spektrofotometer Serapan Atom pada λ 766,5 nm untuk kadar kalium, dan analisis kuantitatif dengan Spektrofotometer Sinar Tampak pada λ 710 nm untuk kadar fosfor Hasil

(8)

BM KH2PO4 = 136,09 BM P = 30,9738

Berat P dalam , gram KH PO = BM P x Berat KH₂PO₄BM KH₂PO₄

= , � , � ,

= , gram = mg

Kadar Fosfor dalam Larutan KH PO4 = mg ml x μg/ml

(9)

49

1 0 0.1269

2 1 0.3989

3 2 0.4217

4 3 0.4240

5 4 0.4240

6 5 0.4241

7 6 0.4243

8 7 0.4240

9 8 0.4237

10 9 0.4241

11 10 0.4238

12 11 0.4236

13 12 0.4233

14 13 0.4233

15 14 0.4235

16 15 0.4230

17 16 0.4232

18 17 0.4231

19 18 0.4228

20 19 0.4229

21 20 0.4226

22 21 0.4223

23 22 0.4218

24 23 0.4217

25 24 0.4218

26 25 0.4219

27 26 0.4218

28 27 0.4216

29 28 0.4216

30 29 0.4216

31 30 0.4219

32 31 0.4218

33 32 0.4217

34 33 0.4216

35 34 0.4219

36 35 0.4218

37 36 0.4218

38 37 0.4218

(10)

39 38 0.4218

40 39 0.4218

41 40 0.4218

42 41 0.4219

43 42 0.4221

44 43 0.4220

45 44 0.4218

46 45 0.4218

47 46 0.4219

48 47 0.4221

49 48 0.4220

50 49 0.4219

51 50 0.4221

52 51 0.4220

53 52 0.4221

54 53 0.4222

55 54 0.4221

56 55 0.4221

57 56 0.4221

58 57 0.4220

59 58 0.4221

60 59 0.4219

61 60 0.4221

Keterangan:

(11)

51

No. Konsentrasi (µ g/ml)

(X)

Absorbansi (Y)

1. 0,0000 0,0004

2. 1,0000 0,0342

3. 2,0000 0,0654

4. 3,0000 0,0962

5. 4,0000 0,1302

6. 5,0000 0,1584

No. X Y XY X² Y²

1. 0,0000 0,0004 0,0000 0,0000 0,00000016

2. 1,0000 0,0342 0,0342 1,0000 0,00116964

3. 2,0000 0,0654 0,1308 4,0000 0,00427716

4. 3,0000 0,0962 0,2886 9,0000 0,00925444

5. 4,0000 0,1302 0,5208 16,0000 0,01695204

6. 5,0000 0,1584 0,7920 25,0000 0,02509056

∑ 15,0000 0,4848 1,7664 55,0000 0,05674400

X̅ = 2,5000 Y̅=0,0808

a = X

 

X n

n Y X XY / / 2 2

 

  =

15,0000

/6 0000 , 55 6 / ) 4848 , 0 ( 0000 , 15 7664 , 1 2   = 0,03168

Y = a X+ b

b = Y aX

= 0,0808 – (0,03168)(2,5000) = 0,0016

Maka persamaan garis regresinya adalah: Y = 0,03168X + 0,0016

=



5,5000 15,0000 /6

0,056744

0,4848

/6

6 / 4848 , 0 0000 , 15 7664 , 1 2 2    = 5545 , 0 5544 , 0 = 0,9998

 

  n Y Y n X X n Y X XY r / ) ( )( / ) ( / 2 2 2 2
(12)

Perhitungan Persamaan Garis Regresi dan Koefisien Korelasi (r). No. Konsentrasi (µ g/ml)

(X)

Absorbansi (Y)

1. 0,0000 0,0000

2. 0,1428 0,0651

3. 0,2857 0,1324

4. 0,4285 0,1906

5. 0,5714 0,2521

6. 0,7142 0,3202

No. X Y XY X² Y²

1. 0,0000 0,0000 0,0000 0,0000 0,0000

2. 0,1428 0,0651 0,0093 0,0204 0,0042

3. 0,2857 0,1324 0,0378 0,0816 0,0175

4. 0,4285 0,1906 0,0817 0,1836 0,0363

5. 0,5714 0,2521 0,1440 0,3265 0,0636

6. 0,7142 0,3202 0,2287 0,5101 0,1025

∑ 2,1426 0,9604 0,5015 1,1221 0,2241

X̅ = 0,3571 Y̅=0,1600

a = X

 

X n

n Y X XY / / 2 2

 

  =

2,1426

/6 1221 , 1 6 / ) 9604 , 0 ( 1426 , 2 5015 , 0 2   = 0,4439

Y = a X+ b

b = Y aX

= 0,1600 – (0,4439)(0,3571) = 0,0014

Maka persamaan garis regresinya adalah: Y = 0,4439X + 0,0014

=



(13)

53 No. Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0144 0,0883 2,7367 341,5956

2. 10,0248 0,0875 2,7114 338,0865

3. 10,0211 0,0884 2,7398 341,7538

4. 10,0240 0,0873 2,7051 337,3279

5. 10,0159 0,0890 2,7588 344,3025

6. 10,0242 0,0885 2,7430 342,0472

2. Hasil analisis kalium pada buah delima merah lokal tanpa biji No. Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ ml)

Kadar (mg/100g)

1. 10,0441 0,0833 2,5789 320,9471

2. 10,0370 0,0859 2,6609 331,3863

3. 10,0446 0,0843 2,6104 324,8511

4. 10,0362 0,0854 2,6452 329,4573

5. 10,0451 0,0839 2,5978 323,2670

6. 10,0448 0,0854 2,6452 329,1752

3. Hasil analisis kalium pada pada buah delima merah impor dengan biji No. Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0406 0,0611 1,8781 233,8132

2. 10,0393 0,0605 1,8592 231,4902

3. 10,0411 0,0613 1,8844 234,5858

4. 10,0408 0,0611 1,8781 233,8085

5. 10,0401 0,0607 1,8655 232,2561

6. 10,0371 0,0599 1,8402 229,1747

(14)

4. Hasil analisis kalium pada pada buah delima merah impor tanpa biji No. Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0311 0,0433 1,3162 164,0149

2. 10,0210 0,0425 1,2910 161,0368

3. 10,0300 0,0431 1,3099 163,2477

4. 10,0281 0,0429 1,3036 162,4933

5. 10,0260 0,0429 1,3036 162,5274

(15)

55 No. Berat Sampel

(g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0144 0,1819 0,4066 71,0526

2. 10,0248 0,1817 0,4061 70,8916

3. 10,0211 0,1819 0,4066 71,0051

4. 10,0240 0,1818 0,4063 70,9322

5. 10,0159 0,1816 0,4059 70,9197

6. 10,0242 0,1817 0,4061 70,8959

2. Hasil analisis kadar fosfor pada buah delima merah lokal tanpa biji

No. Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0441 0,1421 0,3169 55,2140

2. 10,0370 0,1420 0,3167 55,2181

3. 10,0446 0,1419 0,3165 55,1425

4. 10,0362 0,1420 0,3167 55,2225

5. 10,0451 0,1418 0,3162 55,0866

6. 10,0448 0,1419 0,3165 55,1404

3. Hasil analisis kadar fosfor pada buah delima merah impor dengan biji

No. Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0406 0,1231 0,2741 47,7735

2. 10,0393 0,1230 0,2739 47,7448

3. 10,0411 0,1229 0,2737 47,7014

4. 10,0408 0,1230 0,2739 47,7377

5. 10,0401 0,1229 0,2737 47,7061

6. 10,0371 0,1228 0,2734 47,6681

(16)

4. Hasil analisis kadar fosfor pada buah delima merah impor tanpa biji

No. Berat Sampel (g)

Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

1. 10,0311 0,0713 0,1574 27,4596

2. 10,0210 0,0713 0,1574 27,4872

3. 10,0300 0,0712 0,1572 27,4277

4. 10,0281 0,0714 0,1576 27,5027

5. 10,0260 0,0711 0,1570 27,4037

(17)

57 Berat sampel yang ditimbang = 10,0144 gram Absorbansi (Y) = 0,0883

Persamaan regresi: Y = 0,03168X + 0,0016 X =

03168 , 0

0016 , 0 0883 ,

0 

= 2,7367 µg/ml

Konsentrasi kalium = 2,7367 µg/ml

(g) Sampel Berat

n pengencera Faktor

x (ml) Volume x

(µg/ml) i

Konsentras

(µg/g) kalium

Kadar 

=

10,0144g

50 2 x ml 50 µg/ml 2,7367 x

= 3415,9560 µg/g

= 341,5956 mg/100g

(18)

2. Contoh perhitungan kadar fosfor

Berat sampel yang ditimbang = 10,0144 gram Absorbansi (Y) = 0,1819

Persamaan regresi: Y = 0,4439X + 0,0014 X =

4439 , 0

0014 , 0 1819 ,

0 

= 0,4066 µg/ml

Konsentrasi fosfor = 0,4066 µg/ml

(g) Sampel Berat

n pengencera Faktor

x (ml) Volume x

(µg/ml) i

Konsentras

(µg/ml) fosfor

Kadar 

=

g 0144 , 10

350 x ml 50 l 0,4066µg/m x

= 710,5268 µg/g

(19)

59

No. Xi

(kadar mg/100g)

(Xi-X̅) (Xi-X̅)²

1. 341,5956 0,7434 0,5526

2. 338,0865 -2,7657 7,6490

3. 341,7538 0,9016 0,8128

4. 337,3279 -3,5243 12,4206

5. 344,3025 3,4503 11,9045

6. 342,0472 1,195 1,4280

∑X = 2045,1135 ∑=34,7675

X = 340,8522

SD =

1 -n X -Xi 2

= 1 6 34,7675  = 2,6369

Pada interval kepercayaan 99% dengan nilai α = 0.01, dk = 5 diperoleh nilai t tabel = α /2, dk = 4,0321.

Data diterima jika t hitung< t tabel.

t hitung =

n SD X Xi / 

t hitung1 =

6 / 6369 , 2 0,7434 = 0,6905

t hitung2 =

6 / 6369 , 2 2,7657 -= 2,5691

t hitung3 =

6 / 6369 , 2 0.9016 = 0,8375

(20)

t hitung4 =

6 / 6369 . 2

3,5243

= 3,2738

t hitung5 =

6 / 6369 , 2

3,4503

= 3,2051

t hitung6 =

6 / 6369 , 2

1,195

= 1,1110

Dari hasil perhitungan di atas didapat semua t hitung < t tabel, maka semua data tersebut diterima.

Kadar kalium pada buah delima merah lokal dengan biji: µ = X ± (t (α/2, dk) x SD / √n )

(21)

61

No. Xi

(kadar mg/100g)

(Xi-X̅) (Xi-X̅)²

1. 320,9471 -5,5669 30,9903

2. 331,3863 4,8723 23,7393

3. 324,8511 -1,6629 2,7652

4. 329,4573 2,9433 8,6630

5. 323,2670 -3,2470 10,5430

6. 329,1752 2,6612 7,0819

∑X = 1959,084 ∑=83,7827

X = 326,514

SD =

1 -n X -Xi 2

= 1 6 83,7827  = 4,0934

Pada interval kepercayaan 99% dengan nilai α = 0.01, dk = 5 diperoleh nilai t

tabel = α /2, dk = 4,0321.

Data diterima jika t hitung< t tabel.

t hitung =

n SD X Xi / 

t hitung1 =

6 / 0934 , 4 5,5669 -= 3,3312

t hitung2 =

6 / 0934 , 4 4,8723 = 2,9156

t hitung3 =

6 / 0934 , 4 1,6629 = 0,9950

(22)

t hitung4 =

6 / 0934 , 4

2,9433

= 1,7612

t hitung5 =

6 / 0934 , 4

3,2470

= 1,9430

t hitung6 =

6 / 0934 , 4

2,6612

= 1,5924

Dari hasil perhitungan di atas didapat semua t hitung < t tabel, maka semua data tersebut diterima.

Kadar kalium pada buah delima merah lokal tanpa biji: µ = X ± (t (α/2, dk) x SD / √n )

(23)

63

No. Xi

(kadar mg/100g)

(Xi-X̅) (Xi-X̅)²

1. 233,8132 1,2918 1,6687

2. 231,4902 -1,0312 1,0633

3. 234,5858 2,0644 4,2617

4. 233,8085 1,2871 1,6566

5. 232,2561 -0,2653 0,0703

6. 229,1747 -3,3467 11,2004

∑X = 1395,1285 ∑=19,9210

X = 232,5214

SD =

1 -n X -Xi 2

= 1 6 19,9210  = 1,9960

Pada interval kepercayaan 99% dengan nilai α = 0.01, dk = 5 diperoleh nilai t tabel = α /2, dk = 4,0321.

Data diterima jika t hitung< t tabel.

t hitung =

n SD X Xi / 

t hitung1 =

6 / 9960 , 1 1,2918 = 1,5854

t hitung2 =

6 / 9960 , 1 1,0312 -= 1,2655

t hitung3 =

6 / 9960 , 1 2,0644 = 2,5336

(24)

t hitung4 = 6 / 9960 , 1 1,2871 = 1,5796

t hitung5 =

6 / 9960 , 1 0,2653 = 0,3256

t hitung6 =

6 / 9960 , 1 33467 = 4,1073

Pada hasil perhitungan diatas diperoleh t hitung < t tabel, ada 1 data yang ditolak maka perhitungan diulangi kembali dengan 5 sampel yang diterima.

No. Xi

(kadar mg/100g)

(Xi-X̅) (Xi-X̅)²

1. 233,8132 0,6225 0,3875

2. 231,4902 -1,7005 2,8917

3. 234,5858 1,3951 1,9463

4. 233,8085 0,6178 0,3816

5. 232,2561 -0,9346 0,8734

∑X = 1165,9538

X = 233,1907

∑=6,4805

SD =

1 -n X -Xi 2

= 1 5 6,4805  = 1,2728

Pada interval kepercayaan 99% dengan nilai α = 0.01, dk = 5 diperoleh nilai t tabel = α /2, dk = 4,0321.

(25)

65 t hitung =

n SD/

t hitung1 =

5 2728 , 1 0,6225 = 1,0936

t hitung2 =

5 / 2728 , 1 1,7005 -= 2,9875

t hitung3 =

5 / 2728 , 1 1,3951 = 2,4509

t hitung4 =

5 / 2728 , 1 0,6178 = 1,0853

t hitung5 =

5 / 2728 , 1 0,9346 = 1,6419

Dari hasil perhitungan di atas didapat semua t hitung < t tabel, maka semua data tersebut diterima.

Kadar kalium pada buah delima merah impor dengan biji: µ = X ± (t (α/2, dk) x SD / √n )

= 233,1907± ( 4,0321 x 1,2728/√6) = (233,1907± 2,6206) mg/100g

(26)

4. Perhitungan statistik kadar kalium pada buah delima merah impor tanpa biji

No. Xi

(kadar mg/100g)

(Xi-X̅) (Xi-X̅)²

1. 164,0149 1,6836 2,8345

2. 161,0368 -1,2945 1,6757

3. 163,2477 0,9164 0,8397

4. 162,4933 0,1620 0,0262

5. 162,5274 0,1961 0,0384

6. 160,6681 -1,6632 2,7662

∑X = 973,9882 ∑=8,1807

X = 162,3313

SD =

1 -n X -Xi 2

= 1 6 8,1807  = 1,2791

Pada interval kepercayaan 99% dengan nilai α = 0.01, dk = 5 diperoleh nilai t tabel = α /2, dk = 4,0321.

Data diterima jika t hitung< t tabel.

t hitung =

n SD X Xi / 

t hitung1 =

6 / 2791 , 1 1,6836 = 3,2246

t hitung2 =

6 / 2791 , 1 1,2945 -= 2,4794

t hitung3 =

(27)

67 t hitung4 =

6 / 2791 ,

1 = 0,3102

t hitung5 =

6 / 2791 , 1

0,1961

= 0,3755

t hitung6 =

6 / 2791 , 1

1,6632

= 3,1855

Dari hasil perhitungan di atas didapat semua t hitung < t tabel, maka semua data tersebut diterima.

Kadar kalium pada buah delima merah lokal tanpa biji: µ = X ± (t (α/2, dk) x SD / √n )

= 162,3313 ± ( 4,0321 x 1,2791/√6) = (162,3313± 2,1051) mg/100g

(28)

1. Perhitungan statistik kadar fosfor pada buah delima merah lokal dengan biji

No. Xi

(kadar mg/100g)

(Xi-X̅) (Xi-X̅)²

1. 71,0526 0,1031 0,0106

2. 70,8916 -0,0579 0,0033

3. 71,0051 0,0556 0,0030

4. 70,9322 -0,0173 0,0002

5. 70,9197 -0,0298 0,0008

6. 70,8959 -0,0536 0,0028

∑X = 425,6971 ∑=0,0207

X = 70,9495

SD =

1 -n X -Xi 2

= 1 6 0,0207  = 0,0643

Pada interval kepercayaan 99% dengan nilai α = 0.01, dk = 5 diperoleh nilai t tabel = α /2, dk = 4,0321.

Data diterima jika t hitung< t tabel.

t hitung =

n SD X Xi / 

t hitung1 =

6 / 0643 , 0 0,1031 = 3,9351

t hitung2 =

6 / 0643 , 0 0,0579 -= 2,2099

t hitung3 =

(29)

69 t hitung4 =

6 / 0643 , 0

0,0173

= 0,6603

t hitung5 =

6 / 0643 , 0

0,0298

= 1,1374

t hitung6 =

6 / 0643 , 0

0,0536

= 2,0458

Dari hasil perhitungan di atas didapat semua t hitung < t tabel, maka semua data tersebut diterima.

Kadar fosfor pada pada buah delima merah lokal dengan biji: µ = X ± (t (α/2, dk) x SD / √n )

= 70,9495± ( 4,0321 x 0,0643/√6) = (70,9495± 0,1056) mg/100g

(30)

2. Perhitungan statistik kadar fosfor pada buah delima merah lokal tanpa biji

No. Xi

(kadar mg/100g)

(Xi-X̅) (Xi-X̅)²

1. 55,2140 0,0434 0,0018

2. 55,2181 0,0475 0,0022

3. 55,1425 -0,0281 0,0007

4. 55,2225 0,0519 0,0026

5. 55,0866 -0,0840 0,0070

6. 55,1404 -0,0302 0,0009

∑X = 331,0241 ∑=0,0152

X = 55,1706

SD =

1 -n X -Xi 2

= 1 6 0,0152  = 0,0551

Pada interval kepercayaan 99% dengan nilai α = 0.01, dk = 5 diperoleh nilai t tabel = α /2, dk = 4,0321.

Data diterima jika t hitung< t tabel.

t hitung =

n SD X Xi / 

t hitung1 =

6 / 0551 , 0 0,0434 = 1,9375

t hitung2 =

6 / 0551 , 0 0,0475 = 2,0424

t hitung3 =

[image:30.595.115.266.525.729.2]
(31)

71 t hitung4 =

6 / 0551 , 0

0,0519

= 2,3169

t hitung5 =

6 / 0551 , 0

0,0840

= 3,75

t hitung6 =

6 / 0551 , 0

0,0302

= 1,3482

Dari hasil perhitungan di atas didapat semua t hitung < t tabel, maka semua data tersebut diterima.

Kadar fosfor pada buah delima merah lokal tanpa biji: µ = X ± (t (α/2, dk) x SD / √n )

= 55,1706 ± ( 4,0321 x 0,0551/√6) = (55,1706 ± 0,0903) mg/100g

(32)

3. Perhitungan statistik kadar fosfor pada buah delima merah impor dengan biji

No. Xi

(kadar mg/100g)

(Xi-X̅) (Xi-X̅)²

1. 47,7735 0,0516 0,0026

2. 47,7448 0,0229 0,0005

3. 47,7014 -0,0205 0,0004

4. 47,7377 0,0158 0,0002

5. 47,7061 -0,0158 0,0002

6. 47,6681 -0,0538 0,0028

∑X = 286,3316 ∑=0,0067

X = 47,7219

SD =

1 -n X -Xi 2

= 1 6 0,0067  = 0,0366

Pada interval kepercayaan 99% dengan nilai α = 0.01, dk = 5 diperoleh nilai t tabel = α /2, dk = 4,0321.

Data diterima jika t hitung< t tabel.

t hitung =

n SD X Xi / 

t hitung1 =

6 / 0366 , 0 0,0516 = 3,4630

t hitung2 =

6 / 0366 , 0 0,0229 = 1,5369

t hitung3 =

[image:32.595.113.267.522.729.2]
(33)

73 t hitung4 =

6 / 0366 , 0

0,0158

= 1,0604

t hitung5 =

6 / 0366 , 0

0,0158

= 1,0604

t hitung6 =

6 / 0366 , 0

0,0538

= 3,6107

Dari hasil perhitungan di atas didapat semua t hitung < t tabel, maka semua data tersebut diterima.

Kadar fosfor pada buah delima merah impor dengan biji: µ = X ± (t (α/2, dk) x SD / √n )

= 47,7219± ( 4,0321 x 0,0366/√6) = (47,7219± 0,0600) mg/100g

(34)

4. Perhitungan statistik kadar fosfor pada buah delima merah impor tanpa biji

No. Xi

(kadar mg/100g)

(Xi-X̅) (Xi-X̅)²

1. 27,4596 -0,0084 0,00007

2. 27,4872 0,0192 0,00036

3. 27,4277 -0,0403 0,00162

4. 27,5027 0,0347 0,00120

5. 27,4037 -0,0643 0,00413

6. 27,5274 0,0594 0,00352

∑X = 164,8083 ∑=0,0109

X = 27,4680

SD =

1 -n X -Xi 2

= 1 6 0,0109  = 0,0466

Pada interval kepercayaan 99% dengan nilai α = 0.01, dk = 5 diperoleh nilai t

tabel = α /2, dk = 4,0321.

Data diterima jika t hitung< t tabel.

t hitung =

n SD X Xi / 

t hitung1 =

6 / 0466 , 0 0,0084 -= 0,4421

t hitung2 =

6 / 0466 , 0 0,0192 = 1,0105

t hitung3 =

[image:34.595.115.266.548.742.2]
(35)

75 t hitung4 =

6 / 0466 ,

0 = 1,8263

t hitung5 =

6 / 0466 , 0

0,0643

= 3,3842

t hitung6 =

6 / 0466 , 0

0,0594

= 3,1263

Dari hasil perhitungan di atas didapat semua t hitung < t tabel, maka semua data tersebut diterima.

Kadar fosfor pada buah delima merah impor tanpa biji: µ = X ± (t (α/2, dk) x SD / √n )

= 27,4680 ± ( 4,0321 x 0,0466/√6) = (27,4680 ± 0,0766) mg/100g

(36)
(37)

77

No Delima merah lokal dengan biji Delima merah lokal tanpa biji

1 X2= 340,8522 X1= 326,514

2 S2= 2,6369 S1= 4,0934

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 )

- Ho : σ1 = σ2 H1 : σ1 ≠ σ2

- Nilai kritis F yang diperoleh dari tabel (F 0,01/2, (m/n) ) → (F 0,005, (5/5) ) adalah = 14,94

- Daerah kritis penolakan : hanya jika Fo ≥ 14,94

Fo = 2

2 2 1 S S

Fo = 2

2

2,6369 4,0934

Fo = 2,4098

- Dari hasil ini menunjukan bahwa Ho diterima dan H1 ditolak sehingga disimpulkan bahwa σ1 = σ2 .

- Kemudian dilanjutkan dengan uji beda rata-rata menggunakan distribusi t. - Simpangan bakunya adalah :

Sp =

2 1 1 2 1 2 2 2 2 1 1     n n S n S n =

 

 

2 6 6 6369 , 2 1 6 0934 , 4 1

6 2 2

 

(38)

= 3,4430

- Ho : µ1 = µ2 H1 : µ1 µ2

- Dengan menggunakan taraf kepercayaan 99% dengan nilai α= 1%→t0,01/2 = ± 3,1693 untuk df = 6+6-2 = 10

- Daerah kritis penerimaan : -3,1693 ≤ t0 ≤ 3,1693 - Daerah kritis penolakan : t0 < -3,1693 dan t0 > 3,1693

t0 =

2 1

2 1

/ 1 /

1 n n Sp

x x

 

t0 =

6 / 1 6 / 1 4430 , 3

514 , 326 8522 , 340

 

t0 = 7,2130

(39)

79

No Delima merah lokal dengan biji Delima merah impor berbiji

1 X1= 340,8522 X2= 233,1907

2 S1= 2,6369 S2= 1,2728

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 )

- Ho : σ1 = σ2 H1 : σ1 ≠ σ2

- Nilai kritis F yang diperoleh dari tabel (F 0,01/2, (m/n) ) → (F 0,005, (5/4) ) adalah = 22,45

- Daerah kritis penolakan : hanya jika Fo ≥ 22,45 Fo = 2 2 2 1 S S

Fo = 2

2

1,2728 6369 , 2

Fo = 4,2920

- Dari hasil ini menunjukan bahwa Ho diterima dan H1 ditolak sehingga disimpulkan bahwa σ1 = σ2 .

- Kemudian dilanjutkan dengan uji beda rata-rata menggunakan distribusi t. - Simpangan bakunya adalah :

Sp =

2 1 1 2 1 2 2 2 2 1 1     n n S n S n =

 

 

2 5 6 2728 , 1 1 5 6369 , 2 1

6 2 2

 

(40)

= 2,1407

- Ho : µ1 = µ2 H1 : µ1 µ2

- Dengan menggunakan taraf kepercayaan 99% dengan nilai α= 1%→t0,01/2 = ± 3,2498 untuk df = 6+5-2 = 9

- Daerah kritis penerimaan : -3,2498 ≤ t0 ≤ 3,2498 - Daerah kritis penolakan : t0 < -3,2498 dan t0 > 3,2498

t0 =

2 1

2 1

/ 1 /

1 n n Sp

x x

 

t0 =

5 / 1 6 / 1 1407 , 2

1907 , 233 8522 , 340

 

t0 = 83,0555

(41)

81

No Delima merah lokal tanpa biji Delima merah impor tanpa biji

1 X1= 326,514 X2= 162,3313

2 S1= 4,0934 S2= 1,2791

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 )

- Ho : σ1 = σ2 H1 : σ1 ≠ σ2

- Nilai kritis F yang diperoleh dari tabel (F 0,01/2, (m/n) ) → (F 0,005, (5/5) ) adalah = 14,94

- Daerah kritis penolakan : hanya jika Fo ≥ 14,94 Fo = 2 2 2 1 S S

Fo = 2

2

1,2791 4,0934

Fo = 10,2414

- Dari hasil ini menunjukan bahwa Ho diterima dan H1 ditolak sehingga disimpulkan bahwa σ1 = σ2 .

- Kemudian dilanjutkan dengan uji beda rata-rata menggunakan distribusi t. - Simpangan bakunya adalah :

Sp =

2 1 1 2 1 2 2 2 2 1 1     n n S n S n =

 

 

2 6 6 2791 , 1 1 6 0934 , 4 1

6 2 2

  

(42)

= 3,0324

- Ho : µ1 = µ2 H1 : µ1 µ2

- Dengan menggunakan taraf kepercayaan 99% dengan nilai α= 1%→t0,01/2 = ± 3,1693 untuk df = 6+6-2 = 10

- Daerah kritis penerimaan : -3,1693 ≤ t0 ≤ 3,1693 - Daerah kritis penolakan : t0 < -3,1693 dan t0 > 3,1693

t0 =

2 1

2 1

/ 1 /

1 n n Sp

x x

 

t0 =

6 / 1 6 / 1 0324 , 3

3313 , 162 514 , 326

 

t0 = 93,7781

(43)

83

No Delima merah impor berbiji Delima merah impor tanpa biji

1 X1= 233,1907 X2= 162,3313

2 S1= 1,2728 S2= 1,2791

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 )

- Ho : σ1 = σ2 H1 : σ1 ≠ σ2

- Nilai kritis F yang diperoleh dari tabel (F 0,01/2, (m/n) ) → (F 0,005, (4/5) ) adalah = 15,56

- Daerah kritis penolakan : hanya jika Fo ≥ 15,56 Fo = 2 2 2 1 S S

Fo = 2

2

1,2791 1,2728

Fo = 0,9901

- Dari hasil ini menunjukan bahwa Ho diterima dan H1 ditolak sehingga disimpulkan bahwa σ1 = σ2 .

- Kemudian dilanjutkan dengan uji beda rata-rata menggunakan distribusi t. - Simpangan bakunya adalah :

Sp =

2 1 1 2 1 2 2 2 2 1 1     n n S n S n =

 

 

2 6 5 2791 , 1 1 6 2728 , 1 1

5 2 2

 

(44)

= 1,2763

- Ho : µ1 = µ2 H1 : µ1 µ2

- Dengan menggunakan taraf kepercayaan 99% dengan nilai α= 1%→t0,01/2 = ± 3,2498 untuk df = 5+6-2 = 9

- Daerah kritis penerimaan : -3,2498 ≤ t0 ≤ 3,2498 - Daerah kritis penolakan : t0 < -3,2498 dan t0 > 3,2498

t0 =

2 1

2 1

/ 1 /

1 n n Sp

x x

 

t0 =

6 / 1 5 / 1 2763 , 1

3313 , 162 1907 , 233

 

t0 = 91,6872

(45)

85

No Delima merah lokal dengan biji Delima merah lokal tanpa biji

1 X1= 70,9495 X2= 55,1706

2 S2= 0,0643 S2= 0,0551

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 )

- Ho : σ1 = σ2 H1 : σ1 ≠ σ2

- Nilai kritis F yang diperoleh dari tabel (F 0,01/2, (m/n) ) → (F 0,005, (5/5) ) adalah = 14,94

- Daerah kritis penolakan : hanya jika Fo ≥ 14,94 Fo = 2 2 2 1 S S

Fo = 2

2

0,0551 0,0643

Fo = 1,3618

- Dari hasil ini menunjukan bahwa Ho diterima dan H1 ditolak sehingga disimpulkan bahwa σ1 = σ2 .

- Kemudian dilanjutkan dengan uji beda rata-rata menggunakan distribusi t. - Simpangan bakunya adalah :

Sp =

2 1 1 2 1 2 2 2 2 1 1     n n S n S n =

 

 

2 6 6 0551 , 0 1 6 0643 , 0 1

6 2 2

 

  

(46)

= 0,0598

- Ho : µ1 = µ2 H1 : µ1 µ2

- Dengan menggunakan taraf kepercayaan 99% dengan nilai α= 1%→t0,01/2 = ± 3,1693 untuk df = 6+6-2 = 10

- Daerah kritis penerimaan : -3,1693 ≤ t0 ≤ 3,1693 - Daerah kritis penolakan : t0 < -3,1693 dan t0 > 3,1693

t0 =

2 1

2 1

/ 1 /

1 n n Sp

x x

 

t0 =

6 / 1 6 / 1 0598 , 0

1706 , 55 9495 , 70

t0 = 457,3594

(47)

87

No Delima merah lokal dengan biji Delima merah impor berbiji

1 X1= 70,9495 X2= 47,7219

2 S1= 0,0643 S2= 0,0366

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 )

- Ho : σ1 = σ2 H1 : σ1 ≠ σ2

- Nilai kritis F yang diperoleh dari tabel (F 0,01/2, (m/n) ) → (F 0,005, (5/5) ) adalah = 14,94

- Daerah kritis penolakan : hanya jika Fo ≥ 14,94 Fo = 2 2 2 1 S S

Fo = 2

2

0,0366 0,0643

Fo = 3,0864

- Dari hasil ini menunjukan bahwa Ho diterima dan H1 ditolak sehingga disimpulkan bahwa σ1 = σ2 .

- Kemudian dilanjutkan dengan uji beda rata-rata menggunakan distribusi t. - Simpangan bakunya adalah :

Sp =

2 1 1 2 1 2 2 2 2 1 1     n n S n S n =

 

 

2 6 6 0366 , 0 1 6 0643 , 0 1

6 2 2

 

(48)

= 0,0523

- Ho : µ1 = µ2 H1 : µ1 µ2

- Dengan menggunakan taraf kepercayaan 99% dengan nilai α= 1%→t0,01/2 = ± 3,1693 untuk df = 6+6-2 = 10

- Daerah kritis penerimaan : -3,1693 ≤ t0 ≤ 3,1693 - Daerah kritis penolakan : t0 < -3,1693 dan t0 > 3,1693

t0 =

2 1

2 1

/ 1 /

1 n n Sp

x x

 

t0 =

6 / 1 6 / 1 0523 , 0

7219 , 47 9495 , 70

t0 = 769,3805

(49)

89

No Delima merah lokal tanpa biji Delima merah impor tanpa biji

1 X1= 55,1706 X2= 27,4680

2 S1= 0,0551 S2= 0,0466

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 )

- Ho : σ1 = σ2 H1 : σ1 ≠ σ2

- Nilai kritis F yang diperoleh dari tabel (F 0,01/2, (m/n) ) → (F 0,005, (5/5) ) adalah = 14,94

- Daerah kritis penolakan : hanya jika Fo ≥ 14,94 Fo = 2 2 2 1 S S

Fo = 2

2

0,0466 0,0551

Fo = 1,3980

- Dari hasil ini menunjukan bahwa Ho diterima dan H1 ditolak sehingga disimpulkan bahwa σ1 = σ2 .

- Kemudian dilanjutkan dengan uji beda rata-rata menggunakan distribusi t. - Simpangan bakunya adalah :

Sp =

2 1 1 2 1 2 2 2 2 1 1     n n S n S n =

 

 

2 6 6 0466 , 0 1 6 0551 , 0 1

6 2 2

 

(50)

= 0,0510

- Ho : µ1 = µ2 H1 : µ1 µ2

- Dengan menggunakan taraf kepercayaan 99% dengan nilai α= 1%→t0,01/2 = ± 3,1693 untuk df = 6+6-2 = 10

- Daerah kritis penerimaan : -3,1693 ≤ t0 ≤ 3,1693 - Daerah kritis penolakan : t0 < -3,1693 dan t0 > 3,1693

t0 =

2 1

2 1

/ 1 /

1 n n Sp

x x

 

t0 =

6 / 1 6 / 1 0510 , 0

4680 , 27 1706 , 55

t0 = 942,2653

(51)

91

No Delima merah impor berbiji Delima merah impor tanpa biji

1 X1= 47,7219 X2= 27,4680

2 S1= 0,0366 S2= 0,0466

Dilakukan uji F dengan taraf kepercayaan 99% untuk mengetahui apakah variasi kedua populasi sama (σ1 = σ2 ) atau berbeda (σ1 ≠ σ2 )

- Ho : σ1 = σ2 H1 : σ1 ≠ σ2

- Nilai kritis F yang diperoleh dari tabel (F 0,01/2, (m/n) ) → (F 0,005, (5/5) ) adalah = 14,94

- Daerah kritis penolakan : hanya jika Fo ≥ 14,94 Fo = 2 2 2 1 S S

Fo = 2

2

0,0466 0,0366

Fo = 0,6168

- Dari hasil ini menunjukan bahwa Ho diterima dan H1 ditolak sehingga disimpulkan bahwa σ1 = σ2 .

- Kemudian dilanjutkan dengan uji beda rata-rata menggunakan distribusi t. - Simpangan bakunya adalah :

Sp =

2 1 1 2 1 2 2 2 2 1 1     n n S n S n =

 

 

2 6 6 0466 , 0 1 6 0366 , 0 1

6 2 2

 

(52)

= 0,0418

- Ho : µ1 = µ2 H1 : µ1 µ2

- Dengan menggunakan taraf kepercayaan 99% dengan nilai α= 1%→t0,01/2 = ± 3,1693 untuk df = 6+6-2 = 10

- Daerah kritis penerimaan : -3,1693 ≤ t0 ≤ 3,1693 - Daerah kritis penolakan : t0 < -3,1693 dan t0 > 3,1693

t0 =

2 1

2 1

/ 1 /

1 n n Sp

x x

 

t0 =

6 / 1 6 / 1 0418 , 0

4680 , 27 7219 , 47

t0 = 839,3659

(53)

93 Y = 0,03168X + 0,0016

Slope = 0,03168

No.

Konsentrasi (µg/ml)

X

Absorbansi

Y Yi Y-Yi x (Y-Yi)²

1. 0,0000 0,0004 0,0016 -0,0012 0,00000144

2. 1,0000 0,0342 0,0332 0,0010 0,00000100

3. 2,0000 0,0654 0,0649 0,0005 0,00000025

4. 3,0000 0,0962 0,0966 -0,0004 0,00000016

5. 4,0000 0,1302 0,1283 0,0019 0,00000361

6. 5,0000 0,1584 0,1600 -0,0016 0,00000256

∑ 0,00000902

Simpangan baku � =

2 2  

n Yi Y = 4 0,00000902 = 0,0015016

Batas deteksi (LOD) =

slope X SY x 3 = 03168 , 0 0015016 , 0 3 x

= 0,1421 µg/ml

Batas kuantitasi (LOQ) =

slope X SY x 10 = 03168 , 0 0015016 , 0 10 x

= 0,4739 µg/ml

(54)

2. Perhitungan batas deteksi dan batas kuantitasi fosfor Y = 0,4439X + 0,0014

Slope = 0,4439

No.

Konsentrasi (µg/ml)

X

Absorbansi

Y Yi Y-Yi (Y-Yi)²

1. 0,0000 0,0000 0,0014 -0,0014 0,00000196

2. 0,1428 0,0651 0,0647 0,0004 0,00000016

3. 0,2857 0,1324 0,1282 0,0042 0,00001764

4. 0,4285 0,1906 0,1916 -0,0010 0,00000100

5. 0,5714 0,2521 0,2550 -0,0029 0,00000841

6. 0,7142 0,3202 0,3184 0,0018 0,00000324

∑ 0,00003241

Simpangan baku � =

2 2  

n Yi Y = 4 0,00003241 = 0,00284

Batas deteksi (LOD) =

slope X SY x 3 = 4439 , 0 00284 , 0 3 x

= 0,0567 µg/ml

Batas kuantitasi (LOQ) =

slope X SY x 10 = 4439 , 0 00284 , 0 10 x

(55)

95

1. Hasil analisis kalium setelah ditambahkan larutan standar Kalium

No. Berat sampel

(g) Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

Persen Perolehan

Kembali (%)

1 10,0181 0,0930 2,8851 359,9859 101,62

2 10,0201 0,0926 2,8724 358,3297 96,59

3 10,0209 0,0931 2,8882 360,2720 102,49

4 10,0193 0,0924 2,8661 357,5723 94,29

5 10,0197 0,0928 2,8787 359,1300 99,02

6 10,0187 0,0925 2,8693 357,9930 95,57

∑X 60,1168 589,58

X 10,0194 98,26

2. Hasil analisis Fosfor setelah ditambahkan larutan standar Fosfor

No. Berat sampel

(g) Absorbansi (A)

Konsentrasi (µg/ml)

Kadar (mg/100g)

Persen Perolehan

Kembali (%)

1 10,0181 0,1986 0,4442 77,5945 110,96

2 10,0201 0,1994 0,4460 77,8934 115,95

3 10,0209 0,1996 0,4464 77,9570 117,01

4 10,0193 0,1991 0,4453 77,7773 114,19

5 10,0197 0,1993 0,4458 77,8616 115,44

6 10,0187 0,1988 0,4446 77,6597 112,05

∑X 60,1168 685,60

X 10,0194 114,26

(56)

pada Sampel

1. Perhitungan Uji Perolehan Kembali Kalium Persamaan regresi : Y = 0,03168X + 0,0016

µg/ml 2,8851 03168 , 0 0016 , 0 0930 , 0    X

Konsentrasi setelah ditambahkan larutan baku = 2,8851 µg/ml CF = volume(ml) x Faktor pengenceran

sampel Berat (µg/ml) i Konsentras  250 x ml 50 g 10,0181 µg/ml 2,8851  

= 3599,8592 µg/g = 359,9859 mg/100g

Kadar sampel setelah ditambah larutan baku (CF) = 359,9859 mg/100g

Kadar rata-rata sampel sebelum ditambah larutan baku (CA) = 326,514 mg/100g Berat sampel rata-rata uji recovery =10,0194 g

Kadar larutan standar yang ditambahkan (C*A)

C*A = mlyangditambahkan

rata -rata sampel Berat n ditambahka yang logam i Konsentras  = g 0194 , 10 µg/ml 1000

x 3,3 ml

= 329,3610 µg/g = 32,9361 mg/100g

(57)

97 Persamaan regresi : Y = 0,4439X + 0,0014

µg/ml 0,4442 4439 , 0 0014 , 0 1986 , 0    X

Konsentrasi setelah ditambahkan larutan baku = 0,4442 µg/ml CF = volume(ml) x Faktor pengenceran

sampel Berat (µg/ml) i Konsentras  350 x ml 50 g 10,0181 l 0,4442µg/m  

= 775,9455 µg/g = 77,5945 mg/100g

Kadar sampel setelah ditambah larutan baku (CF) = 77,5945 mg/100g

Kadar rata-rata sampel sebelum ditambah larutan baku (CA) = 70,9495 mg/100g Berat sampel rata-rata uji recovery =10,0194 g

Kadar larutan standar yang ditambahkan (C*A)

C*A = mlyangditambahkan

rata -rata sampel Berat n ditambahka yang logam i Konsentras  = g 0194 , 10 µg/ml 1000

x 0,6 ml

= 59,8838 µg/g = 5,9883 mg/100g

Maka % perolehan kembali kalsium = CF- CA x 100%

C*A = mg/100g 5,9883 mg/100g 70,9495) -(77,5945 x100% = 110,96%

(58)

Fosfor pada Sampel

1. Perhitungan simpangan baku relatif (RSD) kadar kalium No. % Perolehan Kembali

(Xi)

(Xi-X̅) (Xi-X̅)²

1 101,62 3,36 11,2896

2 96,59 -1,67 2,7889

3 102,49 4,23 17,8929

4 94,29 -3,97 15,7609

5 99,02 0,76 0,5776

6 95,57 -2,69 7,2361

∑ 589,58 55,546

X̅ 98,26

SD =

1 -n

X -Xi 2

=

1 6 55,546

= 3,3330

RSD = x

X SD

_ 100%

= 100%

98,26 3,3330

x

(59)

99 No. % Perolehan Kembali

(Xi) (Xi-X̅) (Xi-X̅)²

1 110,96 -3,3 1,0890

2 115,95 1,69 2,8561

3 117,01 2,75 7,5625

4 114,19 -0,07 0,0049

5 115,44 1,18 1,3924

6 112,05 -2,21 4,8841

∑ 685,60 17,7890

X̅ 114,26

SD =

1 -n

X -Xi 2

=

1 6 17,789

= 1,8862

RSD = x

X SD

_ 100%

= 100%

114,26 1,8862 x

= 1,650%

(60)
(61)

101

(62)

Akter, S., Sarker. A., Hossain. M.S. (2013). Antidiarrhoeal Activity of Rind of Punica Granatum: International Current Pharmaceutical Journal. 2 (5): 101-103.

Alianto, Adiwilaga. E.M., Damar. A., Harris. E. (2009). Measurement of Dissolved Inorganic Nutrient in Euphotic Zone the Banten Bay. Indonesia

Journal of Chemistry. 9 (2): 217-225.

Almatsier, S. (2004). Prinsip Dasar Ilmu Gizi. Jakarta: PT. Gramedia Pustaka Utama. Halaman 228, 233-234, 243-246.

Cairns, D. (2004). Essentials of Pharmaceutical Chemistry. Penerjemah: Puspita, R.M. (2009). Intisari Kimia Farmasi. Edisi kedua. Jakarta: EGC. Halaman 156.

Ditjen POM. (1979). Farmakope Indonesia. Edisi Ketiga. Jakarta: Gramedia. Halaman 744,772

Ermer, J., dan McB. Miller, J. H. (2005). Method Validation in Pharmaceutical

Analysis. Weinheim: Wiley-Vch Verlag GmbH & Co.KGaA. Halaman:

253.

Gandjar, I.G., dan Rohman, A. (2007). Kimia Farmasi Analisis. Cetakan IV. Yogyakarta: Pustaka Pelajar. Halaman 222-229, 298-299, 305-312, 319-321.

Hagen, B. (2013). High Levels of Potassium and Health Benefits. Diakses tanggal: 6 Februari 2015. http://www.livestrong.com/article/539811-high-levels-of-potassium-and-health-benefits.

Harmita. (2004). Petunjuk Pelaksanaan Validasi Metode dan Cara Perhitungannya. Review Artikel. Majalah Ilmu Kefarmasian. 1 (3): 117-119, 121, 122, 127, 128, 130.

Harris, D.C. (2007). Quantitative Chemical Analysis. Cetakan VII. New York. Halaman: 455.

Issac, R.A. (1990). Metal in Plants. Dalam: Helrich, K. (1990). Official Methods

of the Association of Official Analytical Chemists. Edisi Kelimabelas.

Virginia: AOAC International. Halaman 42.

(63)

40

Marhari, O.Y, dan Dewi, K.K. (2014). Khasiat Ajaib Delima. Jakarta: Padi Halaman 3, 14-18, 21-24, 34.

Pudjiadi, S. (2000). Ilmu Gizi Klinik pada Anak. Edisi Keempat. Jakarta: FK UI. Halaman 197-198.

Rosmarkam, A,. dan Yuwono, N.W. (2002). Ilmu kesuburan Tanah. Yogyakarta: Kanisius. Halaman 56.

Sasongkawati, R. (2013). 13 Terapi Buah Sakti Penghancur Penyakit. Cetakan I. Yogyakarta: Indoliterasi. Halaman 57,58,62.

Shah, M., Shah. S., Patel. M. (2011). Review on: “The Aspects of Punica Granatum”. Journal of Pharmaceutical Science and Bioscientific

Research. 1(5): 154-157.

Silalahi , J. (2006). Makanan Fungsional. Yogyakarta: Kanisius. Halaman 23. Sudjana. (2005). Metode Statistika. Edisi Keenam. Bandung: Tarsito. Halaman

168, 227, 239.

Surahman, D.N., dan Darmajana, D.A. (2004). Kajian Analisis Kandungan Vitamin dan Mineral pada Buah-Buahan Tropis dan Sayuran-Sayuran diToyaman Prefecture Jepang. Dalam : Prosiding Seminar Nasional

Rekayasa Kimia dan Proses Jurusan Tekhnik Kimia Fakultas Tekhnik

Undip Semarang. ISSN: 1411-4216.

USDA (2014). Natural Resources Conservation Service. Diakses Tanggal 12 Agustus 2015. http://plants.usda.gov/team.html.

(64)

METODE PENELITIAN

3.1 Tempat dan Waktu Penelitian

Penelitian ini dilakukan di Laboratorium Penelitian Fakultas Farmasi Universitas Sumatera Utara Medan pada bulan November 2014 - Februari 2015.

3.2 Bahan - Bahan

3.2.1 Sampel

Sampel yang digunakan dalam penelitian ini adalah buah delima merah (Punica granatum L.) lokal yang berasal dari Aceh, Jl. T.Geucik Sulaiman Sigli dan buah delima merah impor yang diambil secara purposif disupermarket Pondok Indah Pasar Buah, Jl.Setia Budi, Medan

3.2.2 Pereaksi

Bahan-bahan yang digunakan dalam penelitian ini berkualitas pro analisis keluaran E. Merck yaitu asam nitrat 65% v/v, asam sulfat 96% b/v, larutan baku kalium 1000 µg/ml, ammonium molibdat, asam askorbat, kalium dihidrogen fosfat, kalium antimonil tatrat, kecuali akuademineralisata dari laboratorium penelitian Fakultas Farmasi USU.

3.3 Alat- alat

(65)

19

3.4 Identifikasi Sampel

Identifikasi tumbuhan delima merah lokal dan delima merah impor dilakukan oleh Lembaga Ilmu Pengetahuan Indonesia Pusat Penelitian dan Pengembangan Biologi, Bogor

3.5 Pembuatan Pereaksi

3.5.1 Larutan HNO3 (1:1) v/v

Sebanyak 300 ml larutan asam nitrat 65% b/v diencerkan dengan 300 ml akuademineralisata.

3.5.2 Larutan HNO3 5 N

Larutan HNO3 65% b/v sebanyak 17,2 ml diencerkan dengan akuademineralisata hingga 50 ml (Ditjen POM, 1979).

3.5.3 Larutan H2SO4 5 N

Dipipet 70,0 ml H2SO4 96% v/v, dimasukkan perlahan-lahan melalui dinding ke dalam labu tentukur 500 ml yang telah berisi akuademineralisata setengahnya. Dicukupkan volumenya dengan akuademineralisata hingga garis tanda (Alianto, et al., 2009)

3.5.4 Larutan Ammonium Molibdat 4%b/v

Ditimbang seksama 20,0 g ammonium molibdat. Kemudian dimasukkan ke dalam labu tentukur 500 ml, ditambah dengan akuademineralisata dan

(66)

al., 2009)

3.5.5 Larutan Asam Askorbat 0,1 N

Ditimbang seksama 8,8 g asam askorbat dan dilarutkan dalam labu tentukur 500 ml dengan akuademineralisata dan dicukupkan volumenya dengan akuademineralisata hingga garis tanda (Alianto, et al., 2009)

3.5.6 Larutan Kalium Antimonil Tatrat 0,274% b/v

Ditimbang seksama 0,274 g kalium antimonil tartat, dimasukkan ke dalam labu tentukur 100 ml ditambah dengan akuademineralisata hingga garis tanda (Alianto, et al., 2009)

3.5.7 Larutan Pengembang Warna Fosfor

Dicampur 500 ml asam sulfat 5 N, 150 ml ammonium molibdat 4% b/v, 300 ml asam askorbat 0,1 N dan 50 ml kalium antimonil tatrat 0,274% b/v (Alianto, et al., 2009)

3.6 Prosedur Penelitian

3.6.1 Pengambilan Sampel

(67)

21

Buah delima merah lokal dan impor masing-masing ditimbang sebanyak 500 gram, dibersihkan dari pengotoran, dicuci, ditiriskan kemudian dibelah menjadi empat bagian. Diambil daging buah delima beserta biji dan dihaluskan dengan menggunakan blender tanpa penambahan akua.

3.6.2.2 Buah Delima Merah Tanpa Biji

Buah delima merah lokal dan impor masing-masing ditimbang sebanyak 500 gram, dibersihkan dari pengotoran, dicuci, ditiriskan kemudian dibelah menjadi empat bagian. Diambil daging buah delima yang masih melekat bijinya kemudian dipisahkan biji dan daging buah delima dengan menggunakan blender khusus yang bisa memisahkan biji dan daging buah tanpa penambahan aqua.

3.6.3 Proses Destruksi Kering

Sampel ditimbang secara seksama masing-masing sebanyak 10 gram kedalam krus porselen yang sudah dikalibrasi lalu dipanaskan diatas hot plate sampai kering dan mengarang. Diabukan didalam tanur dengan temperatur awal 100oC dan perlahan-lahan temperatur dinaikkan menjadi 500oC dengan interval 25oC setiap 5 menit. Pengabuan dilakukan selama 48 jam (dihitung saat suhu sudah 500℃), lalu dibiarkan mendingin dan hasil sampel terbentuk abu berwarna putih selanjutnya ditambahkan 5 ml HNO

3 (1:1) secara hati-hati dan diuapkan pada hot plate dengan suhu 100-120oC sampai kering. Krus dimasukkan kembali ke dalam tanur dengan temperatur awal 100℃ dan perlahan–lahan temperatur dinaikkan hingga suhu 500℃ dengan interval 25℃ setiap 5 menit, dilakukan selama 1 jam dan dibiarkan mendingin pada desikator (Isaac, 1990 dengan

(68)

halaman 45-46.

3.6.4 Pembuatan Larutan Sampel

Hasil destruksi yang telah dingin dilarutkan dengan 5 ml HNO3 (1:1) hingga diperoleh larutan bening lalu dituangkan ke dalam labu tentukur 50 ml, sisa pada krus dibilas 3 kali dengan akuademineralisata, dituangkan kembali kedalam labu tentukur, kemudian larutan dicukupkan dengan akuademineralisata hingga garis tanda dan disaring dengan kertas saring whatman No.42, filtrat pertama dibuang sebanyak 5 ml, kemudian filtrat selanjutnya ditampung ke dalam botol. Filtrat ini digunakan sebagai larutan sampel untuk analisis kuantitatif. Perlakuan yang sama diulang sebanyak 6 kali untuk masing-masing sampel. Bagan alir pembuatan larutan sampel dapat dilihat pada Lampiran 5, halaman 47.

3.7 Analisis Kuantitatif

3.7.1 Kalium

3.7.1.1 Pembuatan Kurva Kalibrasi Kalium

Larutan baku kalium (1000 µg/ml) dipipet sebanyak 5 ml, dimasukkan ke dalam labu tentukur 100 ml dan dicukupkan hingga garis tanda dengan akuademineralisata (konsentrasi 50 µg/ml) (Larutan induk baku II).

(69)

23

3.7.1.2 Penetapan Kadar Kalium dalam Sampel

Empat larutan sampel buah delima hasil destruksi dipipet sebanyak 0,1 ml dimasukkan ke dalam labu tentukur 25 ml dan dicukupkan dengan akuademineralisata hingga garis tanda (Faktor pengenceran = 25ml/0,1ml = 250 kali). Lalu diukur absorbansinya dengan menggunakan spektrofotometer serapan atom yang telah dikondisikan dan diatur metodenya dimana penetapan kadar untuk kalium dilakukan pada panjang gelombang 766,5 nm dengan nyala udara-asetilen. Pengenceran dilakukan agar nilai absorbansi berada dalam rentang kurva kalibrasi larutan baku kalium. Konsentrasi kalium dalam sampel ditentukan berdasarkan persamaan garis regresi dari kurva kalibrasi.

3.7.2 Fosfor

3.7.2.1 Pembuatan Larutan Induk Baku KH2PO4 (LIB I)

Ditimbang 0,44 g KH2PO4 yang telah dikeringkan didalam oven dengan suhu 1050C selama 1 jam, kemudian dimasukan ke dalam labu tentukur 100 ml, ditambahkan 5,0 ml HNO3 5 N, dikocok hingga larut, dicukupkan volumenya dengan akuademineralisata hingga garis tanda. Diperoleh konsentrasi fosfor pada larutan induk baku (LIB I) adalah 1000 µg/ml.

3.7.2.2 Pembuatan Kurva Serapan Larutan KH2PO4

Dipipet 0,5 ml dari LIB I, dimasukan kedalam labu tentukur 100 ml, ditambahkan akuademineralisata sampai garis tanda (5 µg/ml). Dipipet 1 ml dari larutan (5 µg/ml) dimasukan ke dalam erlenmeyer, ditambahkan 5 ml akuademineralisata dan ditambahkan 1 ml larutan pengembang warna fosfor

(70)

kocok. Diukur serapan pada panjang gelombang maksimum 400-800 nm.

3.7.2.3 Penentuan Waktu Kerja

Dipipet 0,5 ml dari LIB I, dimasukan kedalam labu tentukur 100 ml, dicukupkan volumenya dengan akuademineralisata hingga garis tanda (5 µg/ml). Dipipet 1 ml dari larutan tersebut, ditambahkan 5,0 ml akuademineralisata dan 1,0 ml larutan pengembang warna fosfor (asam sulfat 5N, ammonium molibdat, asam askorbat, kalium antimonil tatrat), dikocok, dan kemudian didiamkan. Diukur serapan pada panjang gelombang maksimum 710 nm mulai menit ke 0 hingga menit ke 60 dengan interval 1 menit.

3.7.2.4 Pembuatan Kurva Kalibrasi Fosfor

Dipipet 0,1 ml; 0,2 ml; 0,3 ml; 0,4 ml; 0,5 ml dari LIB I, dimasukan kedalam labu tentukur 100 ml, kemudian dicukupkan volumenya sampai garis tanda. Dipipet 1 ml larutan tersebut, ditambahkan 5,0 ml akuademineralisata dan 1 ml larutan pengembang warna fosfor (asam sulfat 5N, ammonium molibdat, asam askorbat, kalium antimonil tatrat), dikocok dan diamkan selama 35 menit. Dengan konsentrasi larutan 0,1428 µg/ml; 0,2857 µg/ml; 0,4285 µg/ml; 0,5714 µg/ml; 0,7142 µg/ml. Kemudian diukur serapan pada panjang gelombang 710 nm pada menit ke-35 menit dengan spektrofotometri sinar tampak.

3.7.2.5 Penetapan Kadar Fosfor dalam Sampel

(71)

25

selama 35 menit. Diukur serapan pada panjang gelombang maksimum 710 nm. Pengukuran harus dilakukan dalam rentang waktu kerja yang telah di peroleh.

Kadar kalium dan fosfor dalam sampel dapat dihitung dengan cara sebagai berikut: (g) Sampel Berat n pengencera Faktor x (ml) Volume x (µg/ml) i Konsentras (µg/g) Logam

Kadar 

3.8 Analisis Data Secara Statistik

3.8.1 Penolakan Hasil Pengamatan

Kadar mineral kalium dan fosfor yang diperoleh dari hasil pengukuran masing-masing larutan sampel dianalisis secara statistik.

Menurut Sudjana (2005), standar deviasi dapat dihitung dengan rumus:

SD =

1 -n X -Xi 2

Keterangan: Xi = Kadar sampel

X = Kadar rata-rata sampel n = Jumlah perlakuan Untuk mencari t hitung digunakan rumus:

t hitung =

n SD X Xi / 

dan untuk menentukan kadar mineral di dalam sampel dengan interval kepercayaan 99%, α = 0,01, dk = n-1, dapat digunakan rumus:

Kadar mineral : µ =

X

± (t(α/2, dk) x SD / √n )

Keterangan:

X

= Kadar rata-rata sampel
(72)

dk = Derajat kebebasan (dk = n-1) α = Interval kepercayaan

n = Jumlah perlakuan

3.8.2 Pengujian Beda Nilai Rata-Rata Antar Sampel

Menurut Sudjana (2005), sampel yang dibandingkan adalah independen dan jumlah pengamatan masing-masing lebih kecil dari 30 dan varians () tidak diketahui sehingga dilakukan uji F untuk mengetahui apakah varians kedua populasi sama (1 =  2) atau berbeda (1  2) dengan menggunakan rumus:

F0 = �

Keterangan : F0 = Beda nilai yang dihitung S1 = Standar Deviasi sampel 1 S2 = Standar Deviasi sampel 2

Apabila dari hasilnya diperoleh F0 tidak melewati nilai kritis F maka dilanjutkan uji dengan distribusi t dengan rumus:

to =

2 1 2 1 / 1 /

1 n n Sp

x x

 

Sp = √� − � + � − �

� + � −

Keterangan : X1 = kadar rata-rata sampel 1 X2 = kadar rata-rata sampel 2 Sp = simpangan baku

n1 = jumlah pengulangan sampel 1 n2 = jumlah pengulangan sampel 2 S1 = Standar Deviasi sampel 1 S2 = Standar Deviasi sampel 2

Dan jika F0 melewati nilai kritis F maka dilanjutkan uji dengan distribusi t dengan rumus:

to =

(73)

27

n1 = jumlah pengulangan sampel 1 n2 = jumlah pengulangan sampel 2 S1 = Standar Deviasi sampel 1 S2 = Standar Deviasi sampel 2

Kedua sampel dinyatakan berbeda apabila to yang diperoleh melewati nilai kritis t, dan sebaliknya.

3.9 Uji Validasi Metode Analisis

3.9.1 Penentuan Batas Deteksi dan Batas Kuantitasi

Batas deteksi dan kuantitasi dapat dihitung secara statistik melalui garis regresi linier dari kurva kalibrasi. Nilai pengukuran akan sama dengan b pada persamaan garis linier y= a + bx, sedangkan simpangan baku blanko sama dengan simpangan baku residual (Sy/x) (Harmita, 2004).

Batas deteksi dan batas kuantitasi ini dapat dihitung dengan rumus sebagai berikut:

Simpangan Baku ( X

SY ) =

2

2

 

n Yi Y

Batas deteksi (LOD) =

slope X SY x 3

Batas kuantitasi (LOQ) =

slope X SY x 10

3.9.2 Uji Perolehan Kembali (Recovery)

Sampel buah delima merah lokal tanpa biji yang telah dihaluskan ditimbang sebanyak ± 10 g, lalu ditambahkan 3,3 ml larutan baku kalium (konsentrasi 1000 µg/ml) dan 0,6 ml larutan baku fosfor (konsentrasi 1000 µg/ml)

(74)

dilakukan sebelumnya. Prosedur pengukuran uji perolehan kembali dilakukan sama dengan prosedur penetapan kadar sampel.

Menurut Harmita (2004), persen perolehan kembali dapat dihitung dengan rumus di bawah ini:

% Perolehan Kembali =

A A F

C C C

*

x 100%

Keterangan :

CA = Kadar logam dalam sampel sebelum penambahan baku (µg/g) CF = Kadar logam dalam sampel setelah penambahan baku (µg/g) C*A = Kadar larutan baku yang ditambahkan (µg/g)

3.9.3 Simpangan Baku Relatif

Menurut Harmita, (2004), keseksamaan atau presisi diukur sebagai simpangan baku relatif atau koefisien variasi. Keseksamaan atau presisi merupakan ukuran yang menunjukkan derajat kesesuaian antara hasil uji individual ketika suatu metode dilakukan secara berulang untuk sampel yang homogen. Nilai simpangan baku relatif yang memenuhi persyaratan menunjukkan adanya keseksamaan metode yang dilakukan. Adapun rumus untuk menghitung simpangan baku relatif adalah:

RSD = 100%

X SD

Keterangan :

X

= Kadar rata-rata sampel SD = Standar Deviasi
(75)

29

4.1 Analisis Kuantitatif

4.1.1 Penentuan Panjang Gelombang Maksimum Senyawa Kompleks Fosfor Molibdenum

Penentuan panjang gelombang maksimum senyawa kompleks fosfor molibdat dilakukan dengan mengukur serapan dari larutan baku (KH2PO4) dengan konsentrasi 5 µg/ml pada rentang panjang gelombang maksimum 400-800 nm dengan menggunakan spektrofotometer sinar tampak, dapat dilihat pada Gambar 4.1.

Gambar 4.1 Kurva Serapan Senyawa Kompleks Fosfor Molibdenum dengan

Konsentrasi 5 µg/ml

[image:75.595.99.516.365.667.2]
(76)

panjang gelombang 710 nm. Panjang gelombang yang diperoleh ini sesuai dengan literatur, yaitu pada rentang 610-750 nm yang merupakan rentang panjang gelombang untuk warna komplementer biru-hijau (Gandjar dan Rohman, 2007).

4.1.2 Penentuan Waktu Kerja Kompleks Fosfor Molibdenum pada Panjang Gelombang Maksimum 710 nm

Penentuan waktu kerja dilakukan dengan mereaksikan fosfor dan senyawa molibdat sehingga terbentuk kompleks. Penentuan waktu kerja dilakukan dengan mengukur serapan dari larutan baku dengan konsentrasi 5,0 µg/ml selama 60 menit pada panjang gelomabang 710 nm. Dari hasil penelitian diperoleh serapan bahwa serapan senyawa kompleks tersebut stabil pada menit ke-35 hingga menit ke-40. Data penentuan waktu kerja dapat dilihat pada Lampiran 7 halaman 49-50.

4.1.3 Kurva Kalibrasi Kalium secara Spektrofotometri Serapan Atom

[image:76.595.154.466.527.673.2]

Kurva kalibrasi kalium diperoleh dengan cara mengukur absorbansi dari larutan baku kalium pada panjang gelombang 766,5 nm. Kurva kalibrasi larutan baku kalium dapat dilihat pada Gambar 4.2.

(77)

31

[image:77.595.125.490.202.399.2]

larutan baku pada panjang gelombang 710 nm. Kurva kalibrasi larutan baku fosfor dapat dilihat pada Gambar 4.3.

Gambar 4.3 Kurva kalibrasi fosfor

Hasil pengukuran kurva kalibrasi diperoleh persamaan garis regresi yaitu Y = 0,03168X + 0,0016 untuk kalium dan Y = 0,4439X + 0,0014 untuk fosfor.

Berdasarkan gambar diatas diperoleh hubungan yang linear antara konsentrasi dengan absorbansi, dengan koefisien korelasi (r) kalium sebesar 0,9998; dan fosfor sebesar 0,9995. Nilai ini menunjukkan adanya korelasi linier yang menyatakan adanya hubungan antara X (Konsentrasi) dan Y (Serapan) (Ermer, 2005).. Data hasil pengukuran absorbansi larutan baku kalium, dan fosfor dan perhitungan persamaan garis regresi dapat dilihat pada Lampiran 8 halaman 51 dan lampiran 9 halaman 52.

(78)

Penentuan kadar kalium dilakukan secara spektrofotometri serapan atom pada panjang gelombang 766,5 nm. Konsentrasi mineral kalium dalam sampel ditentukan berdasarkan persamaan garis regresi kurva kalibrasi larutan baku mineral. Agar konsentrasi mineral kalium dalam sampel berada pada rentang kurva kalibrasi maka masing-masing sampel diencerkan terlebih dahulu dengan faktor pengenceran sebesar 250 kali. Data dan perhitungan dapat dilihat pada Lampiran 10 halaman 53-54 dan lampiran 12 halaman 57.

[image:78.595.114.511.414.488.2]

Analisis dilanjutkan dengan perhitungan statistik (Perhitungan dapat dilihat pada Lampiran). Hasil analisis kuantitatif mineral kalium dapat dilihat pada Tabel 4.1 berikut ini.

Tabel 4.1 Hasil analisis kadar kalium pada sampel

No Sampel Kadar Kalium (mg/100g)

1 Delima Lokal dengan biji 340,8522 + 4,3405

2 Delima Lokal tanpa biji 326,5140 + 6,7380

3 Delima Impor dengan biji 233,1907 + 2,6206

4 Delima Impor tanpa biji 162,3313 + 2,1051

4.1.6 Penetapan Kadar Fosfor secara Spektrofotometri Sinar Tampak

(79)

33

(Alianto, et al., 2009) Data perhitungan dapat dilihat pada Lampiran 11 halaman 55-56 dan lampiran 12 halaman 58.

Analisis kemudian dilanjutkan dengan perhitungan statistik dengan distribusi t pada tingkat kepercayaan 99% (α = 0,01). Berdasarkan hasil

[image:79.595.131.499.166.424.2]

perhitungan statistik tersebut diperoleh kesimpulan bahwa rata-rata kadar fosfor pada sampel dapat dilihat pada Tabel 4.2 di bawah ini.

Tabel 4.2 Hasil analisis kadar fosfor pada sampel

No Sampel Kadar Fosfor (mg/100g)

1 Delima Lokal dengan biji 70,9495 + 0,1056

2 Delima Lokal tanpa biji 55,1706 + 0,0903

3 Delima Impor dengan biji 47,7219 + 0,0600

4 Delima Impor tanpa biji 27,4680 + 0,0766

(80)
[image:80.595.116.512.247.415.2]

Data yang didapat kemudian diuji kembali secara statistik untuk mengetahui beda nilai kadar rata-rata mineral antara keempat sampel. Perhitungan dapat dilihat pada lampiran 15 halaman 76-83 dan lampiran16 halaman 84-91. Hasil perhitungan uji statistik dapat dilihat pada tabel 4.3.

Tabel 4.3 Hasil uji Beda nilai rata-rata kadar kalium dan fosfor antar sampel

No Sampel Mineral t hitung t tabel Hasil

1 Lokal

Berbiji Kalium 7,2130 3,1693 Beda Tanpa biji Fosfor 457,3594 3,1693 Beda

2 Lokal

Berbiji Kalium 83,0555 3,2498 Beda

Impor Fosfor 769,3805 3,1693 Beda

3 Lokal

Tanpa biji Kalium 93,7781 3,1693 Beda

impor Fosfor 942,2653 3,1693 Beda

4 impor Berbiji Kalium 91,6872 3,2498 Beda

Tanpa biji fosfor 839,3659 3,1693 Beda

Delima lokal berbiji berbeda kadar mineralnya dibandingkan dengan

(81)

35

tanah, dan kemampuan metabolisme senyawa juga dipengaruhi oleh faktor lingkungan yaitu cahaya, panas, air (Surahman dan Darmajana, 2004).

4.1.8 Batas Deteksi dan Batas Kuantitasi

Berdasarkan data kurva kalibrasi kalium dan fosfor diperoleh batas deteksi dan batas kuantitasi untuk kedua mineral tersebut. Batas deteksi dan batas kuantitasi kalsium dan fosfor dapat dilihat pada Tabel 4.4.

Tabel 4.4 Batas deteksi dan batas kuantitasi mineral kalium dan fosfor

No Mineral Batas Deteksi (µ g/ml) Batas Kuantitasi (µg/ml)

1. Kalium 0,1421 0,4739

2. Fosfor 0,0567 0,0630

Dari hasil perhitungan diperoleh batas deteksi untuk pengukuran kalium dan fosfor masing-masing sebesar 0,1421 µg/ml dan 0,0567 µg/ml sedangkan batas kuantitasinya sebesar 0,4739 µg/ml dan 0,0630 µg/ml.

Dari hasil perhitungan dapat dilihat bahwa semua hasil yang diperoleh pada pengukuran sampel berada diatas batas deteksi dan batas kuantitasi. Perhitungan batas deteksi dan batas kuantitasi dapat dilihat pada Lampiran 17, halaman 92-93.

4.2 Uji Validasi Metode Analisis

4.2.1 Uji Perolehan Kembali (Recovery)

Hasil uji perolehan kembali (recovery) kadar kalium dan fosfor setelah penambahan masing-masing larutan baku dalam sampel dapat dilihat pada Tabel 4.5.

(82)

No Mineral

Kadar rata-rata logam dalam sampel sebelum penambahan baku

(CA) (mg/100g)

Volume larutan baku

yang ditambahkan

(C*A) ml

Kadar logam dalam sampel

setelah penambahan

baku (CF) (mg/100g)

% Recovery

1. Kalium 326,514 3,3 359,9859 98,26

2. fosfor 70,9495 0,6 77,5945 114,26

Berdasarkan Tabel 4.5 di atas, dapat dilihat bahwa rata-rata hasil uji perolehan kembali (recovery) berturut-turut untuk mineral kalium 98,26% da

Gambar

tabel = α /2, dk = 4,0321.
tabel = α /2, dk = 4,0321.
tabel = α /2, dk = 4,0321.
tabel = α /2, dk = 4,0321.
+7

Referensi

Dokumen terkait

Program Pengabdian Masyarakat ini bertujuan untuk mengembangkan Agensia Hayati sebagai solusi permasalahan hama penyakit sawah di Desa Ngebung, meningkatkan produksifitas

causality relationship between two series, Johansen’s co -integration test is used for pinpointing long-run relationships among stock markets under study.. Johansen uses

12 Lambang bilangan yang dapat dinyatakan dengan satu atau dua kata, ditulis dengan huruf.. Saya mengambil dua

Perlu diperhatikan benar berapa besar ukuran program ini nantinya, dengan tidak mendeklarasikan terlalu banyak tipe data yang tidak perlu karena semakin kecil program akan

Undang-undang Dasar Negara Republik Indonesia Tahun 1945 sebagai

Melalui sajian yang menarik dan informatif diharapkan dapat membantu dan menimbulkan semangat belajar siswa-siswa sekolah dasar dalam mata pelajaran mengenai tata surya dan

kampanye meliputi pertemuan, ajakan, himbauan, seruan, atau pemberian barang kepada PNS dalam lingkungan unit kerjanya, anggota keluarga, dan masyarakat • Menggunakan

[r]