• Tidak ada hasil yang ditemukan

Formulasi dan Evaluasi Aktivitas Emulgel dari Kombinasi Avobenzone dan Oktilmetoksisinamat sebagai Tabir Surya

N/A
N/A
Protected

Academic year: 2017

Membagikan "Formulasi dan Evaluasi Aktivitas Emulgel dari Kombinasi Avobenzone dan Oktilmetoksisinamat sebagai Tabir Surya"

Copied!
109
0
0

Teks penuh

(1)
(2)
(3)

50

(4)

51

Lampiran 4 Avobenzone, HPMC, dan Oktilmetoksisinamat (OMC)

Avobenzone dan HPMC

(5)

52

Lampiran 5 Neraca analitik, Viskometer, pH meter, Spektrofotometer UV-Vis, dan mikroskop

Neraca Analitik Viskometer Brokfield pH meter

(6)

53

(7)

54 Lampiran 7 Gambar homogenitas sediaan

Gambar homogenitas emulgel 0,1% ; 0,5% ; 1%

(8)

55 Lampiran 8 Gambar Stabilitas Sediaan

Gambar sediaan emulgel setelah pembuatan

(9)

56 Lampiran 9 Gambar tipe emulsi sediaan

Tipe emulsi m/a

(10)

57

Lampiran 10 Perhitungan ukuran partikel terdispersi Konversi satuan pixel menjadi mikrometer (µm) 1 pixel = 0,026458334 cm

= 0,026458334 x 104 = 264,58334µm Contoh perhitungan ukuran partikel :

Ukuran partikel adalah 2 pixel pada perbesaran 40 kali Maka : 2 x 264,58334µm

40 = 13,23 µm.

(11)

58 Lampiran 10 (Lanjutan)

(12)

59 Lampiran 10 (Lanjutan)

(13)

60 Lampiran 10 (Lanjutan)

(14)

61 Lampiran 10 (Lanjutan)

(15)

62 Lampiran 10 (Lanjutan)

(16)

63 Lampiran 10 (Lanjutan)

(17)

64 Lampiran 10 (Lanjutan)

(18)

65 Lampiran 10 (Lanjutan)

(19)

66 Lampiran 10 (Lanjutan)

(20)

67 Lampiran 10 (Lanjutan)

(21)

68 Lampiran 10 (Lanjutan)

(22)

69 Lampiran 10 (Lanjutan)

M6 2 13,23 82 1086,5 20,66

3 19,86 76 1510,12

4 26,50 72 1908

6 39,75 13 516,75

Jumlah 243 5021,37

M7 2 13,23 80 1060 20,79

3 19,86 72 1429,92

4 26,50 70 1823,5

6 39,75 16 636

Jumlah 238 4949,42

M8 2 13,23 80 1060 20,89

3 19,86 70 1390,9

4 26,50 74 1927,7

6 39,75 16 636

(23)

70

Lampiran 11 Gambar mikroskopik sediaan emulgel tabir surya

Ukuran partikel F1 (Tween 20 0,1%) pada perbesaran 40x10 selama 8 minggu

Awal 1 2

7

5

6 8

3 4

(24)

71 Lampiran 11 (Lanjutan)

Ukuran partikel F2 (Tween 20 0,5%) pada perbesaran 40x10 selama 8 minggu

3

7

5

6 8

4

3

Awal 1 2

(25)

72 Lampiran 11 (Lanjutan)

Ukuran partikel F3 (Tween 20 1%) pada perbesaran 40x10 selama 8 minggu

Ukuran partikel F4 (Tween 20 1,5%) pada perbesaran 40x10 selama 8 minggu 7

6 8

3

Awal 1 2

7

5

6 8

(26)

73 Lampiran 11 (Lanjutan)

Ukuran partikel F5 (Tween 20 2%) pada perbesaran 40x10 selama 8 minggu 3

Awal 1 2

7

5

6 8

4

(27)

74 Lampiran 11 (Lanjutan)

Ukuran partikel F6 (Tween 20 2,5%) pada perbesaran 40x10 selama 8 minggu 3

7

5

6 8

4

3

Awal 1 2

(28)

75 Lampiran 11 (Lanjutan)

Ukuran partikel F7 (Tween 20 3%) pada perbesaran 40x10 selama 8 minggu 7

(29)

76 Lampiran 12 Tabel distribusi partikel terhadap penyimpanan

(30)

77 Lampiran 12 (Lanjutan)

(31)

78 Lampiran 12 (Lanjutan)

Formula M0 M1 M2 M3 M4 M5 M6 M7 M8 F3: Konsentrasi Tween 20 (1%) M3: 3 minggu

(32)

79

Lampiran 13 Hasil pengukuran SPF menggunakan spektrofotometer Formula 1

Pengulangan 1x

(33)

80 Lampiran 13 (Lanjutan)

Pengulangan 3x Formula 2

(34)

81 Lampiran 13 (Lanjutan)

Pengulangan 2x

(35)

82 Lampiran 13 (Lanjutan)

Formula 3

Pengulangan 1 x

(36)

83 Lampiran 13 (Lanjutan)

Pengulangan 3x Formula 4

(37)

84 Lampiran 13 (Lanjutan)

Pengulangan 2x

(38)

85 Lampiran 13 (Lanjutan)

Formula 5

Pengulangan 1x

(39)

86 Lampiran 13 (Lanjutan)

Pengulangan 3x Formula 6

(40)

87 Lampiran 13 (Lanjutan)

Pengulangan 2x

(41)

88 Lampiran 13 (Lanjutan)

Formula 7

Pengulangan 1x

(42)

89 Lampiran 13 (Lanjutan)

(43)

90 Lampiran 14 Tabel penentuan nilai SPF sediaan

(44)

91 Lampiran 14 (Lanjutan)

(45)

92 Lampiran 14 (Lanjutan)

(46)

93 Lampiran 14 (Lanjutan)

(47)

94 Lampiran 14 (Lanjutan)

(48)

45

DAFTAR PUSTAKA

Ansel, H.C. (1989). Pengantar Bentuk Sediaan Farmasi. Edisi keempat. Jakarta: UI-Press. Hal. 387-388.

Barel, A.O., Paye, M., dan Howard, I. (2001). Handbook of Cosmetic Science

and Technology. New York : Marcel Dekker Inc. Hal. 155.

Bhanu, P.V., Shanmugam, V., dan Lakshmi, P.K. (2011). Development and Optimization of Novel Diclofenac Emulgel for Topical Drug Delivery.Pharmace Globale (IJCP). 9(10): 1-4.

Budavari, S. (2001). The Merck Index Encyclopedia of Chemicals, Drugs, and

Biologicals.13th Edition. Whitehouse: Merck & Co. Hal. 1115

Cumpelik, B.M. (1972). Analitycal Procedures and Evaluation Of Sunscreen.

Journal of The Society of Cosmetic Chemists. Washington D.C. 23(6):

333-345.

Ditjen POM. (1979). Farmakope Indonesia. Edisi Ketiga. Jakarta : Departemen Kesehatan Republik Indonesia. Hal. 33.

Ditjen POM. (1985). Formularium Kosmetika Indonesia. Jakarta : Departemen Kesehatan Republik Indonesia. Hal.32-36.

Draelos, Z. D., dan Lauren A. Thaman. (2006). Cosmetic Formulation of Skin

Care Product. New York: Taylor and Francis Group. Hal. 136.

Dutra, A., Alamanca, D., dan Hackmann, E. (2004). Determination of sun protector factor (SPF) of sunscreen by ultraviolet spectrophotometry.

Brazilian Journal of Pharmaceutical Sciences. Brazil :Universidade de Sao

Paulo. 40(3): 381-382.

Dzuhro, Z.S. (2011). Pengaruh Natrium Hialuronat Terhadap Penetrasi Kofein Sebagai Antiselulit Dalam Sediaan Hidrogel, Hidroalkoholik Gel Dan Emulsi Gel Secara In Vitro Menggunakan Sel Difusi Franz. Skripsi. Depok :Universitas Indonesia. Hal. 45,48,50-68.

Fourneron, J.D., Faraud, F., dan Fauneron, A. (1999). Surla Mesure In Vitro de La Protection Solaire de Cremes Cosmetiques. C.R. Acad Sci. 2(2): 421-427. Gordon, V.C. (1993). Evaluation du Facteur de Protection Solaire. Parfum.

Cosmet. Arom. 112: 62-65.

(49)

46

Khullar, R., Nimrata, S., Seema, S., dan Rana, S. (2012). Emulgels: A Surrogate Approach For Topically Used Hydrophobic Drugs. International Journal of

Pharmaceutical and Biological Sciences. 1(3): 117-128.

Lachman, L., Lieberman, H.A., dkk. (1994). Teori dan Praktek Farmasi Industri. Edisi Ketiga. Jakarta: UI – Press. Hal. 643.

Lund, W. (1994). The Pharmaceutical Codex Principles & Practice of

Pharmaceutics. 12th Edition.London : The Pharmaceutcal Press. Hal. 212-214 Mansur, J.S., Breder, M.N., Mansur, M.C., dan Azulay, R.D. (1986).

Determinacao do Fator de Protecao Solar Por Espectrofotomeria. An. Bras.

Dermatol. 61: 121-124.

Martin, A., Swarbrick, J., dan Commarata, A. (1993). Farmasi Fisik. Alih bahasa Yoshita & Iis Aisyah. Edisi Ketiga. Jakarta : Universitas Indonesia Press. Hal 924-950, 1255.

Mitsui, T. (1997). New Cosmetic Science. 1th Edition. Amsterdam : Elsevier Sciences B.V. Hal. 38-45.

Mohammed, M. (2004). Optimation of Chlorphenesin Emulgel Formulation. The

AAPS Journal. 6(3):1-7.

Panwar, A.S., Upadhyay, N., Bairagi, M., Gujar, S., Darwhekar,G..N., dan Jain, D.K. (2011). Emulgel : A Review. Asian Journal of Pharmacy and Life

Science. 3: 333-343.

Pissavini, M., Ferrero, L., Alaro, V., dan Meloni, M. (2003). Determination of The In Vitro SPF. Cosmet. Toiletries. 118: 63-72.

Rawlins, E. A. (2003). Bentley's Textbook of Pharmaceutics. 18th Edition. London: Bailierre Tindall. Hal. 22, 355.

Rieger, M.M. (2000). Harry’s Cosmetology. 8th Edition. New York : Chemical Publishing Co., Inc. Hal. 420-421.

Rowe, R.C., Sheskey, P.J., dan Quinn, M.E. (2009). Handbook of Pharmaceutical

Excipients. 6th edition. Washington D.C : Pharmaceutical Press and American Pharmacists Association. Hal. 540-553.

Sayre, R. M., Agin, P. P., Levee, G. J., dan Marlowe, E. (1979). Comparison of in vivo and in vitro testing of sunscreening formulas. Journal of The Society of

Cosmetic Chemists. Oxford: Photochem Photobiol. 29(3): 559-566.

(50)

47

Syukri, Y., Sari, F dan Zahliyatul, S. (2009). Stabilitas Fisik Emulsi Ganda Virgin Coconut Oil (VCO) Menggunakan Emulgator Span 80 dan Tween 40. Jurnal

Ilmiah Farmasi. Jakarta: Jurusan Farmasi FMIPA, Universitas Islam

Indonesia. 4(1): 39.

Tranggono, R. I., dan Latifah, F. (2007). Buku Pegangan Ilmu Pengetahuan

Kosmetik. Jakarta: Gramedia Pustaka Utama. Hal.11-13, 46.

USP 32 – NF 27. (2009). United States Pharmacopeia and The National

Formulary. Rockville (MD): The United States Pharmacopeial Convention.

Hal.1608.

Voigt, R. (1995). Buku Pelajaran Teknologi Farmasi. Alih bahasa Soendani Noerono S & Mathilda B.W. Yogyakarta : Gajah Mada University Press. Hal. 355.

Wasitaatmadja, S.M. (1997). Penuntun Ilmu Kosmetik Medik. Jakarta: Penerbit UI-Press. Hal 119-120.

Wolf, R., Wolf, D., Morganti, P., dan Ruocco, V. (2001). Sunscreen. Clinic

Dermatol. 19: 452-459.

(51)

24 BAB III

METODE PENELITIAN

Metode penelitian ini menggunakan metode eksperimental yang meliputi pembuatan sediaan emulgel, penentuan mutu fisik sediaan meliputi uji homogenitas, penentuan tipe emulsi, uji viskositas, penentuan pH, pengamatan stabilitas sediaan, uji iritasi terhadap kulit serta pengujian nilai SPF sediaan sebagai tabir surya. Penelitian ini dilakukan di Laboratorium Kosmetologi dan Farmasi Fisik Fakultas Farmasi Universitas Sumatera Utara.

3.1 Alat

Alat yang digunakan pada penelitian ini adalah gelas ukur (Pyrex), gelas beker (Pyrex), mortir dan stamfer, gelas arloji, cawan porselin, batang pengaduk, objek glass, neraca analitik (Boeco Germany), viskometer brokfield, pH meter (Hanna), Spektrofotometer UV-Vis (Shimadzu), dan Mikroskop (Boeco Germany).

3.2 Bahan

Bahan yang digunakan pada penelitian ini adalah avobenzone, oktilmetoksisinamat, HPMC, paraffin cair, Tween 20, metil paraben, propil paraben, propilen glikol, aquadest, dan etanol.

3.3 Sukarelawan

Sukarelawan yang dijadikan panel pada uji iritasi sediaan berjumlah 9 orang dengan kriteria sebagai berikut :

1. Wanita berkulit sehat 2. Usia antara 20-30 tahun

(52)

25

4. Bersedia menjadi sukarelawan (Ditjen POM, 1985). 3.4 Formulasi Sediaan

3.4.1 Formulasi modifikasi emulgel tabir surya (Dzuhro, 2011). Tabel 3.1 Persentase komposisi bahan dalam emulgel

Bahan basis gel Formula

F1 F2 F3 F4 F5 F6 F7

Bahan basis emulsi Formula

F1 F2 F3 F4 F5 F6 F7 3.4.2 Prosedur Pembuatan Emulgel

Pada proses pembuatan emulgel, dibuat terlebih dahulu masing-masing komponen gel dan emulsi, selanjutnya kedua komponen tersebut dicampurkan dengan perbandingan sama banyak (1:1). Prosedur pembuatan emulgel sebagai berikut :

(53)

26

metil paraben (Nipagin) dan propil paraben (Nipasol) dilarutkan dalam propilen glikol dan ditambahkan kedalam basis gel hingga membentuk massa gel (massa 1).

2. Dalam lumpang kedua, dimasukkan avobenzone dan oktilmetoksisinamat digerus hingga homogen.

3. Fase minyak disiapkan : Paraffin cair dipanaskan dalam cawan penguap diatas penangas air 70-800C.

4. Fase air disiapkan : Tween 20 dilarutkan dalam sisa aquadest dan dipanaskan dalam cawan penguap diatas penangas air 70-800C.

5. Fase minyak dan fase air ditambahkan ke dalam lumpang kedua, lalu digerus hingga homogen dan membentuk emulsi (massa 2).

6. Massa 2 dimasukkan ke dalam massa 1 dengan rasio 1:1 dan gerus homogen hingga membentuk emulgel (Dzuhro, 2011).

3.5 Penentuan Mutu Fisik Sediaan Emulgel 3.5.1 Pemeriksaan homogenitas

Penentuan homogenitas dilakukan dengan cara :

Sejumlah tertentu sediaan jika dioleskan pada sekeping kaca dan diamati apakah sediaan menunjukkan susunan yang homogen dan tidak terlihat adanya butiran kasar ( Ditjen POM, 1979).

3.5.2 Penentuan tipe emulsi sediaan

(54)

27

sediaan tersebut tipe emulsi m/a, tetapi bila hanya bintik-bintik biru berarti sediaan tersebut tipe emulsi a/m (Ditjen POM, 1985).

3.5.3 Penentuan pH sediaan

Penentuan pH sediaan dilakukan dengan menggunakan alat pH meter. Cara: Alat terlebih dahulu dikalibrasi dengan menggunakan larutan dapar standar netral (pH 7,01) dan larutan dapar pH asam (pH 4,01) hingga alat menunjukkan harga pH tersebut. Kemudiaan elektroda dicuci dengan air suling, lalu dikeringkan dengan tissue. Sampel dibuat dalam konsentrasi 1% yaitu ditimbang 0,25 gram sediaan dan dilarutkan dalam 25 ml air suling. Kemudiaan elektroda dicelupkan dalam larutan tersebut.Dibiarkan alat menunjukkan harga pH sampai konstan. Angka yang ditunjukkan pH meter merupakan pH sediaan (Rawlins, 2003).

3.5.4 Pengamatan perubahan viskositas

Pengukuran viskositas dilakukan dengan cara sediaan emulgel dimasukkan ke dalam beaker glass 100 ml dan dipilih nomor spindle yang sesuai. Pengukuran ini dilakukan dengan tiga kali pengulangan. Pemeriksaan ini menggunakan viskometer Brookfield DV-E.

3.5.5 Pengamatan stabilitas sediaan

Pengamatan dilakukan dengan cara melihat pecah atau tidaknya emulsi, pemisahan fase, perubahan warna, bentuk dan bau dari sediaan emulgel yang telah mengalami penyimpanan selama 1, 4, 8, 12 minggu pada temperatur kamar. 3.5.6 Ukuran partikel dan distribusi partikel terdispersi

(55)

28

sebuah layar dan dilakukan pemotretan dari slide yang sudah disiapkkan. Pada sistem ini akan muncul ukuran partikel dalam bentuk pixel selanjutnya diubah kedalam bentuk µm (1 pixel= 264,58334 µm). Dari hasil pengamatan kemudian di plot grafik waktu versus ukuran partikel terdispersi sehingga diamati perubahan ukuran partikel terdispersi. Ukuran rata-rata partikel terdispersi yang semakin kecil menandakan produk emulsi semakin stabil.

Distribusi partikel terdispersi ditentukan dengan memplot ukuran partikel versus jumlah partikel sehingga diperoleh kurva distribusi partikel terdispersi (Sinko, 2006).

3.6 Uji Iritasi Terhadap Kulit Sukarelawan

Percobaan ini dilakukan pada 9 orang sukarelawan yang menggunakan sediaan emulgel yang stabil yaitu formula 7 (Tween 20 3%) dengan cara : Sejumlah tertentu emulgel dioleskan dibelakang telinga, kemudian biarkan selama 12 jam (siang) selama 2 hari berturut-turut (Wasitaatmadja, 1997).

3.7 Penentuan Nilai SPF Sediaan

(56)

29

etanol 96% sampai garis tanda. Larutan yang terakhir ini diukur serapannya dengan spektrofotometer UV-Vis.

Nilai serapan yang diperoleh dikalikan dengan EE x I untuk masing-masing interval.Jumlah EE x I yang diperoleh dikalikan dengan faktor koreksi akhirnya diperoleh nilai SPF dari sampel yang diuji.

Cara perhitungan SPF menurut metode Mansur :

SPF = CFx

x EE x I

Dimana : EE = Spektrum efek eritemal I = Intensitas spektrum sinar Abs = Serapan produk tabir surya CF = Faktor koreksi (= 10)

Tabel 3.2 Ketetapan nilai EE x I (Sayre et al, 1979)

Panjang gelombang (nm) Nilai EE x I

290 0,0150

295 0,0817

300 0,2874

305 0,3278

310 0,1864

315 0,0839

320 0,0180

a) Serapan diukur pada panjang gelombang 290, 295, 300, 305, 310, 315, dan 320 nm.

b) Nilai serapan yang diperoleh dikalikan dengan nilai EE x I untuk masing-masing panjang gelombang.

c) Hasil perkalian serapan dan EE x I dijumlahkan.

(57)

30 BAB IV

HASIL DAN PEMBAHASAN 4.1 Formulasi Emulgel

Pada penelitian ini dihasilkan sediaan emulgel yang berwarna putih susu, dan tidak berbau. Formulasi sediaan emulgel terdiri dari avobenzone sebagai bahan tabir surya penyerap UVA dengan konsentrasi 3% dan oktilmetoksisinamat (OMC) sebagai penyerap UVB dengan konsentrasi 7,5% (Rieger, 2000).

Penggunaan paraffin cair dalam formula ini sebagai fase minyak dengan konsentrasi 7,5%, konsentrasi yang biasa digunakan untuk sediaan topikal adalah 1-32% (Rowe et al, 2009). Tween 20 dalam formula ini berfungsi sebagai emulgator hidrofilik dengan variasi konsentrasi 0,1, 0,5, 1, 1,5, 2, 2,5, dan 3%.

Tween 20 selain digunakan sebagai emulgator hidrofilik juga sebagai surfaktan nonionik. Oleh karena itu, surfaktan tersebut dapat menurunkan tegangan permukaan pada fase emulsi (Rowe et al, 2009).

Bahan pembentuk gel yang digunakan yaitu HPMC yang merupakan serbuk warna putih yang larut dalam air dingin. HPMC memerlukan air 20-30% untuk membuatnya menjadi gel dengan pengadukan yang kencang serta suhu 800 -900C. HPMC juga digunakan sebagai zat pengemulsi, agen pensuspensi, dan agen penstabil (Rowe et al, 2009).

(58)

31 4.2 Penentuan Mutu Fisik Sediaan 4.2.1 Penentuan homogenitas sediaan Tabel 4.1 Pengamatan homogenitas sediaan

No Formula Homogenitas sediaan emulgel

Homogen Tidak homogen

1 F1 √ -

Keterangan: F1: Konsentrasi Tween 20 (0,1 %) F5:Konsentrasi Tween 20 (2%) F2: Konsentrasi Tween 20 (0,5%) F6:Konsentrasi Tween 20 (2,5%) F3: Konsentrasi Tween 20 (1%) F7: Konsentrasi Tween 20 (3%) F4: Konsentrasi Tween 20 (1,5%)

Dari hasil uji homogenitas sediaan yang dapat dilihat pada tabel diatas, sediaan emulgel menunjukkan susunan yang homogen dan tidak terlihat adanya butiran kasar ( Ditjen POM, 1979).

4.2.2 Tipe emulsi sediaan

Tabel 4.2 Penentuan tipe emulsi sediaan

No Formula Tipe emulsi

Keterangan: F1: Konsentrasi Tween 20 (0,1 %) F5: Konsentrasi Tween 20 (2%) F2: Konsentrasi Tween 20 (0,5%) F6: Konsentrasi Tween 20 (2,5%) F3: Konsentrasi Tween 20 (1%) F7: Konsentrasi Tween 20 (3%) F4: Konsentrasi Tween 20 (1,5%) m/a: minyak dalam air

(59)

32

Dari hasil uji tipe emulsi yang dapat dilihat pada tabel diatas bahwa penentuan tipe emulsi dapat dilihat dengan menggunakan metilen biru. Dalam emulsi, air merupakan fase eksternal apabila emulsi bertipe m/a, maka metilen biru akan terlarut dan berdifusi merata dalam air (Sinko, 2006).

4.2.3 Penentuan pH sediaan

Tabel 4.3 Pengaruh pH sediaan selama penyimpanan

Formula pH (minggu)

1 4 8 12

F1 5,33 5,10 4,86 4,83

F2 5,33 5,33 5,10 5,00

F3 5,67 5,43 5,30 5,13

F4 5,83 5,76 5,50 5,40

F5 5,86 5,80 5,53 5,57

F6 6,06 5,96 5,73 5,70

F7 6,16 6,00 5,90 5,86

Keterangan: F1: Konsentrasi Tween 20 (0,1 %) F5: Konsentrasi Tween 20 (2%) F2: Konsentrasi Tween 20 (0,5%) F6: Konsentrasi Tween 20 (2,5%) F3: Konsentrasi Tween 20 (1%) F7: Konsentrasi Tween 20 (3%) F4: Konsentrasi Tween 20 (1,5%)

Gambar 4.1 Pengaruh pH sediaan selama penyimpanan

(60)

33

selama 12 minggu pada suhu kamar menunjukkan sedikit penurunan pH, namun pH sediaan masih sesuai dengan pH kulit yaitu antara 4,5 – 6,5 sehingga aman digunakan dan tidak menyebabkan iritasi pada kulit (Tranggono, dan Latifah., 2007).

4.2.4 Pengamatan perubahan viskositas sediaan

Tabel 4.4 Pengaruh viskositas sediaan terhadap penyimpanan Formula Viskositas dalam poise (minggu)

1 4 8 12

F1 48,67 41,33 38,67 34,00

F2 52,00 45,33 40,67 39,33

F3 54,00 47,33 46,00 42,00

F4 58,67 56,00 49,33 47,67

F5 62,67 60,00 53,67 50,00

F6 66,00 63,33 60,67 55,33

F7 70,67 68,67 64,00 60,00

Keterangan: F1: Konsentrasi Tween 20 (0,1 %) F5: Konsentrasi Tween 20 (2%) F2: Konsentrasi Tween 20 (0,5%) F6: Konsentrasi Tween 20 (2,5%) F3: Konsentrasi Tween 20 (1%) F7: Konsentrasi Tween 20 (3%) F4: Konsentrasi Tween 20 (1,5%)

Gambar 4.2 Pengaruh viskositas sediaan terhadap penyimpanan

(61)

34

viskositas sediaan namun seiring lamanya penyimpanan menyebabkan viskositas menurun, hal ini disebabkan karena penurunan viskositas berhubungan dengan pemisahan fase. Jika fase terdispersi kurang rapat dibandingkan fase kontinyu menyebabkan creaming ke atas (Martin, 1993). Creaming pada emulgel ditandai dengan fase emulsi berada dibagian atas dan fase gel dibagian bawah. Pemisahan emulsi secara sempurna terjadi karena pembentukan tetesan yang lebih besar dengan penggabungan dari tetesan yang lebih kecil (Syukri et al, 2009).

Menurut persamaan Stokes, laju pemisahan fase terdispersi dari emulsi dapat dihubungkan dengan faktor-faktor seperti ukuran partikel dari fase terdispersi, perbedaan dalam kerapatan antar fase dan viskositas fase luar.

4.2.5 Pengamatan stabilitas sediaan

Tabel 4.5 Pengaruh stabilitas sediaan selama penyimpanan

No Formula

Pengamatan selama penyimpanan (minggu)

Awal 1 4 8 12 Keterangan: F1: Konsentrasi Tween 20 (0,1 %) F5: Konsentrasi Tween 20 (2%)

F2: Konsentrasi Tween 20 (0,5%) F6: Konsentrasi Tween 20 (2,5%) F3: Konsentrasi Tween 20 (1%) F7: Konsentrasi Tween 20 (3%) F4: Konsentrasi Tween 20 (1,5%) x: Perubahan warna

y: Perubahan bau z: Creaming

√: Terjadiperubahan -: Tidak terjadi perubahan

(62)

35

Creaming pada emulgel terus mengalami peningkatan dengan bertambahnya

umur sediaan. Pada formula 1, 2, 3, dan 4 terbentuknya krim terjadi pada 4 minggu penyimpanan pada suhu kamar. Pada formula 5 dan 6 creaming terjadi pada 8 minggu penyimpanan pada suhu kamar dan formula 7 terbentuknya krim terjadi setelah 8 minggu penyimpanan. Pembentukan krim (creaming) yang terjadi pada semua formula dapat dihomogenkan kembali dengan pengocokan yang cukup.

Creaming menyebabkan suatu sediaan emulsi memerlukan pengocokan

untuk menjadi homogen kembali karena sebagian fase minyak mengalami penggabungan membentuk lapisan yang lebih pekat di permukaan. Pembentukan

creaming masih diperbolehkan dalam suatu sediaan emulsi karena terjadinya

creaming bersifat reversibel, artinya dengan pengocokan yang cukup emulsi

tersebut dapat kembali homogen. Berbeda dengan koalesensi/breaking (pecahnya sediaan emulsi) yang bersifat irreversibel (Ansel, 1989).

4.2.6 Hasil pemeriksaan ukuran partikel dan distribusi partikel terdispersi 4.2.6.1Ukuran partikel terdispersi

Hasil pengamatan mikroskopik dari emulgel tabir surya yang dibuat pada variasi konsentrasi Tween 20 dapat dilihat pada Lampiran 11.

(63)

36

penggabungan globul-globul minyak menjadi lebih besar pada sediaan emulsi selama 8 minggu penyimpanan.

Tabel 4.6 Pengaruh penyimpanan terhadap ukuran rata-rata partikel terdispersi Formula Ukuran partikel terdispersi dalam µm (minggu)

0 1 2 3 4 5 6 7 8

F1 29,35 29,71 31,95 33,20 34,22 36,04 36,95 38,09 45,95 F2 22,53 22,97 24,55 25,14 25,17 27,23 28,08 29,20 29,51 F3 24,05 26,82 26,85 28,38 28,89 32,02 36,59 37,92 42,29 F4 17,18 18,21 19,17 19,46 19,82 20,00 20,31 21,03 22,39 F5 18,50 18,87 19,01 19,03 19,18 19,62 19,95 22,52 22,81 F6 16,27 18,21 18,98 19,00 19,76 20,09 20,31 21,22 21,59 F7 17,36 19,54 20,06 20,18 20,51 20,55 20,66 20,79 20,89

Keterangan: F1: Konsentrasi Tween 20 (0,1 %) F5: Konsentrasi Tween 20 (2%) F2: Konsentrasi Tween 20 (0,5%) F6: Konsentrasi Tween 20 (2,5%) F3: Konsentrasi Tween 20 (1%) F7: Konsentrasi Tween 20 (3%) F4: Konsentrasi Tween 20 (1,5%)

Gambar 4.3 Pengaruh penyimpanan terhadap ukuran rata-rata partikel terdispersi.

(64)

37

Faktor internal yang mempengaruhi stabilitas emulsi tergantung pada ukuran partikel. Ukuran partikel yang semakin kecil menandakan produk emulsi yang semakin stabil (Martin, 1993). Penggunaan kombinasi Tween yang hidrofilik dan Span yang lipofilik mungkin akan menghasilkan produk emulsi yang lebih stabil dibandingkan penggunaan Tween saja (Sinko, 2006).

4.2.6.2Penentuan distribusi partikel terdispersi

Hasil distribusi partikel selama 8 minggu dapat dilihat pada Lampiran 12. Distribusi partikel masing – masing formula semakin meningkat sesuai dengan penambahan konsentrasi Tween 20.

Menurut Patrick (2006), cara yang tepat untuk menentukan stabilitas emulgel dengan melihat analisis ukuran-jumlah emulsi selama penyimpanan. Pengamatan mikroskopik dapat dihentikan setelah emulsi memecah. Pengamatan yang dilakukan hanya 8 minggu, ini dikarenakan emulgel telah memisah.

(65)

38

Gambar 4.5 Grafik distribusi partikel terhadap penyimpanan (F2)

Gambar 4.6 Grafik distribusi partikel terhadap penyimpanan (F3)

(66)

39

Gambar 4.8 Grafik distribusi partikel terhadap penyimpanan (F5)

Gambar 4.9 Grafik distribusi partikel terhadap penyimpanan (F6)

(67)

40

Gambar 4.11 Grafik waktu penyimpanan terhadap distribusi partikel terdispersi semua formula

Pada keseluruhan Gambar 4.11 dapat dilihat bahwa formula 7 (Tween 20 3%) lebih stabil dimana jumlah partikel terdispersi paling banyak (100 per lapangan pandang) dan ukuran partikel terdispersi paling kecil (40 µm). Distribusi partikel terdispersi masing – masing formula selama penyimpanan 8 minggu semakin menurun dimana jumlah partikel terdispersi mengalami penurunan dan ukuran partikel terdispersi semakin besar sehingga menyebabkan emulgel kurang stabil.

4.3 Uji Iritasi Terhadap Kulit Sukarelawan

Salah satu cara untuk menghindari terjadinya efek samping pada penggunaan kosmetik adalah dengan melakukan uji kulit. Uji kulit dapat dilakukan dengan mengoleskan kosmetik dibelakang telinga selama 2 hari berturut-turut (Wasitaatmadja, 1997).

(68)

41

dan dapat disimpulkan keseluruhan sediaan emulgel tabir surya aman untuk digunakan.

Komponen dalam kosmetik yang berpotensi mengiritasi kulit antara lain zat pengawet (zat antimikroba), antioksidan, pewangi, dan pewarna. Namun, komponen ini berada dalam jumlah kecil dan tidak mempengaruhi keseluruhan potensi iritasi dari produk akhir (Barel et al, 2001).

Tabel 4.7 Data uji iritasi terhadap kulit sukarelawan.

Formula Sukarelawan Reaksi 24 jam siang

hari (2 hari)

Keterangan : Erythema

Tidak erythema 0 Sangat sedikit erythema 1 Sedikit erythema 2 Erythema sedang 3 Erythema sangat parah 4 Edema

Tidak edema 0

Sangat sedikit edema 1

Sedikit edema 2

Edema sedang 3

(69)

42 4.4 Penentuan Nilai SPF Sediaan Tabel 4.8 Data Penentuan Nilai SPF

Formula Sun Protecting Factor (SPF) Rata-rata Kategori efektivitas

I II II

F1 8,69 8,72 8,74 8,72±0,03 Maksimal

F2 9,38 9,40 9,41 9,40±0,02 Maksimal

F3 9,47 9,51 9,51 9,50±0,02 Maksimal

F4 9,52 9,56 9,56 9,55±0,02 Maksimal

F5 9,84 9,88 9,91 9,88±0,04 Maksimal

F6 10,00 10,03 10,04 10,02±0,02 Maksimal

F7 13,24 13,29 13,25 13,26±0,03 Maksimal

Gambar 4.12 Grafik Nilai SPF Emulgel

Kategori untuk masing-masing sediaan tabir surya berdasarkan nilai SPF yang diberikan sebagai faktor perlindungan terhadap sinar matahari adalah sebagai berikut:

1. Minimal, bila SPF antara 2-4 2. Sedang, bila SPF antara 4-6 3. Ekstra, bila SPF antara 6-8 4. Maksimal, bila SPF antara 8-15

(70)

43

(71)

44 BAB V

KESIMPULAN DAN SARAN 5.1 Kesimpulan

a.Avobenzone dan oktilmetoksisinamat dapat diformulasikan sebagai sediaan emulgel dengan konsentrasi emulgator (Tween 20) 0,1, 0,5, 1, 1,5, 2, 2,5, dan 3%.

b.Peningkatan konsentrasi Tween 20 dapat meningkatkan stabilitas sediaan emulgel. Semua emulgel yang dihasilkan mengalami pembentukan krim (creaming). Formula 1, 2, 3, 4 mengalami creaming pada 4 minggu, formula 5 dan 6 creaming terjadi pada 8 minggu, dan emulgel dengan konsentrasi 3% (formula 7) lebih stabil dibandingkan dengan formula lainnya karena creaming terjadi setelah 8 minggu.

c. Nilai SPF yang dihasilkan dari masing-masing formula memiliki aktivitas sebagai tabir surya yaitu : F1:8,72±0,03; F2:9,40±0,02; F3:9,50±0,02; F4:9,55±0,02; F5:9,88±0,04; F6: 10,02±0,02dan F7 :13,26±0,03.

5.2 Saran

a.Sebaiknya kepada peneliti selanjutnya untuk memformulasi sediaan emulgel yang mengandung avobenzone dan oktilmetoksisinamat dengan menggunakan kombinasi Tween 80 dan Span 80 sebagai emulgator. b.Sebaiknya ditambahkan bahan tabir surya kimia atau bahan tabir surya

(72)

6 BAB II

TINJAUAN PUSTAKA 2.1 Kulit

Kulit merupakan “selimut” yang menutupi permukaan tubuh dan memiliki fungsi utama sebagai pelindung dari berbagai macam gangguan dan rangsangan luar. Fungsi perlindungan ini terjadi melalui sejumlah mekanisme biologis, seperti pembentukan lapisan tanduk secara terus-menerus (keratinisasi dan pelepasan sel-sel yang sudah mati), respirasi dan pengaturan suhu tubuh, produksi sebum dan keringat, dan pembentukan pigmen melanin untuk melindungi kulit dari bahaya sinar ultraviolet matahari, sebagai peraba dan perasa, serta pertahanan terhadap tekanan dan infeksi dari luar (Tranggono dan Latifah, 2007).

Kulit terbagi atas dua lapisan utama, yaitu:

a) Epidermis (kulit ari), sebagai lapisan yang paling luar b) Dermis (korium, kutis, kulit jangat).

Dibawah dermis terdapat Subkutis atau jaringan lemak bawah kulit (Tranggono dan Latifah, 2007).

Dari sudut kosmetik, epidermis merupakan bagian kulit yang menarik karena kosmetik dipakai pada epidermis itu.Meskipun ada beberapa jenis kosmetik yang digunakan sampai ke dermis, namun tetap penampilan epidermis yang menjadi tujuan utama (Tranggono dan Latifah, 2007).

2.2 Fungsi Kulit

(73)

7

lainnya yang dapat menimbulkan kerusakan pada jaringan kulit. Radiasi solar adalah agen fisik utama yang dapat membahayakan kulit kita.Kerusakan kulit tersebut terjadi akibat adanya komponen sinar ultraviolet dari sinar matahari yang mencapai bumi kita (Wasitaatmadja, 1997).

Ada dua macam komponen sinar ultraviolet yang mencapai bumi, yaitu UVA (320-400 nm) dan UVB (290-320 nm). UVB merupakan komponen yang mempunyai daya rusak tinggi pada kulit, sedangkan UVA lebih condong dapat merusak kulit dengan bantuan fotosinsitizer kimia baik alami maupun sintesis yang terdapat pada kulit (Wasitaatmadja, 1997).

2.3 Tabir Surya

Sediaan tabir surya adalah sediaan kosmetika yang digunakan untuk maksud memantulkan atau menyerap secara efektif cahaya matahari, terutama daerah emisi gelombang ultraviolet dan inframerah, sehingga dapat mencegah terjadinya gangguan kulit karena cahaya matahari (Ditjen POM, 1985).

Ada 2 macam tabir surya, yaitu :

1. Tabir surya kimia, meliputi PABA, PABA ester, benzofenon, salisilat, antranilat, yang dapat mengabsorbsi hampir 95% radiasi sinar UVB yang dapat menyebabkan sunburn (eritema) dan menghalangi UVA penyebab

direct tanning, kerusakan sel elastin, actinitic skin damage, dan timbulnya

kanker kulit.

2. Tabir surya fisik, misalnya titanium dioksida, Mg silikat, seng oksida, red

petrolatum dan kaolin, yang dapat memantulkan sinar. Tabir surya fisik dapat

(74)

8

Untuk mengoptimalkan kemampuan dari tabir surya sering dilakukan kombinasi antara tabir surya kimia dan tabir surya fisik, bahkan ada yang menggunakan beberapa macam tabir surya dalam satu sediaan kosmetik (Wasitaatmadja, 1997).

Kemampuan menahan sinar ultraviolet dari tabir surya dinilai dalam faktor proteksi sinar (Sun Protecting Factor/SPF) yaitu perbandingan antara dosis minimal yang diperlukan untuk menimbulkan eritema pada kulit yang diolesi tabir surya dengan yang tidak. Nilai SPF ini berkisar antara 0 sampai 100, dan kemampuan tabir surya yang dianggap baik berada di atas 15. Pathak membagi tingkat kemampuan tabir surya sebagai berikut :

1. Minimal bila SPF antara 2-4, contoh salisilat, antranilat. 2. Sedang, bila SPF antara 4-6, contoh sinamat, benzofenon. 3. Ekstra, bila SPF antara 6-8, contoh derivat PABA.

4. Maksimal, bila SPF antara 8-15, contoh PABA

5. Ultra, bila SPF lebih dari 15, contoh kombinasi PABA, non PABA,dan Fisik (Wasitaatmadja, 1985).

Tabel 2.1 Tabir surya yang diizinkan untuk digunakan Bahan aktif tabir surya Konsentrasi

Maksimum % (Amerika Serikat)

(75)

9

Oktisalat (Oktil salisilat) 5 5

Oksibenzon 6 10

Padimat O 8 8

Ensulizol (Asam sulfonat fenilbenzimidazol)

2.4 Proteksi Terhadap Ultraviolet

Perlindungan dari paparan radiasi UV menyebabkan penurunan risiko untuk perkembangan kanker kulit. Oleh karena itu, fotoproteksi optimal secara teratur menggunakan tabir surya, mengenakan pakaian pelindung, termasuk menghindari paparan UV jika dimungkinkan. Rekomendasi untuk fotoproteksi yang mencakup ketiga pendekatan ini paling efektif dalam mengurangi resiko kanker kulit. Tabir surya bekerja terutama melalui dua mekanisme: (i) menghamburkan dan refleksi energi UV, dan (ii) penyerapan energi UV. Banyak tabir surya saat ini mengandung bahan-bahan yang bekerja melalui kedua mekanisme baik dalam hal perlindungan UV. Faktor yang paling penting untuk menentukan efektivitas tabir surya adalah Sun Protection Factor (SPF).

(76)

10

dibandingkan dengan ketika individu tidak memiliki perlindungan. Food and

Drug Administration (FDA) yang mengawasi pemasaran dan distribusi

produk-produk tabir surya di Amerika Serikat, menyarankan bahwa tabir surya harus menyediakan setidaknya nilai SPF 2. Kebanyakan di pasaran tersedia produk tabir surya memiliki nilai SPF yang melebihi perlindungan minimum. Nilai SPF tabir surya terutama mengukur kemampuan untuk melindungi terhadap radiasi UVB dan tidak cukup mengatasi efek UVA (Draelos, 2006).

2.5 Sun Protecting Factor (SPF)

Efektivitas dari suatu sediaan tabir surya dapat ditunjukkan salah satunya adalah dengan nilai sun protecting factor (SPF), yang didefinisikan sebagai jumlah energi UVB yang dibutuhkan untuk mencapai minimal erythema dose (MED) pada kulit yang dilindungi oleh suatu tabir surya, dibagi dengan jumlah energi UVB yang dibutuhkan untuk mencapai MED pada kulit yang tidak diberikan perlindungan (Wood et al, 2000; Wolf et al, 2001).

Minimal erythema dose (MED) didefinisikan sebagai waktu jangka waktu

terendah atau dosis radiasi sinar UV yang dibutuhkan untuk menyebabkan terjadinya erythema (Wood et al, 2000; Wolf et al, 2001).

Secara sederhana SPF dapat dirumuskan sebagai berikut : SPF = minimal erythema dose in sunscreen protected skin minimal erythema dose in nonsuscreen protected skin

(77)

11

yang kedua adalah dengan menentukan karakteristik serapan tabir surya menggunakan analisis secara spektrofotometri larutan hasill pengenceran dari tabir surya yang diuji (Fourneron et al, 1999; Gordon, 1993; Mansur et al, 1986; Pissavini et al, 2003; Walters et al, 1997).

Mansur (1986), mengembangkan suatu persamaan matematis untuk mengukur nilai SPF secara in vitro dengan menggunakan spektrofotometer. Persamaannya adalah sebagai berikut :

SPF = CF x x EE x I

Dimana : EE = Spektrum efek eritemal I = Intensitas spektrum sinar Abs = Serapan produk tabir surya CF = Faktor koreksi (= 10)

Tabel 2.2 Ketetapan nilai EE x I (Sayre et al, 1979)

Panjang gelombang (nm) Nilai EE x I

290 0,0150

295 0,0817

300 0,2874

305 0,3278

310 0,1864

315 0,0839

320 0,0180

2.6 Avobenzone

(78)

12

• Dietanolamin metoksisinamat (saat ini tidak disetujui FDA) • Dioksibenzone

• Oktokrilene • Oktinosat • Oktisalat • Oksibenzone • Sulisobenzone

• Trolamin Salisilat (Rieger, 2000).

Gambar 2.1 Rumus bangun Avobenzone (Sumber : USP 32- NF 27, 2009). 2.7 Oktil Metoksisinamat

Oktil metoksisinamat adalah bahan yang paling banyak digunakan dalam sediaan tabir surya. Oktil metoksisinamat tergolong dalam tabir surya kimia yang melindungi kulit dengan cara menyerap energi dari radiasi UVB dan mengubahnya menjadi energi panas. Senyawa-senyawa golongan ini menyerap radiasi UVB dan mengubahnya ke dalam bentuk radiasi dengan panjang gelombang yang lebih besar. Radiasi yang diserap senyawa ini menyebabkan molekulnya tereksitasi ke bentuk yang memiliki energi lebih besar daripada

ground state. Dan ketika molekul yang tereksitasi ini kembali ke keadaan ground

state, energi diemisikan dalam bentuk yang lebih rendah daripada energi yang

(79)

13

2-etilheksil 4-metoksisinamat atau oktinosat adalah senyawa golongan sinamat yang menyerap sinar pada panjang gelombang 290-320 nm pada daerah UVB. Saat terekspos ke cahaya, oktilmetoksisinamat berubah menjadi bentuk yang memiliki kemampuan absorbsi lebih rendah (dari bentuk trans- menjadi bentuk cis-) sehingga menurunkan efektifitasnya (Barel et al, 2001).

Gambar 2.2 Rumus bangun Oktil Metoksisinamat (Sumber :Merck Index, 2001). 2.8 Emulgel

Emulgel adalah emulsi, baik itu tipe minyak dalam air (M/A) maupun air dalam minyak (A/M), yang dibuat menjadi sediaan gel dengan mencampurkan bahan pembentuk gel (Mohamed, 2004; Jain et al, 2010; Bhanu et al, 2011). Sedangkan emulsi adalah suatu sistem yang tidak stabil secara termodinamika yang mengandung paling sedikit dua fase cair yang tidak bercampur, dimana satu diantaranya didispersikan sebagai globul-globul dalam fase cair lain (Martin et al, 1993). Fase tersebut terdiri atas fase hidrofil, umumnya adalah air, dan fase lipofil (hidrofob) yaitu minyak mineral, minyak tumbuhan, atau pelarut lipofil seperti kloroform, benzene, dan sebagainya. Untuk menstabilkan emulsi dibutuhkan emulgator atau bahan pengemulsi (Voight, 1995).

(80)

14

penampilan, kelicinan, dan kekentalannya untuk dibuat suatu sediaan emulsi kosmetik atau dermatologis (Mohamed, 2004).

Terdapat dua tipe emulsi sederhana, yaitu emulsi air dalam minyak (A/M) dan emulsi minyak dalam air (M/A). Emulsi air dalam minyak terbentuk bila medium pendispersi/fase kontinu/fase luar adalah minyak dan fase terdispersi/fase dalam adalah air, sedangkan emulsi minyak dalam air merupakan minyak sebagai fase dalam didispersikan didalam fase kontinu air (Martin et al, 1993). Baik emulsi minyak dalam air atau air dalam minyak telah banyak digunakan sebagai bahan pembawa untuk menghantarkan obat melalui rute pemberian topikal (Mohamed, 2004). Namun emulsi minyak dalam air merupakan tipe emulsi yang paling banyak digunakan karena lebih mudah dihilangkan dari kulit serta tidak mengotori pakaian. Basis ini disebut dengan basis tercuci. Kerugian dari basis ini adalah air dapat menguap serta bakteri dan jamur lebih mudah tumbuh sehingga memerlukan pengawet (Panwar et al, 2011).

Pada emulgel, emulsi dicampurkan kedalam basis gel yang telah dibuat secara terpisah. Kapasitas gel dari sediaan emulgel membuat formulasi emulsi menjadi lebih stabil karena adanya penurunan tegangan permukaan dan tegangan antar muka secara bersamaan dengan meningkatnya viskositas dari fase air (Khullar et al, 2012). Emulgel memilki karakteristik yang dimiliki oleh suatu sediaan emulsi dan gel sehingga memiliki tingkat penerimaan oleh pasien yang tinggi. Oleh karena itu emulgel saat ini telah banyak digunakan sebagai pembawa dalam sediaan topikal (Panwar et al, 2011).

(81)

15

a. Dapat membawa obat yang bersifat hidrofobik dan tidak larut air. Obat-obat hidrofobik tidak dapat dicampurkan secara langsung kedalam basis gel biasa karena kelarutan menjadi penghalang utama dan menjadi masalah ketika obat akan dilepaskan. Emulgel membantu mencampurkan obat hidrofobik kedalam fase minyak lalu globul minyak tersebut didispersikan dalam fase air dengan mencampurkannya pada basis gel

b. Stabilitas yang lebih baik. Sediaan transdermal/topikal lain memiliki stabilitas yang lebih rendah bila dibandingkan dengan emulgel. Misalnya sediaan serbuk bersifat higroskopis, krim yang menunjukkan inversi fase atau

breaking dan salep dapat menjadi tengik karena menggunakan basis

berminyak.

c. Kapasitas penyerapan obat lebih baik bila dibandingkan dengan sistem partikulat seperti niosom dan liposom. Niosom dan liposom yang berukuran nano dan merupakan struktur vesikular dapat terjadi kebocoran sehingga dapat menyebabkan efisiensi penyerapan yang lebih rendah. Sedangkan gel yang merupakan konstituen dengan jaringan yang lebih luas dapat menyerap obat lebih baik.

d. Memungkinkan biaya produksi yang lebih rendah. Pembuatan emulgel terdiri dari tahapan yang pendek dan sederhana sehingga memungkinkan untuk diproduksi. Tidak ada alat khusus yang dibutuhkan untuk memproduksi emulgel. Selain itu, bahan yang digunakan merupakan bahan yang mudah dijangkau secara ketersediaan dan ekonomis.

(82)

16

degradasi obat. Namun, permasalahan ini tidak ditemui ketika membuat emulgel karena tidak memerlukan sonikasi.

f. Emulgel dapat dibuat menjadi sediaan lepas terkendali untuk obat-obat dengan waktu paruh pendek (Panwar et al, 2011).

Emulgel dibuat dengan mencampurkan emulsi dengan gel dengan perbandingan tertentu.Bahan tambahan yang biasa digunakan dalam pembuatan emulgel adalah gelling agent yang dapat meningkatkan viskositas, emulsifying

agent untuk menghasilkan emulsi yang stabil, humektan dan pengawet. Syarat

sediaan emulgel sama seperti syarat untuk sediaan gel, yaitu untuk penggunaan dermatologi harus mempunyai syarat sebagai berikut : tiksotropik, mempunyai daya sebar yang mudah melembutkan, dapat bercampur dengan beberapa zat tambahan (Mohamed, 2004).

Emulgel merupakan emulsi, baik minyak dalam air (m/a) maupun air dalam minyak (a/m) yang dicampurkan bersama agen pembentuk gel sehingga membentuk emulgel.Bentuk sediaan emulgel lebih disukai oleh pasien karena memiliki keuntungan sifat emulsi dan gel. Oleh karena itu, emulgel digunakan sebagai pembawa berbagai macam obat pada kulit (Mohamed, 2004).

2.9 Teori Emulsifikasi

Beberapa teori emulsifikasi berikut menjelaskan bagaimana zat pengemulsi bekerja dalam menjaga stabilitas dari dua zat yang tidak saling bercampur:

a. Adsorpsi Monomolekuler

(83)

17

Tetesan terdispersi dilapisi oleh suatu lapisan tunggal koheren yang membantu mencegah penggabungan antara dua tetesan ketika satu sama lain mendekat. Idealnya, lapisan selaput tersebut bersifat fleksibel sehingga mampu membentuk kembali dengan cepat jika pecah atau terganggu. Efek lain yang meningkatkan stabilitas adalah adanya muatan permukaan yang akan menyebabkan tolak-menolak antara partikel-partikel yang berdekatan (Sinko, 2006).

Pada praktiknya, sekarang ini kombinasi bahan pengemulsi lebih sering digunakan daripada pengemulsi tunggal dalam pembuatan emulsi. Pada tahun 1940, Schulman dan Cockbain untuk pertama kalinya mengetahui perlunya pengemulsi hidrofilik terutama dalam fase air dan bahan hidrofobik dalam fase minyak untuk membentuk suatu selaput kompleks pada antarmuka. Tiga campuran bahan pengemulsi pada antarmuka minyak-air digambarkan pada Gambar 2.3. Kombinasi natrium setil sulfat dan kolesterol menyebabkan terbentuknya suatu selaput kompleks Gambar 2.3a, yang menghasilkan emulsi yang sangat baik. Natrium setil sulfat dan oleil alkohol zat tunggal tidak membentuk selaput yang terkondensasi atau tersusun rapat Gambar 2.3, dan karenanya, kombinasi keduanya menghasilkan emulsi yang tidak baik. Pada Gambar 2.3c, setil alkohol dan natrium oleat menghasilkan selaput yang tersusun rapat, tetapi kompleksasinya terabaikan sehingga juga menghasilkan suatu emulsi yang buruk.

(84)

18

Pada Gambar 2.4, bagian hidrokarbon molekul Span 80 (Sorbitan monoleat) berada dalam globul minyak dan radikal sorbitan berada dalam fase air. Kepala sorbitan yang besar pada molekul Span mencegah ekor-ekor hidrokarbon bergabung rapat dalam fase minyak. Ketika Tween 40 (polioksietilen sorbitan monopalmitat) ditambahkan, senyawa ini mengarah pada antarmuka dengan ekor hidrokarbonnya berada dalam fase minyak, sedangkan sisa rantainya, bersama dengan cincin sorbitan dan rantai polioksietilen, berada dalam fase air.Rantai hidrokarbon molekul Tween 40 teramati berada dalam globul minyak diantara rantai-rantai Span 80, dan orientasi ini menghasilkan tarik-menarik van der Waals yang efektif. Dengan cara ini, selaput antarmuka diperkuat dan stabilitas emulsi m/a ditingkatkan terhadap penggabungan partikel (Sinko, 2006).

(85)

19

Gambar 2.4 Skema tetesan minyak dalam emulsi minyak-air, menunjukkan orientasi molekul Tween dan Span pada antarmukanya (Martin et al, 1993).

Tipe emulsi yang dihasilkan, m/a atau a/m, terutama bergantung pada sifat bahan pengemulsi. Karakteristik ini disebut sebagai kesimbangan hidrofil-lipofil (hydrophile-lipophile balance, HLB). Surfakatan merupakan suatu pengemulsi, bahan pembasah, detergen, atau bahan pelarut dapat diperkirakan dari harga HLB (Sinko, 2006).

b. Adsorpsi Multimolekuler dan Pembentukan Selaput

(86)

20

aktif permukaan karena tampak pada antarmuka minyak-air. Namun, koloid ini berbeda dari bahan aktif permukaan sintetis, yaitu tidak menyebabkan penurunan tegangan antarmuka yang berarti dan zat ini membentuk suatu lapisan multimolekuler dan bukan lapisan monomolekuler pada antarmuka. Kerja koloid ini sebagai bahan pengemulsi terutama disebabkan oleh efek yang kedua karena selaput yang terbentuk kuat dan mencegah penggabungan. Suatu efek pembantu yang meningkatkan stabilitas adalah peningkatkan viskositas medium dispersi yang signifikan. Karena bahan pengemulsi yang membentuk multilapisan di sekitar tetesan selalu hidrofilik, bahan pengemulsi tersebut cenderung menyebakan pembentukan emulsi m/a (Sinko, 2006).

c. Adsorpsi Partikel Padat

Partikel padat yang terbagi halus yang dibasahi hingga derajat tertentu oleh minyak dan air dapat bekerja sebagai bahan pengemulsi. Hal ini disebabkan partikel padat tersebut menghasilkan suatu selaput partikulat di sekitar tetesan terdispersi sehingga mencegah penggabungan. Serbuk yang lebih mudah dibasahi dengan air membentuk emulsi m/a, sedangkan yang lebih mudah dibasahi dengan minyak membentuk emulsi a/m (Sinko, 2006).

2.10 Stabilitas Emulsi Terhadap Ukuran Partikel

Umumnya suatu emulsi dianggap tidak stabil secara fisik jika :

a) fase dalam atau fase terdispersi pada pendiaman cenderung untuk membentuk agregat dari bulatan-bulatan.

(87)

21

Menurut persamaan Stokes, laju pemisahan dari fase terdispersi dari suatu emulsi dapat dihubungkan dengan faktor-faktor seperti, ukuran partikel dari fase terdispersi, perbedaan dalam kerapatan antarfase, dan viskositas fase luar. Perlu diingat bahwa laju pemisahan ditingkatkan oleh makin besarnya ukuran partikel fase dalam, makin besarnya perbedaan kerapatan antara kedua fase, dan berkurangnya viskositas fase luar. Oleh karena itu untuk meningkatkan stabilitas suatu emulsi, bulatan atau ukuran partikel harus dibuat sehalus mungkin, perbedaan fase terdispersi dan fase luar harus sekecil mungkin dan viskositas fase luar harus cukup tinggi (Ansel, 1989).

2.11 Ketidakstabilan Emulsi

Emulsi yang secara termodinamika tidak stabil umumnya disebabkan oleh tingginya energi bebas permukaan yang terbentuk. Hal ini terjadi karena pada proses pembuatannya luas permukaan salah satu fase akan bertambah berlipat ganda, sedangkan seluruh sistem cenderung kembali kepada posisinya yang paling stabil, yaitu pada saat energi bebasnya paling rendah. Oleh karena itu, globul-globul akan bergabung sampai akhirnya sistem memisah kembali. Berdasarkan fenomena tersebut dikenal beberapa peristiwa ketidakstabilan emulsi yaitu flokulasi, creaming, koalesen, dan demulsifikasi (Lund, 1994).

(88)

22

kedua peristiwa tersebut, emulsi masih dapat diperbaiki melalui pengocokan (Lund, 1994).

Koalesen dan demulsifikasi terjadi bukan semata-mata karena energi bebas permukaan tetapi juga disebabkan oleh ketidaksempurnaan pelepasan globul. Koalesen adalah peristiwa terjadinya penggabungan globul-globul menjadi lebih besar, sedangkan demulsifikasi terjadi akibat proses lanjutan dari koalesen. Untuk kedua peristiwa ini, emulsi tidak dapat diperbaiki melalui pengocokan (Lund, 1994).

Ketidakstabilan emulsi yang lain adalah terjadinya inversi fase. Inversi fase terjadi bila emulsi yang semula merupakan emulsi minyak dalam air (m/a) berubah menjadi emulsi air dalam minyak (a/m). Inversi fase dapat terjadi karena jumlah fase terdispersi ditingkatkan hingga mencapai atau melebihi batas maksimum yaitu 74% dari volume total, perubahan suhu, atau penambahan bahan yang dapat mengganggu kestabilan emulsi. Inversi fase juga dapat terjadi karena penggunaan peralatan yang kotor atau prosedur pencampuran yang salah (Lund, 1994).

2.12 Analisis Ukuran Partikel

(89)

23

Metode mikroskopik merupakan metode sederhana yang hanya menggunakan satu alat yaitu mikroskop yang bukan merupakan alat yang rumit dan memerlukan penanganan khusus. Kerugian dari metode mikroskopik adalah bahwa garis tengah yang diperoleh hanya dua dimensi dari partikel tersebut yaitu diameter, selain itu jumlah partikel yang harus dihitung sekitar 200-500 partikel agar mendapatkan suatu perkiraan yang baik dari distribusi, sehingga metode ini membutuhkan waktu dan ketelitian (Martin et al, 1993).

Setiap kumpulan partikel biasanya berupa polidispersi. Oleh sebab itu, perlu untuk mengetahui tidak hanya ukuran partikel tertentu, tetapi juga jumlah partikel berukuran sama yang terdapat dalam sampel. Jadi, kita membutuhkan suatu perkiraan kisaran ukuran yang ada dan banyaknya atau berat fraksi setiap ukuran partikel atau disebut juga dengan distribusi partikel (Sinko, 2006).

(90)

1 BAB I PENDAHULUAN 1.1 Latar Belakang

Pesatnya pertumbuhan produk yang mengandung tabir surya menunjukkan bahwa orang sadar akan bahaya photoaging dan kanker kulit, terjadi sebagai akibat dari sengatan matahari yang berlebihan. Setiap tahun, sekitar satu juta orang didiagnosis dengan kanker kulit dan sekitar 10.000 meninggal karena melanoma ganas (Dutra et al, 2004). Kanker kulit terjadi pada daerah tubuh yang paling sering terkena sinar matahari, seperti wajah, leher, kepala, dan punggung tangan (Dutra et al, 2004).

Ada dua macam komponen sinar ultraviolet yang mencapai bumi, yaitu UVA (320-400 nm) dan UVB (290-320 nm). UVB merupakan komponen yang mempunyai daya rusak tinggi pada kulit, sedangkan UVA lebih condong dapat merusak kulit dengan bantuan fotosinsitizer kimia baik alami maupun sintesis yang terdapat pada kulit (Wasitaatmadja, 1997).

Kulit manusia secara alami mempunyai sistem perlindungan terhadap sinar UV yaitu penebalan stratum corneum, pembentukan melanin, dan pengeluaran keringat. Namun pada kontak yang berlebihan, paparan sinar UV yang terlalu lama menjadikan sistem alamiah tersebut tidak berfungsi dengan baik sehingga menyebabkan efek yang merugikan bagi kulit. Oleh karena itu diperlukan senyawa tabir surya untuk melindungi kulit dari radiasi UV secara langsung (Cumpelik, 1972).

(91)

2

terdiri dari TiO2, ZnO, kaolin, CaCO3, MgO. Penyerap kimia meliputi PABA, PABA ester, benzofenon, salisilat, antranilat, yang dapat mengabsorbsi hampir 95% radiasi sinar UVB yang dapat menyebabkan sunburn (eritema) dan menghalangi UVA penyebab direct tanning, kerusakan sel elastin, actinitic skin

damage, dan timbulnya kanker kulit (Wasitaatmadja, 1997).

Penelitian ini menggunakan bahan tabir surya kimia, yaitu avobenzone sebagai penyerap UVA dan oktilmetoksisinamat sebagai penyerap UVB. Konsentrasi avobenzone yang umum adalah 3% dan konsentrasi oktilmetoksisinamat adalah 7,5% (Rieger, 2000). Pemilihan kedua bahan ini didasari oleh banyaknya kosmetik dipasaran yang mengandung kedua bahan tersebut dalam bentuk sediaan krim, losion, dan emulsi.

Untuk mengaplikasikan kombinasi avobenzone dan oktilmetoksisinamat pada kulit perlu dibuat suatu sediaan topikal untuk penggunaan lokal pada kulit. Ada berbagai macam bentuk sediaan topikal, antara lain lotion, cream, gel dan emulgel. Emulgel merupakan campuran emulsi dan gel. Atas dasar kelebihan dari emulsi yaitu terdapat fase minyak yang berfungsi sebagai emolien atau occlusive yang akan mencegah penguapan sehingga kandungan air di dalam kulit dapat dipertahankan juga dapat melarutkan avobenzone dan oktilmetoksisinamat karena kedua bahan ini tidak larut dalam air dan kelebihan gel yang dapat memberikan rasa dingin di kulit dengan adanya kandungan air yang cukup tinggi sehingga nyaman digunakan (Mitsui, 1997), sehingga pada penelitian ini digunakan sediaan emulgel.

(92)

3

(emulgator) dan dibuat dalam 7 variasi konsentrasi yaitu 0,1%, 0,5%, 1%, 1,5%, 2%, 2,5%, dan 3% sebagai sistem emulsi. Pada sistem gel digunakan hidroksi propil metil selulosa yang berfungsi sebagai agen pembentuk gel.

Hidroksi propil metil selulosa merupakan agen pembentuk gel yang aman digunakan karena tidak toksik dan tidak mengiritasi (Rowe, 2009). Evaluasi sediaan tabir surya dilakukan dengan uji mutu fisik sediaan yang meliputi uji organoleptis, pH, viskositas, homogenitas, uji iritasi, uji mikroskopik, dan uji nilai SPF sediaan sebagai tabir surya.

1.2 Perumusan Masalah

Berdasarkan penjelasan di atas, maka perumusan masalah dalam penelitian ini adalah sebagai berikut :

a. Apakah avobenzone dan oktilmetoksisinamat dapat diformulasikan sebagai sediaan emulgel menggunakan HPMC dan Tween 20 ? b. Apakah perbedaan konsentrasi Tween 20 berpengaruh terhadap

stabilitas sediaan emulgel?

c. Apakah sediaan emulgel yang dihasilkan memiliki aktivitas sebagai tabir surya ?

1.3 Hipotesis

Berdasarkan rumusan masalah di atas, maka hipotesis penelitian ini adalah :

a. Avobenzone dan oktilmetoksisinamat dapat diformulasikan sebagai sediaan emulgel menggunakan HPMC dan Tween 20. b. Perbedaan konsentrasi Tween 20 berpengaruh terhadap stabilitas

(93)

4

c. Sediaan emulgel yang dihasilkan memiliki aktivitas sebagai tabir surya.

1.4 Tujuan Penelitian

Berdasarkan hipotesis penelitian di atas maka tujuan penelitian ini adalah: a. Memformulasi avobenzone dan oktilmetoksisinamat sebagai

sediaan emulgel menggunakan HPMC dan Tween 20.

b. Mengetahui pengaruh perbedaan konsentrasi Tween 20 terhadap stabilitas sediaan emulgel.

c. Mengetahui apakah sediaan emulgel yang dihasilkan memiliki aktivitas sebagai tabir surya.

1.5 Manfaat Penelitian

Adapun manfaat penelitian ini adalah :

a. Menambah informasi dalam ilmu pengetahuan mengenai bentuk sediaan emulgel menggunakan HPMC dan Tween 20 yang mengandung avobenzone dan oktilmetoksisinamat.

b. Menambah informasi dalam ilmu pengetahuan mengenai pengaruh penggunaan Tween 20 terhadap stabilitas sediaan emulgel.

(94)

5 1.6 Kerangka Pikir

(95)

iii

FORMULASI DAN EVALUASI EMULGEL DARI KOMBINASI AVOBENZONE DAN OKTILMETOKSISINAMAT

SEBAGAI TABIR SURYA ABSTRAK

Latar belakang: Dewasa ini, penggunaan tabir surya dalam bentuk krim, losion, gel dan emulsi banyak digunakan untuk melindungi kulit dari sinar matahari. Sediaan tabir surya diformulasikan menggunakan kombinasi Avobenzone dan Oktilmetoksisinamat sebagai penyerap ultraviolet A dan ultraviolet B dalam bentuk emulgel karena memilki system penghantaran obat yang baik dibandingkan sediaan lain.

Tujuan: Penelitian ini bertujuan untuk memformulasikan Avobenzone dan Oktilmetoksisinamat yang berfungsi sebagai tabir surya dalam sediaan emulgel. Metode: Emulgel tabir surya dibuat menggunakan Hidroksipropilmetilselulosa (HPMC), propilen glikol, metil paraben dan propil paraben sebagai basis gel dan Avobenzone, Oktilmetoksisinamat, paraffin cair, dan variasi konsentrasi Tween 20 yaitu F1: 0,1%; F2: 0,5%; F3: 1%; F4: 1,5%; F5: 2%; F6: 2,5%; dan F7: 3% sebagai basis emulsi. Pengujian sediaan meliputi pengamatan organoleptis, pengamatan homogenitas, penentuan tipe emulsi, pH, viskositas, ukuran partikel menggunakan mikroskop selama penyimpanan 8 minggu dimana pengukuran dilakukan setiap 1 minggu dalam suhu kamar,iritasi terhadap kulit manusia, dan penentuan nilai SPF sediaan.

Hasil: Hasil penelitian menunjukkan bahwa sediaan emulgel tabir surya berwarna putih susu dan tidak berbau. Hasil pengamatan stabilitas emulgel tabir surya formula 7 menggunakan Tween 20 dengan konsentrasi 3% menunjukkan emulgel yang paling stabil karena tidak mengalami perubahan organoleptis, pembentukan krim (creaming) pada emulgel terjadi setelah 8 minggu, memiliki viskositas paling tinggi, memiliki ukuran rata-rata partikel paling kecil 20,89 µm, tidak mengiritasi kulit, dan memiliki nilai SPF paling tinggi yaitu 13,26±0,03. Sediaan emulgel tabir surya yang dibuat memiliki pH 4,83-6,16 dan memiliki tipe emulsi minyak dalam air.

Kesimpulan: Dapat disimpulkan bahwa semakin tinggi konsentrasi Tween 20 maka semakin stabil sediaan emulgel dan nilai SPF sediaan tabir surya yang dihasilkan termasuk dalam kategori maksimal yaitu SPF antara 8-15.

(96)

iv

FORMULATION AND EVALUATION OF EMULGEL WITH COMBINATION OF AVOBENZONE AND OCTYLMETHOXYCINNAMATE AS SUNSCREEN

ABSTRACT

Background: Nowadays, sunscreens in cream, lotion, gel and emulsion forms are widely used to protect skin from sunshine. Sunscreen preparation is formulated using Avobenzone and Octylmethoxycinnamate combinations as ultraviolet A and ultraviolet B absorber in emulgel form since its drug delivery system which better than another preparation.

Purpose: This research purpose was to formulated Avobenzone and Octylmethoxycinnamate of which function as sunscreen in emulgel preparation.

Method: Emulgel sunscreen was made using Hydroxypropilmethylcelulose (HPMC), propylene glycol, methyl paraben and propyl paraben as gel basic and using Avobenzone, Octylmethoxycinnamate, dilute paraffin, and some variant of

Tween 20 concentrations as F1: 0.1%; F2: 0.5%; F3: 1%; F4: 1.5%; F5: 2%; F6:

2.5%; and F7: 3% as emulsion basic. Preparations was tested, included organoleptic and homogeneity observations, emulsion types determination, pH, viscosity, particle size by microscop for 8 weeks which the measuring was done every 1 week at room temperature, human skin irritation, and SPF value determination.

Results: Results of the research showed that emulgel sunscreen preparation has milk white color and scentless. Result of stability observation, formula 7 emulgel sunscreen using 3% concentration of Tween 20 showed be themost stable emulgel since it did not under go organoleptic changes, creaming on emulgel occured after

8 weeks, highest viscosity, smallest mean of particle size is 20.89 µm, didn’t

cause skin irritation, and has highest SPF value as 13.26±0.03. Emulgel sunscreen preparation which had been made has pH of 4.83-6.16 and had oil in water (o/w) emulsion type.

Conclusion: It can be conclude that as higher as concentration of Tween 20 will make emulgel preparation more stable and the SPF value of sunscreen obtain include in maximal category SPF value between 8 to 15.

(97)

FORMULASI DAN EVALUASI EMULGEL DARI KOMBINASI

AVOBENZONE DAN OKTILMETOKSISINAMAT

SEBAGAI TABIR SURYA

SKRIPSI

OLEH:

Tria Maisyura

NIM 101501161

PROGRAM STUDI SARJANA FARMASI

FAKULTAS FARMASI

UNIVERSITAS SUMATERA UTARA

MEDAN

(98)

FORMULASI DAN EVALUASI EMULGEL DARI KOMBINASI

AVOBENZONE DAN OKTILMETOKSISINAMAT

SEBAGAI TABIR SURYA

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Farmasi pada Fakultas Farmasi

Universitas Sumatera Utara

OLEH:

TRIA MAISYURA

NIM 101501161

PROGRAM STUDI SARJANA FARMASI

FAKULTAS FARMASI

UNIVERSITAS SUMATERA UTARA

MEDAN

(99)

PENGESAHAN SKRIPSI

FORMULASI DAN EVALUASI EMULGEL DARI KOMBINASI

AVOBENZONE DAN OKTILMETOKSISINAMAT

SEBAGAI TABIR SURYA

OLEH: TRIA MAISYURA

NIM 101501161

Dipertahankan di Hadapan Panitia Penguji Skripsi Fakultas Farmasi Universitas Sumatera Utara

Pada Tanggal 29 Mei 2015

Pembimbing I, Panitia Penguji,

Dra.Anayanti Arianto., M.Si., Apt. Prof. Dr. Julia Reveny, M.Si., Apt. NIP 195306251986012001 NIP 195807101986012001

Pembimbing II, Dra. Anayanti Arianto., M.Si., Apt. NIP 195306251986012001

Prof. Dr. Hakim Bangun, Apt. Dra.Nazliniwaty, M.Si., Apt. NIP 195201171980031002 NIP 196005111989022001

Dra. Juanita Tanuwijaya, M.Si., Apt. NIP 195111021977102001

Medan, Juni 2015 Fakultas Farmasi

Universitas Sumatera Utara Wakil Dekan I,

(100)

iii

FORMULASI DAN EVALUASI EMULGEL DARI KOMBINASI AVOBENZONE DAN OKTILMETOKSISINAMAT

SEBAGAI TABIR SURYA ABSTRAK

Latar belakang: Dewasa ini, penggunaan tabir surya dalam bentuk krim, losion, gel dan emulsi banyak digunakan untuk melindungi kulit dari sinar matahari. Sediaan tabir surya diformulasikan menggunakan kombinasi Avobenzone dan Oktilmetoksisinamat sebagai penyerap ultraviolet A dan ultraviolet B dalam bentuk emulgel karena memilki system penghantaran obat yang baik dibandingkan sediaan lain.

Tujuan: Penelitian ini bertujuan untuk memformulasikan Avobenzone dan Oktilmetoksisinamat yang berfungsi sebagai tabir surya dalam sediaan emulgel. Metode: Emulgel tabir surya dibuat menggunakan Hidroksipropilmetilselulosa (HPMC), propilen glikol, metil paraben dan propil paraben sebagai basis gel dan Avobenzone, Oktilmetoksisinamat, paraffin cair, dan variasi konsentrasi Tween 20 yaitu F1: 0,1%; F2: 0,5%; F3: 1%; F4: 1,5%; F5: 2%; F6: 2,5%; dan F7: 3% sebagai basis emulsi. Pengujian sediaan meliputi pengamatan organoleptis, pengamatan homogenitas, penentuan tipe emulsi, pH, viskositas, ukuran partikel menggunakan mikroskop selama penyimpanan 8 minggu dimana pengukuran dilakukan setiap 1 minggu dalam suhu kamar,iritasi terhadap kulit manusia, dan penentuan nilai SPF sediaan.

Hasil: Hasil penelitian menunjukkan bahwa sediaan emulgel tabir surya berwarna putih susu dan tidak berbau. Hasil pengamatan stabilitas emulgel tabir surya formula 7 menggunakan Tween 20 dengan konsentrasi 3% menunjukkan emulgel yang paling stabil karena tidak mengalami perubahan organoleptis, pembentukan krim (creaming) pada emulgel terjadi setelah 8 minggu, memiliki viskositas paling tinggi, memiliki ukuran rata-rata partikel paling kecil 20,89 µm, tidak mengiritasi kulit, dan memiliki nilai SPF paling tinggi yaitu 13,26±0,03. Sediaan emulgel tabir surya yang dibuat memiliki pH 4,83-6,16 dan memiliki tipe emulsi minyak dalam air.

Kesimpulan: Dapat disimpulkan bahwa semakin tinggi konsentrasi Tween 20 maka semakin stabil sediaan emulgel dan nilai SPF sediaan tabir surya yang dihasilkan termasuk dalam kategori maksimal yaitu SPF antara 8-15.

(101)

iv

FORMULATION AND EVALUATION OF EMULGEL WITH COMBINATION OF AVOBENZONE AND OCTYLMETHOXYCINNAMATE AS SUNSCREEN

ABSTRACT

Background: Nowadays, sunscreens in cream, lotion, gel and emulsion forms are widely used to protect skin from sunshine. Sunscreen preparation is formulated using Avobenzone and Octylmethoxycinnamate combinations as ultraviolet A and ultraviolet B absorber in emulgel form since its drug delivery system which better than another preparation.

Purpose: This research purpose was to formulated Avobenzone and Octylmethoxycinnamate of which function as sunscreen in emulgel preparation.

Method: Emulgel sunscreen was made using Hydroxypropilmethylcelulose (HPMC), propylene glycol, methyl paraben and propyl paraben as gel basic and using Avobenzone, Octylmethoxycinnamate, dilute paraffin, and some variant of

Tween 20 concentrations as F1: 0.1%; F2: 0.5%; F3: 1%; F4: 1.5%; F5: 2%; F6:

2.5%; and F7: 3% as emulsion basic. Preparations was tested, included organoleptic and homogeneity observations, emulsion types determination, pH, viscosity, particle size by microscop for 8 weeks which the measuring was done every 1 week at room temperature, human skin irritation, and SPF value determination.

Results: Results of the research showed that emulgel sunscreen preparation has milk white color and scentless. Result of stability observation, formula 7 emulgel sunscreen using 3% concentration of Tween 20 showed be themost stable emulgel since it did not under go organoleptic changes, creaming on emulgel occured after

8 weeks, highest viscosity, smallest mean of particle size is 20.89 µm, didn’t

cause skin irritation, and has highest SPF value as 13.26±0.03. Emulgel sunscreen preparation which had been made has pH of 4.83-6.16 and had oil in water (o/w) emulsion type.

Conclusion: It can be conclude that as higher as concentration of Tween 20 will make emulgel preparation more stable and the SPF value of sunscreen obtain include in maximal category SPF value between 8 to 15.

Gambar

Gambar homogenitas emulgel 0,1% ; 0,5% ; 1%
Gambar Stabilitas Sediaan
Tabel 3.1 Persentase komposisi bahan dalam emulgel
Tabel 3.2 Ketetapan nilai EE x I (Sayre et al, 1979)
+7

Referensi

Dokumen terkait

Hasil pengamatan stabilitas emulgel tabir surya formula 7 menggunakan Tween 20 dengan konsentrasi 3% menunjukkan emulgel yang paling stabil karena tidak mengalami

Hasil pengamatan stabilitas emulgel tabir surya formula 7 menggunakan Tween 20 dengan konsentrasi 3% menunjukkan emulgel yang paling stabil karena tidak mengalami

Jakarta: Jurusan Farmasi FMIPA, Universitas Islam Indonesia.. Buku Pegangan Ilmu Pengetahuan

Krim yang sudah menggumpal bisa didispersikan kembali dengan mudah, dan dapat terbentuk kembali suatu campuran yang homogen dari suatu emulsi yang membentuk krim dengan

Formulasi dan Evaluasi Emulgel Tabir Surya dari Kombinasi Avobenzone dan Oktilmetoksisinamat Sebagai Tabir Surya.. Medan : Universitas

Lampiran 5 Neraca analitik, Viskometer Brookfield, pH meter, Mikroskopdan Spektrofotometer UV-Vis.. Neraca Analitik Viskometer Brookfield

Tabir surya berfungsi menyerap atau menyebarkan sinar matahari sehingga intensitas sinar yang mampu mencapai kulit jauh lebih sedikit dari yang seharusnya

Hasil uji stabilitas menunjukkan ketiga formula tetap homogen dan tidak mengalami inversi fase dengan tipe emulsi minyak dalam air setelah cycling test.. Aroma khas minyak