PERILAKU SOLUSI PERSAMAAN DIFERENSIAL ORDE DUA.

14 

Loading....

Loading....

Loading....

Loading....

Loading....

Teks penuh

(1)

PERILAKU SOLUSI PERSAMAAN DIFERENSIAL ORDE DUA

Oleh:

Robin Sanjaya Halawa NIM 4123230025 Program Studi Matematika

SKRIPSI

Diajukan untuk Memenuhi Syarat Memperoleh Gelar Sarjana Sains

JURUSAN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI MEDAN

(2)
(3)

PERILAKU SOLUSI PERSAMAAN DIFERENSIAL ORDE

DUA

Robin Sanjaya Halawa NIM: 4123230025

ABSTRAK

Skripsi ini membahas perilaku solusi persamaan diferensial orde dua. Metode penelitian yang digunakan dalam penulisan ini adalah penelitian analisis dan studi pustaka. Analisis dilakukan pada persamaan diferensial orde dua homogen linier dengan koefisien y′ cukup kecil (kasus dua akar kompleks). Hasil analisis menun-jukkan bahwa saat suatu kondisi awal dengan posisi awal yang sama dan sembarang kecepatan awal diberikan, maka terdapat waktu-waktu tertentu dimana semua solusi bernilai sama. Begitu juga saat diberikan sembarang posisi awal dan kecepatan awal yang sama.

Kata kunci:Diferensial, Kompleks, Linier, Homogen.

(4)

KATA PENGANTAR

Puji dan syukur penulis ucapkan kepada Tuhan Yang Maha Esa atas segala

kasih dan karunia-Nya yang begitu besar sehingga penulis dapat menyelesaikan

skripsi yang berjudul ”Perilaku Solusi Persamaan Diferensial Orde Dua”.

Dalam skripsi ini penulis banyak mendapat bantuan dari berbagai pihak, oleh

karena itu pada kesempatan ini penulis menyampaikan ucapan terima kasih yang

sebesar-besarnya kepada:

1. Prof. Dr. Syawal Gultom, M.Pd selaku Rektor Universitas Negeri Medan yang

telah memberikan ijin dan kesempatan untuk menyelesaikan studi Strata 1 di

Universitas Negeri Medan.

2. Dr. Asrin Lubis, M.Pd selaku Dekan Fakultas Matematika dan Ilmu

Penge-tahuan Alam.

3. Dr. Edy Surya, M.Si selaku Ketua Jurusan Matematika dan Drs. Yasifati Hia,

M.Si selaku Sekretaris Jurusan Matematika Universitas Negeri Medan.

4. Dr. Pardomuan Sitompul, M.Si selaku Ketua Prodi Jurusan Matematika.

5. Dr. Pardomuan Sitompul, M.Si selaku dosen pembimbing skripsi yang telah

membimbing dan mengarahkan penulis dalam melaksanakan penelitian hingga

skripsi ini dapat terselesaikan dengan baik.

6. Dr. Faiz Ahyaningsih, M.Si selaku dosen pembimbing akademik yang telah

membimbing dan mengarahkan penulis dalam melaksanakan penelitian hingga

skripsi ini dapat terselesaikan dengan baik.

7. Dr. Pardomuan Sitompul, M.Si, Dr. Mulyono, M.Si, Arnah Ritonga, S.Si, M.Si,

Faridawaty Marpaung, S.Si, M.Si, Chairunissa, S.Si, M.Si selaku dosen penguji

yang telah membimbing serta memberikan masukan dalam pembuatan skripsi.

8. Bapak dan Ibu dosen Jurusan Matematika yang tidak bosan-bosannya

membimbing saya, mengingat saya dan terus mengajari saya agar menjadi

manusia yang lebih baik lagi dan mencirikan sikap serta sifat layaknya manusia

yang berintelektual dan berintegritas.

9. Teristimewa untuk Orang tuaku tercinta, yaitu Ayahanda (Alm) Aliran Zaman

Halawa dan Juliana br Sitepu, yang telah memberikan support dan semangat

serta doa yang mendukung dalam menulis skripsi ini.

10. Abang saya Christian, Kakak saya Elvi, Emilia, dan adik saya Darma, Adrian.

(5)

11. Sahabat-sahabatku di bangku kuliah (Tanyel Sinaga, Veemona Sibarani,Silva

Humaira,Nur Intan, Penghuni kos Sukaria, Nina, Penny, Intan,Ester,Hawa,Ira

dan teman-teman seperjuangan lainnya di kelas Matematika Nondik2012), Petra

SG (Kak Eko, Imanuel, Firdaus, Bruce), LGM (kak Thio, bang Jepri, Kak Friska,

kak Pera, kak lia,kak Selfi, kak May, Yoan, bang Oka,bang Tona, Yunus, dll)

terimakasih atas dukungan dan bantuannya.

Penulis berharap semoga Tuhan membalas kebaikan dari semua pihak yang

telah banyak membantu dan memotivasi penulis dalam menyelesaikan skripsi ini.

Namun mengingat penulis masih dalam tahap belajar, penulis menyadari bahwa

isi yang disajikan dalam skripsi ini masih memiliki kekurangan dan

ketidaksem-purnaan. Untuk itu, kritik dan saran yang membangun dari pembaca sangat

diharapkan. Penulis berharap semoga skripsi ini dapat bermanfaat. Akhir kata,

penulis mengucapkan terima kasih.

Medan, April 2017

Penulis,

Robin Sanjaya Halawa

NIM 4123230025

(6)

DAFTAR ISI

2.6 Penggunaan Persamaan Diferensial Orde Dua Homogen . . . 12

2.6.1 Pegas Bergetar/Berosilasi . . . 12

4.1 Perilaku Solusi Persamaan Diferensial Linear Orde Dua Homogen Dengan Koefisien Konstan . . . 18

4.2 Solusi Akar Kompleks Persamaan Karakteristik . . . 19

4.3 Titik Istemewa Solusi Akar Kompleks dengan Sembarang Posisi Awal . . . 20

4.4 Titik Istemewa Solusi Akar Kompleks dengan Sembarang Kecepatan Awal . . . 24

Bab 5 Penutup . . . 27

5.1 Kesimpulan . . . 27

(7)

5.2 Saran . . . 27

DAFTAR PUSTAKA . . . 28

INDEKS . . . 29

.1 Lampiran . . . 29

(8)

DAFTAR GAMBAR

Gambar 4.1 Grafik solusi persamaany′′+0,1y′+3y= 0, y(0) = 2

dan y′(0) = 1 . . . 19

Gambar 4.2 Grafik solusi persamaany′′+ 0,3y′ + 9y = 0, y′0 = 2

dany01=4,y02= 0,y03 = 5 . . . 23

Gambar 4.3 Grafik solusi persamaany′′+ 0,3y′ + 9y = 0, y0 = 2

dany′01=−4,y02′ = 2,y03′ = 5 . . . 26

(9)

Bab 1

Pendahuluan

1.1

Latar Belakang Masalah

Pada perkembangan ilmu sekarang, persamaan diferensial sebagai model banyak dijumpai dalam bidang-bidang sains, teknologi (teknik), biologi, ekonomi, ilmu sosial,demografi dan sebagainya. Persamaan diferensial digunakan sebagai alat untuk mengetahui kelakuan ataupun sifat-sifat masalah yang ditinjau. Karena itu penting sekali mempelajari persamaan diferensial. Nababan (1987)

Terdapat dua alasan mengapa persamaan-persamaan linear yang berorde dua menjadi sangat penting dalam mempelajari persamaan diferensial. Pertama, bahwa persamaan-persamaan linear orde dua mempunyai struktur teoritik yang kaya dengan metoda-metoda sistematis dalam menentukan solusi. Dengan Metoda yang sistematis ini, sangat mudah dimengerti untuk level matematika yang sederhana. Alasan kedua adalah tidak mungkin mempelajari lebih jauh mengenai mekanika cairan, aliran panas, gerakan gelombang ataupun penomena elektromagnetik tanpa menemukan solusi persamaan linear orde dua. Waluya (2006)

Secara umum persamaan diferensial orde dua mendiskripsikan lebih luas variasi dari suatu penomena. Hal yang sangat berbeda dengan persamaan diferensial orde satu adalah keunikan solusi dari persamaan diferensial orde dua, disyaratkan dengan dua kondisi awal yang harus dipenuhi yakniy(t0) = y0 dany′(t0) =y′0.

Pada persamaan diferensial orde satu, solusi total terdiri dari dua komponen yaitu solusi umum dan solusi khusus. Hal yang sama juga terjadi pada persamaan diferensial orde dua yang dengan mudah dapat ditunjukkan secara matematis seperti halnya pada persamaan orde pertama.

(10)

2

Bentuk umum persamaan diferensial orde dua homogen dengan koefisien konstan adalah: Dimana solusinya dapat ditinjau dari 3 kasus, yaitu berdasarkan nilaiD=b2

−4ac dari persamaan karakteristiknya:

• dua akar riil berbeda,D >0 • dua akar sama,D= 0

• dua akar kompleks konjugate,D <0

Hal yang menarik dalam penelitian ini adalah mengkaji perilaku solusi untuk dua akar kompleks konjugate. Dimana ketika penulis mengamati perilaku solusi untuk kasus dua akar komplek konjugate, penulis melihat solusi tersebut merupakan gerak harmonik. Sedangkan pada kasus dua akar riil berbeda dan kasus dua akar sama, solusinya bukan merupakan gerak harmonik. Pada kasus dua akar riil berbeda dan kasus dua akar sama, solusinya merupakan gerakan yg teredam kuat dan berupa fungsi eksponensial.

Pada sistem pegas, massa berlangsung terus-menerus tanpa berkesudahan. Kenyataan sesungguhnya adalah gerak osilasi kita amati melemah, dan pada akhirnya berhenti. Gerak demikian dikatakan teredam. Jika hambatan atau gesekan cukup kecil maka benda tersebut akan mengalami redaman. Perlu diketahui bahwa redaman yang dialami oleh benda dengan cukup kecil sehingga untuk kasus seperti ini, osilasi benda menyerupai gerak harmonik. Gerak harmonik adalah gerak periodik yang terjadi secara teratur. gerak periodik yaitu setiap gerak yang terjadi secara berulang dalam selang waktu yang sama. Gerak harmonik mempunyai sifat-sifat yang unik, misalnya panjang gelombangnya yang selalu sama dan tinggi gelombangnya yang ditentukan oleh nilai redaman, kemudian bisa juga pada perbedaan pemberian kondisi awalnya. Dimana kondisi awal terdiri dari dua, yakni : posisi awal dan kecepatan awal. Pada saat suatu sistem persamaan diferensial orde dua diberikan posisi awal yang sama dengan kecepatan awal yang berbeda, maka solusi akan mempunyai titik-titik istemewa, begitu juga sebaliknya, pada saat diberikan posisi awal yang berbeda dengan kecepatan awal yang sama. Ishaq (2007)

(11)

3

dari solusi tersebut. Penelitian akan dimulai dengan persamaan diferensial orde dua homogen dengan koefisien konstan. Dengan demikian, penulis mengangkat hal tersebut pada sebuah karya ilmiah dalam bentuk Skripsi dengan judul ”PERILAKU SOLUSI PERSAMAAN DIFERENSIAL ORDE DUA”.

1.2

Rumusan Masalah

Berdasarkan latar belakang masalah yang dikemukakan sebelumnya, permasalahan yang diangkat dalam penelitian ini antara lain:

1. Bagaimana perilaku solusi untuk kasus dua akar kompleks konjugate pada Persamaan Diferensial Orde dua Homogen, ketika diberikan posisi awal yang sama dengan kecepatan awal yang berbeda?

2. Bagaimana perilaku solusi untuk kasus dua akar kompleks konjugate pada Persamaan Diferensial Orde dua Homogen,ketika diberikan kecepatan awal yang sama dengan posisi awal yang berbeda?

1.3

Batasan Masalah

Penelitian yang dilakukan dibatasi pada masalah persamaan diferensial orde dua homogen pada kasus dua akar kompleks dengan koefisien konstan dan tanpa gaya luar.

1.4

Tujuan Penelitian

Tujuan penelitian ini adalah:

1. Mengkaji perilaku solusi untuk kasus dua akar kompleks konjugate pada Persamaan Diferensial Orde dua Homogen, dengan posisi awal yang sama dan kecepatan awal berbeda.

(12)

4

1.5

Manfaat Penelitian

Dengan diadakannya penelitian ini diharapkan dapat memberi manfaat sebagai berikut :

1. Bagi peneliti : merupakan media belajar dalam meneliti Perilaku Solusi Persamaan Diferensial Orde dua dan memberikan sumbangan pemikiran berdasarkan disiplin ilmu yang diperoleh dibangku kuliah.

(13)

Bab 5

Penutup

5.1

Kesimpulan

Penelitian yang telah dilakukan, pada suatu sistem persamaan diferensial orde

dua

ay′′+by+cy = 0,

dimana a, b, ckonstan dan a 6= 0. khususnya untuk nilai koefisien y′ yang cukup

kecil. Dapat diambil kesimpulan sebagai berikut:

1. Jika diberi kecepatan awal y′

0 yang sama dalam setiap keadaan (y0

berbeda), maka solusi akan melalui titik(t, y(t)), dimana

t = 1

2. Jika diberi posisi awaly0 sama dalam setiap keadaan (y′

0 berbeda), maka

solusi akan melalui titik(t, y(t)), dimana

t = kπ

Analisis yang dilakukan pada penelitian ini dapat dilanjutkan pada persamaan

diferensial orde dua non homogen dengan koefisien konstan, serta persamaan

diferensial orde dua dengan koefisien tidak konstan. Demikian beberapa masalah

terbuka pada skripsi ini yang masih bisa dikembangkan untuk penelitian

selan-jutnya.

(14)

DAFTAR PUSTAKA

Cahyono, E., (2013):Pemodelan Matematika, 1, Graha Ilmu, Yogyakarta.

Ishaq, M., (2007): FISIKA DASAR, 2, Graha Ilmu, Yogyakarta.

Munzir, M. S., (2009): PERSAMAAN DIFERENSIAL, 1, Graha Ilmu, Yogyakarta.

Nababan, S., (1987): Persamaan difernsial Biasa, 1, Universitas Terbuka, Jakarta.

Nugroho, D. B., (2011): PERSAMAAN DIFERENSIAL BIASA DAN

APLIKASINYA, 1, Graha Ilmu, Yogyakarta.

Sangadji (2008): Metode Numerik, 1, Graha Ilmu, Yogyakarta.

Tveito, A., W. R., (1998): Introduction to Partial Differntial Equation: A

Compu-tational Approach, Vol. 45, Springer-Verlag, New York.

Waluya, S., (2006):PERSAMAAN DIFERENSIAL, 1, GRAHA ILMU, Yogyakarta.

William, E. Boyce., R. C. D., (2008): Elementary Differential Equations

and Boundary Value Problems, 9, Department of Mathematical Sciences Rensselaer Polytechnic Institute, New York.

Yunianto, M., (2012): Simulasi Gerak Harmonik Sederhana dan Osilasi Teredam

pada Cassy-E 524000,Universitas Sebelas Maret,2(2), 124–125.

Figur

Gambar 4.1Grafik solusi persamaan y′′+0, 1y′+3y = 0, y(0) = 2dan y′(0) = 1 . . . . . .
Gambar 4 1Gra k solusi persamaan y 0 1y 3y 0 y 0 2dan y 0 1 . View in document p.8

Referensi

Memperbarui...