SMART SOLUTION UN MATEMATIKA SMA 2013 (SKL 2.14 PERTIDAKSAMAAN EKSPONEN ATAU LOGARITMA)

10 

Teks penuh

(1)

Smart Solution

UJIAN NASIONAL

TAHUN PELAJARAN 2012/2013

Disusun Sesuai Indikator Kisi-Kisi UN 2013

Matematika SMA

(Program Studi IPA)

Disusun oleh :

(2)

Halaman 108 Bimbel UN Matematika SMA Program IPA by Pak Anang (http://pak-anang.blogspot.com)

2. 14. Menentukan penyelesaian pertidaksamaan eksponen atau logaritma.

Pertidaksamaan Eksponen atau Logaritma

Eksponen

Logaritma

� �

log �

Syarat Eksponen

Syarat Logaritma

> dan ≠ > dan ≠

� bebas berapapun boleh � >

Perhatikan bilangan pokoknya

atau log �

pasti sudah memenuhi syarat

Lebih Dari Satu

Diantara Nol dan Satu

>

< <

Tanda pertida�samaan tetap Tanda pertida�samaan dibali�

� � ⇒ �

� � ⇒ �

log �log � ⇒ � log �log � ⇒ �

� � ⇒ �

� � ⇒ �

log �log � ⇒ � log �log � ⇒ �

Syarat Eksponen

Syarat Logaritma

(3)

Bimbel UN Matematika SMA Program IPA by Pak Anang (http://pak-anang.blogspot.com) Halaman 109 TRIK SUPERKILAT

Baca soal

Cek topik soal tentang apa?

Pertidaksamaan Eksponen Pertidaksamaan Logaritma

Selesaikan pertidaksamaan Selesaikan pertidaksamaan Syarat numerus harus positif

Iriskan dalam garis bilangan

Selesai

Kalau kita membahas topik soal UN Matematika SMA pada indikator soal tentang pertidaksamaan eksponen atau logaritma, mau tidak mau kita harus paham tentang bagaimana sifat perpangkatan atau logaritma itu sendiri.

Lalu yang tak kalah pentingnya adalah untuk menyelesaikan pertidaksamaan logaritma, maka perlu

(4)

Halaman 110 Bimbel UN Matematika SMA Program IPA by Pak Anang (http://pak-anang.blogspot.com)

Tipe Soal yang Sering Muncul

Menentukan penyelesaian pertidaksamaan eksponen bentuk

.

Contoh Soal:

Himpunan penyelesaian dari pertidaksamaan �+ � 2

adalah ….

a. − �

b. − �

c. � − atau � d. � − atau � e. �

Penyelesaian:

Dengan menggunakan konsep pertidaksamaan eksponen diperoleh:

�+ �2

⇒ − �+ − �2

⇔ − �+ − (�2− )

⇔ − �− −�2+

⇔ − � − −� + ⇔ � − � −

⇔ � + � −

Pembuat nol ⇒ � + = atau � − = ⇔ � = −   atau   � =

Periksa daerah penyelesaian pada garis bilangan,

Jadi himpunan penyelesaiannya adalah {�|� − atau � }.

�ita punya dua pilihan, yaitu mengubah dan

men�adi pang�at berapa atau pang�at berapa �onse�uensinya?

�alau memilih ma�a tanda pertida�samaan harus dibali�, sedang�an bila memilih ma�a tanda pertida�samaan tetap }

saya lebih memilih , supaya tandanya tida� berubah

+ − +

(5)

Bimbel UN Matematika SMA Program IPA by Pak Anang (http://pak-anang.blogspot.com) Halaman 111

Menentukan penyelesaian pertidaksamaan eksponen bentuk

{�

}

+ {�

} +

Contoh Soal 1:

Himpunan penyelesaian dari pertidaksamaan �+ − . �+ + > adalah …. a. < � <

b. < � < c. � < atau � > d. � < atau � > e. � >

Penyelesaian:

Dengan menggunakan konsep pertidaksamaan eksponen diperoleh:

�+ − . �+ + > Ingat �+ =∙ dan �+ =

⇒ . �− . .+ >

⇔ . � − .+ >

Misal = �

⇒ − + > ⇔ − − >

Pembuat nol ∶ ⇒ − = atau − =

⇔ =     atau   =

Periksa daerah penyelesaian pada garis bilangan,

Jadi daerah penyelesaian:

< atau >

< atau >

� < atau � >

Jadi himpunan penyelesaiannya adalah {�|� < atau � > }.

+ − +

(6)

Halaman 112 Bimbel UN Matematika SMA Program IPA by Pak Anang (http://pak-anang.blogspot.com)

Contoh Soal 2:

Himpunan penyelesaian dari pertidaksamaan �+ −�> adalah …. a. < � <

b. < � < c. � < atau � > d. � < atau � > e. � >

Penyelesaian:

Dengan menggunakan konsep pertidaksamaan eksponen diperoleh:

+ −�> Jadi�an ruas �iri sama dengan nol

⇒ �+ −� > Ingat −� = −� dan =

⇔ �+ . −� > Kali�an semua ruas dengan , supaya tida� ada bentu� −�

⇔ �.+ . −�.− .>

⇔ �+ − .>

⇔ �− .+ >

⇔ � − .+ >

Misal = �

⇒ − + > ⇔ − − >

Pembuat nol ∶ ⇒ − = atau − =

⇔ = atau   =

Periksa daerah penyelesaian pada garis bilangan,

Jadi daerah penyelesaian:

< atau >

< atau >

� < atau � >

Jadi himpunan penyelesaiannya adalah {�|� < atau � > }.

+ − +

(7)

Bimbel UN Matematika SMA Program IPA by Pak Anang (http://pak-anang.blogspot.com) Halaman 113

Menentukan penyelesaian pertidaksamaan logaritma bentuk

��� �

��� �

.

Contoh Soal 1:

Himpunan penyelesaian dari pertidaksamaan log � − � < adalah …. a. < � <

Dengan menggunakan konsep pertidaksamaan logaritma diperoleh:

log � − � < (Ingat ubah men�adi bentu� logaritma log berapa ya?)

Periksa daerah penyelesaian pada garis bilangan,

Daerah yang memenuhi adalah − < � < ...(1)

Jangan lupa!! Agar pertidaksamaan logaritma tersebut memiliki arti, maka harus memenuhi syarat yaitu numerus logaritma harus positif.

Periksa daerah penyelesaian pada garis bilangan,

Daerah yang memenuhi adalah � < atau � > ...(2) Dari (1) dan (2), irisan daerah penyelesaian yang memenuhi adalah sebagai berikut:

(8)

Halaman 114 Bimbel UN Matematika SMA Program IPA by Pak Anang (http://pak-anang.blogspot.com)

Dengan menggunakan konsep pertidaksamaan logaritma diperoleh:

log − � + log � + < log � +

Periksa daerah penyelesaian pada garis bilangan,

Daerah yang memenuhi adalah � < − atau � > ...(1)

Jangan lupa!! Agar pertidaksamaan logaritma tersebut memiliki arti, maka harus memenuhi syarat yaitu numerus logaritma harus positif.

Dari (1), (2), (3) dan (4), irisan daerah penyelesaian yang memenuhi adalah sebagai berikut:

(9)

Bimbel UN Matematika SMA Program IPA by Pak Anang (http://pak-anang.blogspot.com) Halaman 115

Menentukan penyelesaian pertidaksamaan logaritma bentuk

{

��� � }

+ {

��� � } +

Dengan menggunakan konsep pertidaksamaan eksponen diperoleh:

log � − − log � − + > (Ingat log � − = . log � − )

Periksa daerah penyelesaian pada garis bilangan,

Jadi daerah penyelesaian:

Jangan lupa!! Agar pertidaksamaan logaritma tersebut memiliki arti, maka harus memenuhi syarat yaitu numerus logaritma harus positif.

� − >

⇒ � > ...(2)

Dari (1) dan (2), irisan daerah penyelesaian yang memenuhi adalah sebagai berikut:

(10)

Halaman 116 Bimbel UN Matematika SMA Program IPA by Pak Anang (http://pak-anang.blogspot.com)

Pembahasan TRIK SUPERKILAT pada contoh soal yang serupa pada UN 2012 kemarin:

1.

Nilai

x

yang memenuhi pertidaksamaan

92x 10.9x 90

,

x

R

adalah ....

http://pak-anang.blogspot.com/2012/11/prediksi-soal-un-matematika-sma-2013.html

.

Semua

soal

Figur

Memperbarui...

Referensi

Memperbarui...

Related subjects :