Gerak Melingkar dan Gerak Parabola GuruPintar MODUL 1 GM DAN GP

Teks penuh

(1)

GERAK MELINGKAR DAN PARABOLA

Fisika Kelas XI SCI Semester I

Oleh:

(2)

Kompetensi Inti

:

Memahami, menerapkan, dan menganalisis pengetahuan faktual, konseptual, prosedural, dan

metakognitif berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan

humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait

penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian

yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah

Kompetensi Dasar

:

Menganalisis gerak parabola dan gerak melingkar dengan menggunakan vektor

(3)

1.1

VEKTOR A. Vektor Satuan

Vektor satuan dalam arah horizontal (sumbu-x) dinyatakan dengan dengan ̂. Contoh: sebuah vektor

panjangnya a arahnya ke sumbu-x, vektor satuannya â. Sebuah vektor panjangnya b arahnya ke sumbu-y,

vektor satuannya bĵ.

Sebuah partikel mula-mula diam di titik A dengan koordinat (2,3) meter. Dalam selang waktu tertentu partikel berada di titik B (5,7) meter. Tentukan:

(a) Vektor Posisi di titik A maka vektor perpindahannya adalah:

∆⃑⃑⃑⃑ = −

∆⃑⃑⃑⃑ = − ̂ + − ̂

∆⃑⃑⃑⃑ = ∆ ̂ + ∆ ̂

(4)

Contoh Soal:

Sebuah partikel berpindah dari titik A (2,3) meter ke titik B (5,7) meter. Tentukan: (a) Vektor Posisi di titik A

(b) Vektor Posisi di titik B

(c) Vektor perpindahan dari A ke B

(d) Jarak antara titik A dan B

Jawab:

(a) Vektor posisi di A dinyatakan dengan: ⃑⃑⃑ = ̂ + ̂

(b) Vektor posisi di B dinyatakan dengan: ⃑⃑⃑ = ̂ + ̂

(c) Vektor perpindahannya adalah:

∆⃑⃑⃑⃑ = −

∆⃑⃑⃑⃑ = − ̂ + − ̂ ∆⃑⃑⃑⃑ = ̂ + ̂ meter

(d) Besar vektor perpindahan (jarak) antara titik A ke titik B adalah: ∆⃑⃑⃑⃑ = √ + = √ = 5 meter

Seekor semut mula-mula diam dititik A (3,3) meter. Dalam selang waktu tertentu semut berpindah di titik B (8, 15) meter. Tentukan:

(a) Vektor posisi di titik A (b) Vektor Posisi di titik B

(c) Vektor Perpindahan dari A ke B

(d) Jarak antara titik A ke titik B

D. Vektor Kecepatan Rata-rata

Vektor kecepatan rata-rata didefinisikan: � =∆̅̅̅̅ = ̅ − ̅

Besar vektor kecepatan rata-rata (laju rata-rata) :

∆⃑⃑⃑⃑ = √ � + �

Contoh Soal:

Sebuah partikel mula-mula diam di titik A dengan koordinat (2,3) meter. Dalam selang waktu 2 detik partikel berada di titik B (5,7) meter. Tentukan:

(a) Vektor kecepatan rata-rata

(b) Laju rata-rata

Jawab:

(a) Vektor kecepatan rata-ratanya:

� = ∆̅̅̅̅ = ̂+ ̂= ̂ + ̂ /

(b) Besar Vektor kecepatan rata-rata (laju rata-rata) :

(5)

E. Vektor Kecepatan Sesaat

Vektor kecepatan sesaat didefinisikan perubahan posisi yang terjadi dalam selang waktu yang sangat singkat. Secara matematika dituliskan:

�⃗ = lim∆ → ∆̅̅̅

Vektor kecepatan sesaat adalah turunan pertama dari vektor perpindahan terhadap fungsi waktu:

� = � ̅

Contoh Soal:

Persamaan gerak sebuah partikel sebagai fungsi waktu dinyatakan dengan:

⃗ = − + ; dimana r dinyatakan dalam meter dan t dalam sekon. Tentukan kecepatan partikel

saat t = 2 sekon !

Persamaan posisi sebuah partikel sebagai fungsi waktu dinyatakan dengan :

⃗ = + + ; r dinyatakan dalam meter dan t dalam sekon. Tentukan :

(a) Kecepatan rata-rata partikel dalam selang waktu t = 0 s sampai t = 2 sekon ! (b) Kecepatan partikel saat t = 2 sekon !

F. Vektor Percepatan Rata-rata

Vektor percepatan rata-rata didefinisikan: � =∆̅̅̅̅ = ̅ −̅

Besar vektor percepatan rata-rata (laju rata-rata) :

∆⃑⃑⃑⃑ = √ � + �

Fungsi matematika dinyatakan dengan : =

Tentukan turunan pertama dan kedua dari fungsi tersebut di atas !

(6)

G. Vektor Percepatan Sesaat

Vektor percepatan sesaat didefinisikan perubahan kecepatan yang terjadi dalam selang waktu yang sangat singkat. Secara matematika dituliskan:

�⃗ = lim∆ → ∆�̅̅̅̅

Vektor percepatan sesaat adalah turunan pertama dari vektor kecepatan terhadap fungsi waktu atau turunan kedua dari fungsi perpindahan/posisi:

� = � ̅ atau � = �

Persamaan posisi sebuah partikel sebagai fungsi waktu dinyatakan dengan :

�⃗ = + ; v dinyatakan dalam m/s dan t dalam sekon. Tentukan :

(a) Percepatan rata-rata partikel dalam selang waktu t = 0 s sampai t = 2 sekon ! (b) Percepatan partikel saat t = 2 sekon !

Jawab:

v = t + = + = m/s

v = t + = + = m/s

(a) Percepatan rata-rata:

� = ∆̅̅̅̅ = − = = /

(b) Percepatan partikel saat t = 2 sekon : � = �

� = � ̅ = � + � = /

Jadi percepatan partikel saat t = 2 sekon adalah 2 m/s2 (GLBB)

H.

Menentukan persamaan posisi dari fungsi kecepatan dan percepatan

Contoh Soal:

Persamaan percepatan sebuah partikel yang bergerak dinyatakan dalam :

� = ̂ + ̂ / . Jika kecepatan awal dan posisi awal partikel berturut-turut − ̂ − ̂ m/s dan ̂ + ̂ m. Tentukan:

a. Laju partikel setelah bergerak selama 3 sekon !

b. Jarak yang ditempuh partikel setelah bergerak 3 sekon !

Teorema Intergral:

Jika sebuah fungsi dinyatakan dengan : = �

Intergralnya : ∫ = �

+ +

Contoh:

Fungsi matematika dinyatakan dengan : =

Tentukan integral dari fungsi tersebut di atas !

Jawab:

Integralnya:

(7)

Jawab:

(a) Laju partikel setelah bergerak 3 sekon :

� = �⃑⃑⃑ + ∫ �

(b) Posisi partikel setelah bergerak 3 sekon :

= ⃑⃑⃑ + ∫ �

Jarak partikel setelah bergerak 3 sekon :

| | = √ +

| | = √ +

| | = √ +

| | = √

| | = √  8,9 meter

1. Persamaan percepatan sebuah partikel yang bergerak dinyatakan dalam :

� = ̂ + ̂ / . Jika kecepatan awal dan posisi awal partikel berturut-turut ̂ + ̂ m/s dan ̂ + ̂ m. Tentukan:

a. Laju partikel setelah bergerak selama 10 sekon !

b. Jarak yang ditempuh partikel setelah bergerak 10 sekon !

2. Persamaan vektor posisi sebuah partikel adalah: r = (t3 2t2) i + (3t2) j. Jika r bersatuan m dan t dalam s,

Hitung besar percepatan partikel setelah 2 s dari awal pengamatan !

(8)

3. Sebuah mobil mula-mula bergerak dengan kecepatan awal � . Kemudian mobil dipercepat dengan percepatan tetap � dalam selang waktu .

(a) Buktikan bahwa kecepatan mobil setelah bergerak selama t adalah: � = � + �

(b) Buktikan bahwa jarak yang ditempuh mobil setelah bergerak selama t adalah: � = � + �

1.2

GERAK MELINGKAR

A.

Posisi sudut

Vektor Posisi partikel yang bergerak melingkar dinyatakan dalam sistem koordinat polar. Posisi partikel di titik P dinyatakan dengan (⃗, �). ⃗ adalah posisi partikel di titik P, dan � posisi sudut partikel di titik P. ⃗ = ̂ + ̂

= cos � = sin �

⃗ = cos � ̂ + sin � ̂ Besar r dapat dinyatakan dengan : |⃗| = = √ +

Contoh Soal:

Posisi sebuah partikel yang bergerak melingkar dinyatakan dengan (4 m, � ). Tentukan :

a) Posisi partikel di sumbu-x dan sumbu-y

b) Persaaan posisi partikel

Jawab:

a) Posisi partikel di sumbu-x :

= cos � = cos � = . =

Posisi partikel di sumbu-y :

= sin � = sin � = . √ = √

b) Persaaan posisi partikel : ⃗ = ̂ + ̂ = ̂ + √ ̂

Koordinat polar Pentil Roda Sepeda yang bergerak melingkar adalah (30 cm, 120o). Tentukan :

(a) Posisi di sumbu-x

(b) Posisi di sumbu-y

(c) Vektor Posisi Pentil

(9)

Posisi sudut sebuah partikel yang bergerak melingkar dengan jari-jari lingkaran r dapat juga dinyatakan dengan � sebagai fungsi waktu. Hal ini berarti mengabaikan vektor posisi partikel terhadap sumbu x dan sumbu y dan hanya melihat sudut yang ditempuhnya saja.

Contoh Soal:

Persamaan posisi sudut bergantung waktu dari sebuah partikel yang bergerak melingkar dinyatakan

dengan: � = + + ; � dalam rad dan t dalam s. Tentukan:

(a) Posisi awal partikel

(b) Posisi partikel setelah bergerak 2 sekon

Jawab:

(a) Posisi awal partikel merupakan posisi partikel saat t = 0

� = + +

Posisi partikel di titik P: = cos �

= sin �

Posisi partikel di titik Q: = cos �

= sin �

Vektor Perpindahan dari P ke Q adalah : ∆⃗ = ⃗ − ⃗

∆⃗ = ( ̂ + ̂) − ( ̂ + ̂) ∆⃗ = ( − ) ̂ + ( − ) ̂

∆⃑⃑⃑⃑⃗ = cos � − cos � ̂ + sin � − sin � ̂

Jika partikel di P posisi sudutnya � , dan di Q posisi sudutnya adalah � , maka perpindahan sudut partikel dari P ke Q adalah ∆� = � − �

Contoh Soal:

1. Partikel yang sedang bergerak melingkar mengalami perpindahan yang posisinya dinyatakan dalam

koordinat polar. Jika mula-mula partikel di titik A ( 10m, 37o) dan kemudian partikel berpindah ker

titik B (10m, 53o). Tentukan:

Sebuah partikel yang bergerak melingkar mengalami

(10)

a) Vektor perpindahan dari titik A ke titik B b) Perpindahan sudut dari titik A ke titik B

Jawab:

a) Vektor perpindahan dari titik A ke titik B Posisi partikel di titik A:

= cos = . =

= sin = . =

Posisi partikel di titik B:

= cos = . =

= sin = . =

Vektor Perpindahan dari A ke B adalah : ∆⃗ = ⃗ − ⃗

∆⃗ = ̂ + ̂ − ̂ + ̂

∆⃗ = − ̂ + − ̂

∆⃑⃑⃑⃑⃗ = ̂ − ̂

|∆ | = √ + − = √ m

b) Perpindahan sudut dari titik A ke titik B ∆� = � − � = − =

2. Persamaan posisi sudut bergantung waktu dari sebuah partikel yang bergerak melingkar dinyatakan

dengan: � = + + ; � dalam rad dan t dalam s. Tentukan perpindahan sudut partikel dari

 Perpindahan sudut partikelnya:

∆� = � − � = − = �

1. Partikel yang sedang bergerak melingkar mengalami perpindahan yang posisinya dinyatakan dalam

koordinat polar. Jika mula-mula partikel di titik A ( 8m, �) dan kemudian partikel berpindah ker titik B

(8m, �). Tentukan:

a) Vektor perpindahan dari titik A ke titik B b) Perpindahan sudut dari titik A ke titik B

2. Persamaan posisi sudut bergantung waktu dari sebuah partikel yang bergerak melingkar dinyatakan

dengan: � = + ; � dalam rad dan t dalam s. Tentukan perpindahan sudut partikel dari t = 0

sekon sampai t = 2 sekon.

(11)

C. Kecepatan sudut rata-rata

Kecepatan sudut rata-rata didefinisikan: �̅ =∆� = � −�

Contoh Soal:

Persamaan posisi sudut bergantung waktu dari sebuah partikel yang bergerak melingkar dinyatakan

dengan: � = + − ; � dalam rad dan t dalam s. Tentukan kecepatan sudut rata-rata partikel

dari t = 1 sekon sampai t = 2 sekon.

Jawab:

 Saat t = 1 sekon , : � = + − = �

 Saat t = 2 sekon , : � = + − = �

 Kecepatan sudut rata-ratanya:

�̅ = � −� = − = � /

D. Kecepatan sudut sesaat

Kecepatan sudut sesaat didefinisikan perubahan posisi sudut yang terjadi dalam selang waktu yang sangat singkat. Secara matematika dituliskan:

� = lim∆ → ∆�

Kecepatan sudut sesaat adalah turunan pertama dari perpindahan sudut terhadap fungsi waktu:

� = ��  karena � = maka � = ��

Persamaan posisi sudut bergantung waktu sebuah partikel dinyatakan dengan : � = + ; �

dinyata-kan dalam rad dan t dalam sekon. Tentudinyata-kan kecepatan sudut partikel saat t = 2 sekon !

Jawab:

� = �� � = � + � =

� = = � /

Jadi kecepatan sudut partikel saat t = 2 sekon adalah 12 rad/s

1. Persamaan posisi sudut bergantung waktu dari sebuah partikel yang bergerak melingkar dinyatakan

dengan: � = − ; � dalam rad dan t dalam s. Tentukan kecepatan sudut rata-rata partikel

dari t = 1 sekon sampai t = 2 sekon.

2. Persamaan posisi sudut bergantung waktu sebuah partikel dinyatakan dengan : � = − + ;

� dinyatakan dalam rad dan t dalam sekon. Tentukan kecepatan sudut partikel saat t = 2 sekon !

E. Percepatan sudut rata-rata

Percepatan sudut rata-rata didefinisikan: �̅ =∆� = � −�

(12)

F. Percepatan sudut sesaat

Percepatan sudut sesaat didefinisikan perubahan kecepatan sudut yang terjadi dalam selang waktu yang sangat singkat. Secara matematika dituliskan:

� = lim ∆ →

∆� ∆

Percepatan sudut sesaat adalah turunan pertama dari kecepatan sudut terhadap fungsi waktu atau turunan kedua dari fungsi posisi sudut :

� = �� atau � = �

Persamaan kecepatan sudut partikel yang bergerak melingkar sebagai fungsi waktu dinyatakan dengan :

� = + + ; � dinyatakan dalam rad/s dan t dalam sekon. Tentukan :

(a) Percepatan sudut rata-rata partikel dalam selang waktu t = 0 s sampai t = 2 sekon ! (b) Percepatan sudut partikel saat t = 4 sekon !

Jawab:

(a) Percepatan sudut rata-rata:

Saat t = 0 sekon, � = � /

Saat t = 2 sekon, � = � /

�̅ =∆� = � −� = − = � /

(b) Percepatan sudut partikel saat t = 4 sekon:

� = �= + + = + = + = � /

1. Sebuah partikel bergerak melingkar dipercepat beraturan dengan percepatan 2 rad/s2 dan kecepatan

sudut awal 30 rad/s. Hitung sudut yang ditempuh partikel setelah bergerak 5 sekon !

2. Posisi sudut suatu titik pada roda yang berputar dapat dinyatakan sebagai fungsi waktu (t) :� = + + dengan  dalam rad dan t dalam sekon. Hitung percepatan sudut pada waktu t = 3 sekon !

3. Buktikan bahwa � = . � !

1.3

GERAK PARABOLA

A. Perpaduan GLB dengan GLB

Perpaduan antara GLB dengan GLB akan menghasilkan GLB.

(13)

Dengan analisis vektor diperoleh:

� = √� + ��

Karena tAB=tBC=tAC=t, Sehingga SAC diperoleh:

� = √� + �� �

Contoh Soal:

Sebuah perahu hendak menyeberangi sungai yang lebarnya 180 meter. Perahu diarahkan menyilang tegak lurus aliran sungai dengan kecepatan tetap 3 m/s. Jika kecepatan arus sungai tetap 4 m/s, hitung panjang lintasan yang ditempuh perahu !

Jawaban:

Perahu akan menempuh lintasan SAC dengan kecepatan vR:

� = √� + ��

=

+

=

= /

Waktu yang diperlukan untuk menempuh lintasan SAB sebesar :

= = =

Sehingga panjang lintasan yang ditempuh perahu SAC diperoleh:

� = =

1. Seseorang benda menyeberangi sungai, yang lebarnya 420 m kecepatan arusnya 2,5 m/s. Jika ia

mengarahkan perahunya siku-siku pada tepi sungai dengan kecepatan tetap sebesar 258m/s, tentukanlah :

a) Waktu yang diperlukan untuk menyeberang.

b) Tempat ia sampai di tepi lain.

c) Jarak yang dilaluinya.

A

B

C

3 m/s

4 m/s 180 m

(14)

B. Perpaduan GLB dan GLBB

Perpaduan GLB dan GLBB menghasilkan gerak parabola.

Sebuah peluru ditembakkan dari senapan membentuk sudut  terhadap bidang horizontal. Peluru

melesat dengan kecepatan awal tetap vo. Karena pengaruh percepatan grafitasi bumi g, lintasan gerak

peluru membentuk lintasan parabola.

Gerak parabola terjadi karena perpaduan GLB dalam arah horizontal dan GLBB dalam arah vertikal.

Peluru yang ditembakkan dengan sudut elevasi  dengan kecepatan awal vo memiliki dua komponen:

1) Waktu Mencapai Tinggi Maksimum

Tinjau arah Vertikal (GLBB):

Peluru bergerak vertikal ke atas dengan kecepatan vo

sin

 akan mencapai titik tertinggi dalam waktu t.

besarnya t :

� = � −

= � sin

(v

y

= 0 karena peluru berada di titik tertinggi)

=

sin

2) Tinggi Maksimum

Tinggi maksimum yang dicapai peluru adalah:

� =

� =

� sin

� sin

� sin

� = ℎ ��

=

� sin �

3) Koordinat di titik tertinggi

Koordinat di titik tertinggi dinyatakan dalam (x, y)maks. X adalah jarak yang ditempuh peluru dalam arah

horizontal tepat saat peluru berada di titik tertinggi y = hmaks.

Koordinat di sumbu-x : = � cos � .

v

o

h

maks

X

maks

v

o

v

o

cos

(15)

Dengan t = tmaks = sin � sehingga diperoleh :

= � cos � .� sin � = � sin �

Koordinat di sumbu-y adalah titik tertinggi yang dicapai peluru, yaitu :

= � = ℎ ��

=

� sin �

Sehingga koordinat peluru dititik tertinggi adalah:

, = � sin �,

� sin �

4) Jarak maksimum yang dicapai peluru:

� = � . = � . ��

(a) Waktu yang diperlukan peluru untuk mencapai titik tertinggi

(b) Tinggi maksimum yang dicapai peluru

(c) Kecepatan peluru di titik tertinggi (d) Vektor posisi peluru saat t = 4 detik (e) Jarak terjauh yang dicapai peluru

(f) Lama peluru di udara

Jawab:

(a) Waktu yang diperlukan peluru sampai di titik tertinggi adalah:

�� = � sin �= .

= ��

(b) Tinggi maksimum yang dicapai peluru:

ℎ �� = � � � = .

. =

.

= . = (c) Kecepatan peluru di titik tertinggi:

(16)

(e) Jarak terjauh yang dicapai peluru:

� = � .

sin

cos

= . . . = . . = . =

(f) Lama peluru di udara:

�� � = . �� = . = ��

1. Evan Dimas melepaskan tendangan bebas dengan kecepatan awal 10 m/s dan membentuk sudut 53o

terhadap bidang datar. Jika percepatan grafitasi bumi g = 10 m/s2, tentukan:

(a) Waktu yang diperlukan peluru untuk mencapai titik tertinggi

(b) Tinggi maksimum yang dicapai peluru

(c) Kecepatan peluru di titik tertinggi (d) Vektor posisi peluru saat t = 4 detik (e) Jarak terjauh yang dicapai peluru

(f) Lama peluru di udara

2.

3. Bola dilemparkan dengan kecepatan awal 50 m/s dari suatu tebing yang ketinggiannya 55 meter di atas

permukaan tanah. Jika percepatan grafitasi 10 m/s2, Tentukan:

a. Dimanakan bola akan mendarat !

b. Lama bola di udara !

Soal Latihan Mandiri

h = 500 m

720 km/jam

A B

Pesawat penyalur bantuan melaju horizontal dengan kecepatan 720 km/jam seperti pada gambar berikut. Tepat di atas titik A pada ketinggian 500 meter di atas tanah, pesawat menjatuhkan Logistik. Jika logistik jatuh tepat di titik B, berapakah jarak AB ?

37o

55 m

(17)

4. Suatu titik materi bergerak parabolik dengan kecepatan awal 20 m/s dan dengan sudut elevasi 300 pada

arah positif dengan sumbu x. Pada to = 0 detik posisi titik materi ( 0,20 ) meter. Jika g = 10 m/s2.

a. Berapa waktu yang diperlukan titik materi mencapai ketinggian maksimum dari tanah ?

b. Berapa tinggi maksimum tersebut ?

c. Kapan, dimana dan dengan kecepatan berapa titik materi tersebut jatuh di tanah.

5. Sebuah titik materi dilemparkan dengan kecepatan awal 60 m dengan sudut elevasi  sehingga mencapai

tinggi maksimum 45 m di atas tanah. Tentukan besar  !

6. Be da A letak ya di atas ta ah. Titik A’ ialah proyeksi ya dita ah. Dari te pat P dita ah erjarak

√ eter dari A’ dite bakkan peluru dengan kecepatan awal 40 m/s pada benda A. Jika percepatan grafitasi bumi g = 10 m/s2, berapakah sudut elevasi agar benda A terkena peluru?

7. Dari sebuah balon yang naik vertikal ke atas dengan kecepatan tetap sebesar 5 m/s, sebuah peluru

ditembakkan pada ketinggian 100 m di atas tanah dengan arah mendatar dengan kecepatan awal 50 m/s.

Jika percepatan grafitasi bumi g = 10 m/s2, tentukan:

a. Dimana dan dengan kecepatan berapa peluru sampai di tanah?

Figur

gambar berikut.  Tepat di atas titik A pada
Tepat di atas titik A pada . View in document p.16

Referensi

Memperbarui...

Unduh sekarang (17 Halaman)
Related subjects : studi gerak dan waktu