• Tidak ada hasil yang ditemukan

Perencanaan Dermaga Curah Cair untuk Kapal DWT di Wilayah Pengembangan PT. Petrokimia Gresik

N/A
N/A
Protected

Academic year: 2021

Membagikan "Perencanaan Dermaga Curah Cair untuk Kapal DWT di Wilayah Pengembangan PT. Petrokimia Gresik"

Copied!
6
0
0

Teks penuh

(1)

Abstrak - PT Petrokimia Gresik adalah perusahaan BUMN produsen pupuk terbesar se-Indonesia yang memiliki peran penting dalam memenuhi kebutuhan pupuk di Indonesia. Untuk menjalankan perannya tersebut, PT Petrokimia Gresik melakukan kegiatan pengadaan bahan baku pupuk yang berupa zat cair dalam jumlah besar melalui jalur laut . Sepanjang tahun 2012 TUKS PT Petrokimia Gresik sudah tidak mampu lagi mendukung kegiatan bongkar muat yang sudah ada. Hal ini ditunjukkan dengan nilai BOR (Berth Occupancy Ratio ) TUKS PT Petrokimia Gresik yang mencapai 80%. Idealnya nilai BOR untuk pelabuhan adalah 60%– 70% nilai BOR > 75% akan mengakibatkan waiting time yang cukup lama. Sehingga pengadaan dermaga baru untuk curah cair dengan kapasitas kapal 30.000 DWT dirasa sangat penting di wilayah TUKS PT Petrokimia Gresik.

Perencanaan ini bertujuan perencanaan layout perairan dan layout daratan, menentukan detail struktur, perencanaan pengerukan ,penentuan metode pelaksanaan serta mengetahui rencana anggaran biaya (RAB) untuk membangun dermaga curah cair di wilayah pemgembangan PT Petrokimia Gresik. Type dermaga yang direncanakan berupa breasting dolphin, mooring dolphin, unloading platform, catwalk, trestle dan abutment.

Kata kunci : TUKS, Breasting , Mooring , Unloading Platform, Catwalk , Trestle, Abutment , Pengerukan

I. PENDAHULUAN

A. Latar Belakang

PT Petrokimia Gresik adalah perusahaan BUMN produsen pupuk terbesar se-Indonesia yang memiliki peran penting dalam memenuhi kebutuhan pupuk di Indonesia. Untuk menjalankan perannya tersebut, PT Petrokimia Gresik melakukan kegiatan pengadaan bahan baku pupuk yang berupa zat cair dalam jumlah besar melalui jalur laut. Sebagai BUMN yang besar PT Petrokimia Gresik telah memiliki Terminal Untuk Kepentingan Sendiri (TUKS). TUKS tersebut dibangun sebagai fasilitas bongkar muat untuk kepentingan perusahaan untuk mempermudah operasional pengadaan bahan baku pupuk yang berupa zat cair.

TUKS eksisting PT Petrokimia Gresik didesain untuk kapal 25.000 DWT. Sepanjang tahun 2012 TUKS PT Petrokimia Gresik sudah tidak mampu lagi mendukung kegiatan bongkar muat yang sudah ada. Nilai Berth Occupancy Ratio (BOR) dari TUKS PT Petrokimia Gresik telah mencapai angka 80%. Idealnya nilai Berth Occupancy ratio untuk sebuah pelabuhan adalah 60% – 70%. Pelabuhan

dengan tingkat pemakaian BOR > 75% harus dikembangkan karena akan mengakibatkan waiting time menjadi lama.

Pengadaan dermaga baru untuk curah cair dengan kapasitas kapal 30.000 DWT dirasa sangat penting di wilayah TUKS PT Petrokimia Gresik. Hal ini merupakan solusi untuk nilai Berth Occupancy Ratio-nya (BOR) sudah mencapai 80%. Sehingga diperlukan adanya dermaga baru untuk pendatangan bahan baku cair dari daerah lain. Gambar 1 menunjukkan lokasi wilayah pengembangan PT Petrokimia yang akan dibangun dermaga baru.

Gambar 1 Lokasi Rencana Pembangunan

B. Rumusan Masalah

Rumusan masalah yang dikemukakan pada perencanaan ini meliputi :

1. Perencanaan layout perairan dan daratan dermaga curah cair di wilayah pengembangan PT Petrokimia Gresik 2. Perencanaan detail struktur dermaga curah cair di

wilayah pengembangan PT Petrokimia Gresik

3. Menentukan metode pelaksanaan pembangunaan dermaga curah cair di wilayah pengembangan PT Petrokimia Gresik

4. Menentukan volume pengerukan dan metode pelaksanaan pengerukan dermaga curah cair di wilayah pengembangan PT Petrokimia Gresik

5. Menentukan rencana anggaran biaya (RAB) pada pembangunan dermaga curah cair di wilayah pemgembangan PT Petrokimia Gresik

C. Tujuan

Tujuan dari penulisan ini adalah :

1. Merencanakan layout perairan dan daratan dermaga curah cair di PT Petrokimia Gresik

2. Merencanakan detail struktur dermaga curah cair di PT Petrokimia Gresik

3. Menentukan metode pelaksanaan pembangunaan dermaga curah cair di PT Petrokimia Gresik

4. Menentukan volume pengerukan dan metode pelaksanaan pengerukan dermaga curah cair di PT Petrokimia Gresik

Perencanaan Dermaga Curah Cair untuk Kapal

30.000 DWT di Wilayah Pengembangan PT

Petrokimia Gresik

Eka Prasetyaningtyas, Cahya Buana ,Fuddoly,

Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Jl. Arief Rahman Hakim, Surabaya 60111

(2)

5. Menentukan rencana anggaran biaya (RAB) pada pembangunan dermaga curah cair di wilayah pemgembangan PT Petrokimia Gresik

II METODOLOGI

Gambar 2 Diagram Alur Metodologi Penelitian

III.HASILDANPEMBAHASAN

1. PENGUMPULAN DAN ANALISA DATA A . Data Pasang Surut

Gambar 3 Grafiks Pasang Surut

Beda pasut = 2 x Zo = 2 x 1,5 m = 3 m

Type Gelombang = Campuran dominan semidiurnal B. Data Arus

Data arus didapatkan dari BMKG Tanjung Perak Surabaya . Dari data yang didapatkan arus maksimal di wilayah perairan PT Petrokimia Gresik adalah sebesar 5 cm/s dan dominan dari arah tenggara.

C . Data Angin

Angin dominan dari arah tenggara dengan kecepatan angin maksimal berkisar antara 7 – 11 knot.

Gambar 4 Wind rose

D. Data Gelombang

Gambar 5 Wave rose

(Sumber : BMKG Maritim Surabaya)

Dari gambar 5 menunjukkan bahwa tinggi gelombang maksimal berkisar 0,3 m – 0,4 m dari arah timur.

E. Data Tanah

Gambar 6 Grafiks NSPT dan Daya Dukung Pondasi

2. PERENCANAAN LAYOUT

Ada 2 alternatif layout yang akan dipilih salah satu sebagai acuan perencanaan. Alternatif 1 sesuai dengan masterplan PT Petrokimia Gresik dengan type dermaga full plate yang diharapkan mampu melayani bongkar muat curah cair dan bongkar muat pupuk in bag. Alternatif layout 2 direncanakan 2 type yaitu dermaga full plate dan type 2 terdiri atas breasting,mooring dan ULP. Dikarenakan kebutuhan bongkar muat pupuk in bag yang kecil dan untuk efisiensi biaya konstruksi maka dalam perencanaan selanjutnya dipilih alternatif layout 2

Gambar 7 Alternatif 1

(3)

Untuk kebutuhan layout perairan dan daratan disajikan dalam Tabel 1 berikut.

Tabel 1 Kebutuhan Layout Perairan dan Daratan

3. KRITERIA DESAIN A. Pemilihan Fender Ef = CH * CE * CC * CS ( 2 1 W * V2)/g = 1,87 x 1,004 x 1 x 1 x (1 2 � 𝑥 38.600 𝑥 0,12) / 9,81 = 36,94 ton m Ef ‘ = 36,94 x 1,75 = 64,64 ton m Dipakai Fender SCN 1200 E1.1

Tabel 2 Pemilihan type fender

B. Pemilihan Bollard

1 GT = 1,75 DWT (untuk kapal bulk carierr) 30. 0000 DWT = 17.143 GT

Tabel 3 kebutuhan bollard

Dipakai bollard type kidney dengan kapasitas 80 ton 4. PERENCANAAN PENGERUKAN

Volume pengerukan : 379133,5 m3 Alat yang digunakan : suction dredger 5. PERHITUNGAN STRUKTUR

A. Perencanaan Catwalk : terdiri dari lajur untuk jalan dan lajur untuk trace pipa

Gambar 9 Pemodelan Catwalk

Digunakan : Balok memanjang : WF 450 X 200 X 8 X 12 Balok melintang 1 : WF 250 x 175 x 7 x 11 Balok melintang 2 : WF 400 x 200 x 7 x 11 Penulangan Pelat: Mn = 42250 0,8 = 52812.5 kg cm Penulangan Tumpuan Ca = a

x

b

M

x

n

h

'

σ

=

1850

00

,

1

52812,5

5

,

17

2

,

9

x

x

cm

= 4,112

Dengan melihat tabel perhitungan lentur dengan δ = 0 didapatkan :

ɸ = 2,3 > ɸ0 = 0,904 …………OK 100 n ω = 6,586

Sehingga ω = 100 𝑥 17,546,586 = 0,00376

As perlu = ω x b x h = 0,00376x 1000 x 92 = 345,47 mm2

Dipasang D 16 – 200 (As = 1205,8 mm2) PBI 1971 8.16.2 Perhitungan Struktur Bawah Catwalk

Tiang pancang : ɸ60,96 cm t= 12 mm

Tabel 4 Output SAP 2000

Type Tiang Beban Kombinasi Besar Frame Tegak

P tarik (kg) - -

-P tekan (kg) DL + LL + GEMPA Y -30640.1 99 M (kg m) DL + LL + GEMPA X 11348.25 99 V (kg) DL + LL + GEMPA X 1043.03 99

Kebutuhan Kedalaman tiang QL = SF x P

= 3 x 30640,1 = 91920,3 kg = 91,9203 ton

Kebutuhan kedalaman = 4 m dari seabed. Namun kedalaman pemancangan harus minimal Zf = 8 m atau -17,5 LWS B. Perencanaan Mooring Dolphin

Konfigurasi tiang pancang dan model mooring dolphin disajikan dalam Gambar 10 berikut.

Gambar 10 Pemodelan Mooring Dolphin

Dipakai Kedalaman 1.2 x D 13.08 m 14 m

Jari - jari LOA + 6 D 251.4 m 255 m Lebar 3 x (1,5 B) 125.55 m 130 m Kedalaman 1,15 D 12.535 m 13 m Panjang Alur 2 x LOA 372 m 375 m Jari - jari LOA 186 m 190 m Kedalaman 1,15 D 12.535 m 13 m Panjang 25 + n LOA + 15 226 m 230 m Lebar (2 x B) + 50 105.8 m 106 m Kedalaman 1,1 D 11.99 m 12 m Beda pasut + 1.5 m + 4,5 mLWS + 4,5 mLWS Panjang Jarak daratan - dermaga 817 m 820 m

Lebar B 2 jalur + B untuk pipa 9 m 9 m Panjang Umumnya 35 m 35 m Lebar Umumnya 20 m 18 m 0.8 x LOA Kapal Terbesar 148.8 m 145 m Kapal Besar (0,25 - 0,4 ) LOA 46,5 m - 74,4 m Kapal kecil (0,25 - 0.4) LOA 35 m - 56 m 50 m Layout Kolam Putar Kolam Dermaga Kebutuhan Areal Penjangkaran Alur Masuk Elevasi Trestle Unloading Platform

Jarak antar mooring (as to as) Jarak antar

(4)

Perencanaan Poer

Tabel 5 Output SAP 2000

Mn = 𝑀𝑢

0,8 = 43942,3

0,8 = 54927,875 kg m

hx = tebal pelat – decking – (0,5 x Øtulangan arah x)

= 100 – 8 – (0,5 x 2,5) = 90,75 cm Ca = a

x

b

M

x

n

h

'

σ

=

1850

1

875

,

54927

54

,

17

75

,

90

x

x

cm

= 3,98

Dengan melihat tabel perhitungan lentur cara “n” untuk Ca = 3,98 dengan δ = 0, didapatkan :

φ = 2,215 >

φ

0 = 0,905 ...(OK)

100nω = 7,019

Luas Tulangan yang diperlukan adalah : Tulangan Tarik : A = ω x b x h =

100

90

,

75

54

,

17

100

019

,

7

x

x

x

= 36,318 cm2

Maka Dipasang D25-125 (As = 3925 mm2) Tulangan Samping

Asd = 10% x 3925 = 392,5 mm2

Maka dipakai 2D-16 (As = 401,92 mm2) Penulangan Arah Y:

Tulangan Tarik : Dipasang D25 -100 ( As = 5396,875 mm2) Tulangan Samping : Dipakai 4D16 (As = 803,84 mm2) Perhitungan Struktur Bawah Mooring

Tiang pancang : ɸ60,96 cm t= 12 mm

Tabel 6 Output SAP 2000

Kebutuhan Kedalaman tiang tegak Tiang Tekan

QL = SF x P tekan

= 3 x 68872,1 kg = 206616,3 kg = 206,6163 ton Kebutuhan kedalaman= -8 m dari seabed atau kedalaman -17,5 LWS

Tiang Tarik QL = SF x P

= 3 x 10452,65 kg = 31357,95 kg = 31,3579 ton

Kebutuhan kedalaman = -6 m dari seabed dipakai Zf = . 8 m atau kedalaman -17,5 LWS

Kebutuhan Kedalaman tiang miring Tiang Tarik

Qs = SF x Ptarik = 3 x 24272 kg = 72816,48 kg = 72,816 ton

Kebutuhan Kedalaman = 8 m dari seabed atau sedalam -17.5 LWS

Tiang Tekan Ql = SF x P tekan

= 3 x 84485,9 kg = 253457,7 kg = 253,4577 ton

Kebutuhan kedalaman = -10 m dari seabed atau pada kedalaman – 19,5 LWS

C. Perencanaan Breasting Dolphin

Konfigurasi tiang pancang dan model breasting dolphin disajikan dalam Gambar 11 berikut.

Gambar 11 Pemodelan Breasting Dolphin

Beban yang bekerja pada breasting :

1. Hanging Kapal : 12.500 kg (Thoressen,2002) 2. Beban Tumbukan Kapal : 1073 KN

3. Beban gesekan kapal : 107,3 KN Perencanaan Poer

Tabel 7 Output SAP 2000

M slab 1-1 M slab 2-2 DL + LL + F DL + LL + F -54474.34 -67081

Beban Kombinasi Besar

190 190

Penulangan Poer Arah X Mu = -54474,34 kg m Mn = 54474,34 0,8 = 68092,925 kg m Hx = 120 – 8 – (0,5 x 2,5) = 110,75 cm =

110,75

17.54 𝑥 68092,9251 𝑥 1850 = 4,36

Dengan menggunakan nilai δ = 0 dan Ca =4,36 , dari tabel n-lentur didapat :

Φ = 2,472 > ϕ= 0,905(OK) 100nω = 5,825

Sehingga,

ω = 100 𝑥 17,545,825 = 0,00332 Luas Tulangan Tarik : Dipasang :

As = ωbh

= 0.00332 x 100 x 110,75= 36,782 cm2 Dipakai tulangan D25 -125 (As pakai = 3925 mm2)

Tulangan Samping :

Asd = 10% x 3925 = 392,5 mm2 Dipakai 2 D16 (As pakai = 401,92 mm2)

Penulangan Arah Y

Dipakai tulangan tarik D25-100 (As pakai = 4906,25 cm2)

      ⋅ ⋅ = a b Mx n hx Ca σ

(5)

Dipakai tulangan samping 4 D16 (As pakai = 803,84 mm2)

Perhitungan Struktur Bawah Breasting Tiang pancang : ɸ81,28cm t= 12 mm

Tabel 8 Output SAP 2000

-5980.7 5 M (kg m) 10 V (kg) P tekan (kg ) DL + LL + GEMPA Y DL + LL + GEMPA X DL + LL + GEMPA X DL + LL + F DL + LL + F DL + LL + F 10 P tarik (kg) P tekan (kg ) 2 M (kg m) 2 V (kg) 1 2 DL + LL + F DL + LL + F 70537.39 -74623.3 13286.63 -930.64 81563.83 -153637 -77093.4 Gaya Tiang Miring

Besar Kombinasi frame/joint P tarik (kg) 2 Tiang Tegak

Perencanaan Tiang Tegak Perencanaan tiang tekan QL = SF x P

= 3 x 74623.3 = 223869,9 kg = 223,8699 ton

Kebutuhan Kedalaman = - 6 m dipakai kedalaman Zf = - 10 m atau pada elevasi - 22 m LWS

Perencanaan tiang tarik QS = SF x P

= 3 x 70537,39 = 211612.17 kg = 211,612 ton Kebutuhan kedalaman 14 m atau pada elevasi -26 m LWS. Perencanaan Tiang Miring

Perencanaan tiang tekan Ql = SF x P

= 3 x 153637 = 460911 kg = 460,911 ton

Kebutuhan Kedalaman 13 m atau pada elevasi -25 m LWS. Perencanaan tiang tarik

QS = SF x P

= 3 x 81564 kg = 244691.49 kg = 244,691 ton Kebutuhan Kedalaman 15 m atau pada elevasi -27 m LWS. D. Perencanaan Unloading Platform

Beban yang bekerja :

1. Beban Akibat MLA 4 buah @11900 kg 2. Beban pangkalan + air hujan : 2,05 t/m2 Balok Memanjang: 60 x 90

Tumpuan Lapangan

Gambar 12 Penulangan Balok Memanjang ULP

Balok Melintang : 60 x 90

Tumpuan Lapangan

Gambar 13 Penulangan Balok melintang ULP

Perencanaan Pelat

Tabel 9 Hasil Penulangan Pelat

Tiang Tegak Tiang Tekan QL = SF x P tekan

= 3 x 125597 kg = 376791 kg = 376,791 ton

Kebutuhan Kedalaman -9.5 m dari seabed atau sampai kedalaman sampai -21,,5 LWS

Tiang Miring Tiang Tekan

Qs = SF x Ptekan = 3 x 147598 kg = 442794 kg = 442,794 ton

Kebutuhan Kedalaman adalah -13 m dari seabed atau sedalam -25 LWS

E. Perencanaan Trestle Perencanaan Balok Prestress Data Perencanaan :

Balok Post Tension Jumlah Tendon : 4

Nominal diameter :12.7 mm

Luas nominal area kawat 100.1 mm2 Nominal massa : 0.786 kg/mm Minimal breaking load 184 KN

Gambar 14 Posisi Tendon pada Balok Prestress

F. Perencanaan Abutment

Gambar 15 Perencanaan Abutment

Tegangan yang terjadi σmax = 2 𝑉𝑜

3 𝐿 (𝐵2− 𝑒) =

1341880,03

34,86 = 38496,01637 kg/m

Tegangan izin tanah

Q ult = 1,3 C Nc + q Nq + 0,5 B Ƴ’ N Ƴ

= 1,3 x 0 x 46 + 1200 x 33,3 + 0,5 x 3 x 800 x 41,1 = 89280 kg/m2

(6)

Q ijin = 𝑞 𝑢𝑙𝑡 𝑆𝐹 = 89280𝑡 3 = 29760 kg/m 2 Check Q ijin > σ max

297,6 ton/m2 < 384,96 ton/m2 ……NOT OK Diperlukan adanya pondasi tiang pancang

Dari hasil SAP 2000 di dapatkan P maksimum dari struktur atas jembatan = 398905,9 kg = 398,9059 ton (Tabel 8.54) Data perencanaan :

Rencana kedalaman tiang =10 m Jari-jari tiang pancang = 60,69 cm

Qu = 251,024 ton (Grafiks Daya Dukung Tanah) = 251.024 kg SF rencana = 3 Q ijin = 𝑄𝑢 𝑆𝐹 = 251024 3 = 83674,667 kg

Jumlah tiang pancang minimum n = 𝑃

𝑄 𝑖𝑗𝑖𝑛 = 398905,9

83674,667 = 4,7673 = 6

Gambar 16 Konfigurasi Tiang Pancang Pada Abutment

6. RENCANA ANGGARAN BIAYA

Perhitungan volume pekerjaan dan rencana biaya setelah dilakukan perhitungan terhadap besarnya volume pekerjaan, didapat anggaran biaya total sebesar

Rp.390.589.170.000,00

KESIMPULAN

1. Pekerjaan pengerukan memiliki volume sebesar 379133,5 m3 dan direncanakan menggunakan Kapal Keruk dengan spesifikasi :

• Tipe : Suction Dredger

• Kapasitas Keruk : 500 - 1800 m3/jam

• Durasi pengerukan : 95 hari kerja

2. Struktur Catwalk direncanakan sebagai struktur rangka baja dengan spesifikasi:

• Panjang Bentang : 55 m

• Dimensi Balok memanjang : WF 450x200x8x12 • Dimensi Balok melintang1 : WF 250x175x7x11 • Lebar catwalk (jalan) : 2 m

• Lebar catwalk (pipa) : 3 m • Kedalaman Tiang pancang : -17,5 LWS

3. Struktur Loading Platform direncanakan beton bertulang precast dengan spesifikasi :

• Dimensi Platform : 35 x 18 m2 • Dimensi balok melintang : 60 x 90 cm2 • Dimensi balok memanjang : 60 x 90 cm2

• Tebal pelat : 30 cm

• Poer pancang tunggal : 160 x 160 x 100 cm3 • Poer pancang ganda : 320 x 160 x 100 cm3 • Tiang pancang : ∅812,8 t = 12mm

- Kemiringan tiang : 1 : 8

- Kedalaman tiang tegak : -21,5 m LWS - Kedalaman tiang miring :-25 m LWS (Dipakai)

4. Struktur Trestle direncanakan beton bertulang dan prestress

• Dimensi struktur : 820 x 9 m2

• Dimensi Balok Precast

balok melintang : 60 x 80 cm2 balok memanjang : 60 x 80 cm2 • Dimensi Balok Prestress

Jumlah Tendon : 4

Dimensi Balok : 800 mm x 1820 mm • Tebal pelat : 35 cm

• Poer pancang tunggal: 120 x 120 x 100 cm3

• Tiang pancang : ∅609.6, t = 12 mm - Kemiringan tiang : 1 : 8

- Kedalaman tiang : -30,5 m LWS

5. Struktur Mooring Dolphin direncanakan dengan spesifikasi:

• Dimensi struktur : 7 x 7 m2 • Tebal poer : 100 cm • Bollard Type Kidney 80 ton

• Tiang pancang : ∅609,6, t = 12 mm - Kemiringan tiang : 1 : 8

- Kedalaman tiang tegak : -17,5 m LWS - Kedalaman tiang miring : -19,5 m LWS - Digunakan kedalaman tiang : -19,5 m LWS 6. Struktur Breasting Dolphin direncanakan dengan

spesifikasi : Dimensi struktur : 7.5 x 7 m2 • Tebal poer : 120 cm

• Dimensi fender : SCN 1200 E1.1 • Tiang pancang : ∅812,8, t = 16 mm

- Kemiringan tiang : 1 : 8

- Kedalaman tiang tegak : -26 m LWS - Kedalaman tiang miring : -27 m lWS - Digunakan kedalaman tiang : -27 m LWS 7. Struktur Abutment yang direncanakan

• Tinggi abutment : 6 m • Lebar abutment : 9 m

• Jumlah Tiang pancang : 6 buah • Kedalaman Tiang Pancang : -16 m LWS

8. Rencana anggaran biaya total untuk pembangunan

dermaga curah cair PT Petrokimia Gresik ini adalah sebesar Rp.390.589.170.000,00

DAFTARPUSTAKA

[1] Japan International Cooperation Agency. 1991.

Technical Standard for Port and Harbour Facilities in Japan.

[2] Triatmodjo, Bambang. 2008. Perencanaan Pelabuhan. Yogyakarta : Beta Offset

[3] Wahyudi, Herman. 1999. Daya Dukung Pondasi

Dalam. Surabaya. Jurusan Teknik Sipil FTSP ITS.

[4] Panitia Pembaharuan Peraturan Beton Bertulang Indonesia. 1971. Peraturan Beton Bertulang

Indonesia. Bandung. Lembaga Penyelidikan Masalah

Bangunan.

[6] Thoressen.2002.Port Designer Handbook

[7] Direktorat Jenderal Perhubungan Laut 2006.Pedoman

Teknis Kegiatan Pengerukan dan Reklamasi

[8] Wangsadinata,Wiratman.1979.Perhitungan Lentur

Cara n.Bandung.Yayasan LPMB

[9] TY.LIN.2000.Desain Struktur Beton Prategang. Jakarta. Binarupa Aksara

Gambar

Gambar 1 Lokasi Rencana Pembangunan  B.  Rumusan Masalah
Tabel 1 Kebutuhan Layout Perairan dan Daratan
Tabel 5 Output SAP 2000
Gambar 12 Penulangan Balok Memanjang ULP  Balok Melintang : 60 x 90
+2

Referensi

Dokumen terkait

Berdasarkan hasil penelitian di atas menunjukkan bahwa kebugaran aerobik atlet sepakbola PSIM Yogyakarta sebelum menjalani program latihan berada pada katagori

Pada Pembangkit Listrik Tenaga Panas Laut (tipe closed cycle ) ini digunakan fluida kerja yang aman dengan titik didik yang relatif rendah untuk mengakomodasi potensi

Berdasarkan hasil penelitian tersebut dapat disimpulkan bahwa penurunan kadar superoksida dismutase lensa berhubungan dengan peningkatan derajat kekeruhan lensa pada katarak

• SEJARAH ADALAH CERITA YANG DIDASARKAN PADA FAKTA-FAKTA DAN DISUSUN DENGAN METODE YANG KHUSUS YANG BERMULA DARI PENCARIAN DAN PENEMUAN JEJAK-JEJAK SEJARAH, MENGUJJI

Dengan dilengkapi oleh pengetahuan yang diperoleh dari penugasan audit dan advisory pada lembaga keuangan internasional lainnya, para profesional kami memiliki keahlian

Sebagai salah satu syarat untuk memperoleh gelar sarjana di Fakultas Teknologi Pertanian, Institut Pertanian Bogor, penulis melakukan penelitian dengan Judul “Analisis

Nilai rata-rata semua atribut memiliki nilai rata-rata diatas skala 2,5 berarti atribut atribut yang akan dipakai dalam perhitungan Model kano dan perancangan aplikasi tidak

KTSP ini disusun untuk digunakan sebagai pedoman penyelenggaraan pendidikan pada SMP Negeri 1 Talaga Raya dalam menentukan berbagai