Teks penuh

(1)

BARISAN SEBAGAI FUNGSI

Sumardyono, M.Pd.

Pendahuluan

Konsep fungsi telah dibelajarkan di tingkat SMA mulai kelas X. Pembelajaran konsep fungsi di bagian awal siswa mengenal matematika SMA dimaksudkan sebagai materi dasar yang akan dipergunakan siswa untuk mempelajari dan memahami konsep-konsep matematika selanjutnya baik di kelas X maupun di kelas XI dan kelas XII. Namun pada kenyataannya, sering penulis temui ada guru yang tidak memahami peran strategis konsep fungsi ini. Beberapa guru pun ada yang tidak dapat memahami bagaimana hubungan konsep fungsi dengan konsep-konsep matematika tertentu. Bahkan dalam beberapa bahan ajar yang dipergunakan pendidik, ada yang memaknai keterkaitan konsep fungsi dengan beberapa konsep matematika secara keliru. Karena itu, penulis mencoba untuk membagi informasi dan wawasan terkait persoalan ini, khususnya kaitan antara fungsi dan barisan.

Konsep Fungsi pada Barisan

Walaupun secara intuitif pengertian barisan kelihatan jelas, namun dalam matematika belumlah mencukupi. Untuk memperjelas konsep barisan maka diperlukan suatu cara pendefinisian yang well-defined atau tidak menimbulkan multi-interpretasi.

Perhatikan kembali sebuah barisan. Contohnya barisan poligon: segitiga, segiempat, segilima, segienam, … . Suku pertama adalah segitiga, suku kedua adalah segiempat, suku ketiga adalah segilima, suku keempat adalah segienam, dan seterusnya. Dari sini jelas bahwa terdapat perkawanan antara bilangan asli dan suku-suku barisan tersebut. Bilangan asli dalam hal ini mengambil bentuk bilangan ordinal (nomor urutan), bukan bilangan kardinal (banyak anggota himpunan) apalagi nominal (nama benda).

Perkawanan yang dimaksud dapat digambarkan sebagai berikut.

segitiga, segiempat, segilima, segienam, …

1 2 3 4

Lebih lanjut mudah dipahami bahwa perkawanan itu merupakan sebuah fungsi. Mengapa? Ya, karena tidak ada satu bilangan asli yang memiliki kawan lebih dari satu suku!

(2)

Gambar1. Diagram panah fungsi sebagai representasi barisan

Jika domainnya semua bilangan asli maka suku-suku barisan itu berlanjut terus menerus, sedang bila domainnya inisial himpunan bilangan asli (artinya barisan beberapa suku awal) maka suku-suku barisan itu terbatas.

Jika kemudian sebarang bilangan asli dilambangkan dengan n maka suku-suku sebuah barisan dapat dinyatakan sebagai fungsi dari n yaitu f(n).

Dalam matematika telah menjadi konvensi (kebiasaan) bahwa untuk barisan digunakan notasi fungsi berupa huruf U dengan variabel n ditulis seperti indeks: Un.

Jadi, untuk contoh yang dikemukakan di atas, kita dapat menuliskannya sebagai berikut.

U1= segitiga

U2= segiempat

U3= segilima

U4= segienam, dan seterusnya.

Dengan pengertian barisan sebagai fungsi ini maka kita dengan mudah dapat menyatakan sebarang fungsi yang telah dikenal menjadi sebuah barisan.

Contoh.

Fungsi linear: y = ax + b menjadi barisan Un = an + b

Grafik sebuah barisan (barisan bilangan) dapat kita gambarkan pada sebuah koordinat Kartesian dengan sumbu-x cukup titik-titik yang mewakili bilangan asli dan sumbu-y mewakili suku-suku barisan. Grafik barisan akan berbentuk himpunan titik-titik pada kuadran I atau kuadran IV. Mengapa demikian? Karena domain barisan adalah himpunan bilangan asli, jadi tidak pernah negatif (walaupun dalam studi tingkat lanjut, dapat diperluas ke indeks atau urutan nol atau negatif).

Contoh.

(3)

Gambar2. Grafik barisan Un = 2n – 6

Dalam banyak aplikasi, pemakaian fungsi dengan domain himpunan bilangan asli sering dijumpai. Misalnya fungsi produksi dengan variabel banyak orang. Tentu banyak orang diwakili dengan bilangan asli bukan bilangan real sehingga domain fungsi produksi ini adalah himpunan bilangan asli (atau bilangan cacah). Jadi, kita dapat memandang fungsi produksi yang dimaksud sebagai sebuah barisan.

Untuk selanjutnya, kita akan fokus membahas mengenai barisan bilangan saja. Tujuan utama kita adalah membahas mengenai barisan aritmetika dan barisan geometri serta perluasannya, serta beberapa hal terkait barisan dan deret.

Kesimpulan

Demikianlah artikel singkat mengenai konsep barisan sebagai fungsi. Barisan dapat dipandang sebagai fungsi dari domain bilangan asli ke kodomain suatu himpunan. Dengan memahami barisan sebagai fungsi maka banyak sifat-sifat barisan tertentu yang dapat djelaskan dengan sifat-sifat fungsi.

Daftar Pustaka/Bacaan

Hazewinkel, Michiel. 2002. Encyclopedia of Mathematics. New York: Springer-Verlag

Johnson & Rising. 1967. Guidelines for Teaching Mathematics. Belmont, California: Wadsworth Publishing, Inc.

(4)

TutorVista.com. 2012. Aritmetic-geometric Progression. dalam http://www.tutorvista.com/

content/math/number-theory/sequences-and-series/aritmetic-geometric-progression.php (diakses 4 November 2012)

Figur

Gambar 1. Diagram panah fungsi sebagai representasi barisan
Gambar 1 Diagram panah fungsi sebagai representasi barisan . View in document p.2

Referensi

Memperbarui...