01 Pengertian Pertidaksamaan

Teks penuh

(1)

SISTEM PERTIDAKSAMAAN LINIER

DAN KUADRAT

A. Pengertian Pertidaksamaan

Notasi pertidaksamaan meliputi :

“<” notasi kurang dari

“>” notasi lebih dari

“” notasi kurang dari atau sama dengan “”notasi lebih dari atau sama dengan

Penyelesaian dari suatu pertidaksamaan satu variabel berupa interval atau selang yang dapat digambarkan dalam suatu garis bilangan

Sedangkan pertidaksamaan linier satu variabel yaitu pertidaksamaan yang memuat satu variabel dengan pangkat tertinggi satu.

Terdapat empat istilah dalam interval, yaitu interval terbuka, interval tertutup, interval berhingga dan interval tak hingga.

Untuk lebih jelasnya ikutilah gambar berikut ini untuk variabel x :

Gambar di atas adalah interval terbuka di a dan tertutup di b ditulis a < x ≤ b

Gambar di atas adalah Interval tak hingga ditulis x  a

Gambar di atas adalah interval berhingga ditulis a  x  b

Bentuk lain dari notasi pertidaksamaan adalah tanda tidak sama dengan (ditulis ≠ )

Namun dalam pembahasan bab ini, notasi tersebut tidak diuraikan secara mendalam Sebuah notasi pertidaksamaan dapat berubah karena adanya operasi tertentu.

Perubahan tersebut dapat dijelaskan dalam sifat-sifat pertidaksamaan berikut ini : a

a b

a b

(2)

Sifat-sifat pertidaksamaan :

(1) Tanda/notasi suatu pertidaksamaan tidak berubah jika penambahan atau pengurangan suatu bilangan (variabel) yang sama dilakukan pada kedua ruas pertidaksamaan

Contoh : 3 < 6

3 + 4 < 6 + 4 (kedua ruas ditambahkan 4) 7 < 10

(2) Tanda/notasi suatu pertidaksamaan tidak berubah jika perkalian atau pembagian suatu bilangan (variabel) positip yang sama dilakukan pada kedua ruas

pertidaksamaan

Contoh : 3 < 6

3 x 2 < 6 x 2 (kedua ruas dikalikan 2) 6 < 12

(3) Tanda/notasi suatu pertidaksamaan akan berubah jika perkalian atau pembagian suatu bilangan (variabel) negatip yang sama dilakukan pada kedua ruas

pertidaksamaan Contoh : 3 < 6

3 x (–5) < 6 x (–5) (kedua ruas dikalikan –5)

–15 > –30

Untuk lebih jelasnya akan diuraikan dalam contoh soal berikut: 01. Tentukanlah interval penyelesaian pertidaksamaan berikut ini :

(a) 3x – 6 < 12 (b) 5x + 3  3x – 7 Jawab

(a) 3x – 6 < 12 3x < 12 + 6 3x < 18 x < 6

(b) 5x + 3 ≥ 3x – 7 5x –3x ≥ –7 – 3

2x ≥ –10

x ≥ –5

02. Tentukanlah interval penyelesaian pertidaksamaan berikut ini : (a) 4x – 6 < 9x – 21 (b) 3x – 5 ≥ 7x + 11

Jawab

(a) 4x – 6 < 9x – 21 (b) 3x – 5 ≥ 7x + 11 4x – 9x < 6 – 21 3x – 7x ≥ 5 + 11

–5x < –15 –4x ≥ 16

(3)

03. Tentukanlah interval penyelesaian pertidaksamaan berikut ini : (a) –8 < 3x + 4 < 22 (b) –3  9 – 4x  29

Jawab

(a) –8 < 3x + 4 < 22

–8 – 4 < 3x + 4 – 4 < 22 – 4

–12 < 3x < 18

–4 < x < 6

(b) –3  9 – 4x  29

–3 – 9  9 – 4x – 9  29 – 9

–12 < –4x < 20 3 > x > –5

–5 < x < 3

Bentuk Umum pertidaksamaan kuadrat : ax2 + bx + c < 0 ax2 + bx + c > 0 ax2 + bx + c  0 ax2+ bx + c ≥ 0

Penyelesaian dari pertidaksamaan tersebut berupa interval berhingga atau interval

tak hingga dengan aturan sebagai berikut :

Jika p dan q adalah akar-akar dari persamaan ax2 + bx + c = 0, maka p dan q merupakan batas-batas interval penyelesaian pertidaksamaan kuadrat tersebut.

Jika D = b2– 4ac merupakan diskriminannya, maka penyelesaian pertidaksamaan kuadrat dapat dijelaskan sebagai berikut :

Untuk diskriminan positif (D > 0), maka akan terdapat dua titik batas interval, yakni p

dan q sehingga penyelesaian pertidaksamaan kuadrat dapat dibantu dengan sketsa

grafik fungsi kuadrat berikut

ax2 + bx + c < 0 penyelesaiannya p < x < q ax2 + bx + c ≤ 0 penyelesaiannya p ≤ x ≤ q

ax2 + bx + c > 0 penyelesaiannya x < p atau x > q ax2 + bx + c ≥ 0 penyelesaiannya x ≤ p atau x ≥ q

ax2 + bx + c < 0 penyelesaiannya x < p atau x > q ax2 + bx + c ≤ 0 penyelesaiannya x ≤ p atau x ≥ q ax2 + bx + c > 0 penyelesaiannya p < x < q ax2 + bx + c ≥ 0 penyelesaiannya p ≤ x ≤ q x

p q

D > 0 a > 0

+

+

x

p q

D > 0 a < 0

+

(4)

Untuk diskriminan nol (D = 0), maka akan terdapat satu titik batas interval, misalkan p (p = q) sehingga penyelesaian pertidaksamaan kuadrat dapat dibantu dengan sketsa grafik fungsi kuadrat berikut

ax2 + bx + c < 0 penyelesaiannya p < x < p atau tidak ada nilai x yang memenuhi ax2 + bx + c ≤ 0 penyelesaiannya p ≤ x ≤ p atau x = p

ax2 + bx + c > 0 penyelesaiannya x < p atau x > p atau x memenuhi semua bilangan real kecuali p ax2 + bx + c ≥ 0 penyelesaiannya x ≤ p atau x ≥ p atau x memenuhi semua bilangan real

ax2 + bx + c < 0 penyelesaiannya x < p atau x > p atau x memenuhi semua bilangan real kecuali p ax2 + bx + c ≤ 0 penyelesaiannya x ≤ p atau x ≥ p atau x memenuhi semua bilangan real

ax2 + bx + c > 0 penyelesaiannya p < x < p atau tidak ada nilai x yang memenuhi ax2 + bx + c ≥ 0 penyelesaiannya p ≤ x ≤ p atau x = p

(5)

Adapun Langkah-langkah penyelesaian pertidaksamaan adalah sebagai berikut : (1) Ubah ruas kanan pertidaksamaan menjadi 0

(2) Tentukan batas-batas intervalnya, yaitu akar-akar persamaan kuadratnya (3) Nyatakan dalam garis bilangan atau gambar grafiknya

(4) Tentukan interval penyelesaiannya

Untuk lebih jelasnya akan diuraikan dalam contoh soal berikut:

01. Tentukanlah interval penyelesaian pertidaksamaan berikut ini : (a) x2– x – 12 < 0 (b) x2–9 ≥ 0

02. Tentukanlah interval penyelesaian pertidaksamaan berikut ini : (a) x2– 2x + 8 > 0 (b) 15x – x2–18 ≥ x2 + 3x

x memenuhi semua bilangan real

(6)

(b) 15x – x2–18 ≥ x2 + 3x

03. Tentukanlah interval penyelesaian pertidaksamaan berikut ini : (a) x2– 8x + 16 > 0 (b) x2 + 10x + 25 < 0

Atau nilai x memenuhi untuk semua bilangan real kecuali 4

(b) x2 + 10x + 25 < 0 (x + 5)(x + 5) > 0 x = –5

–5 < x < –5

Atau tidak ada nilai x yang memenuhi

4. Sebuah perusahaan sepatu memproduksi dan menjual berbagai model sepatu. Untuk satu model sepatu tertentu diperkirakan dijual seharga a rupiah. Jika dalam satu minggu dikeluarkan biaya sebesar M rupiah dan pendapatan yang diterima P rupiah serta dirumuskan M = 2.000.000 – 40.000a dan P = 20.000a – 400a2 maka

berapakah batas harga sepatu persatuan harus dijual agar perusahaan memperoleh keuntungan ?

Jawab

(7)

5. Kiper Kevin menendang bola yang sudah ditangkapnya. Tinggi bola h, dalam meter, t

detik setelah ditendang membentuk persamaan h = –3t2 + 18t . Kapan bola mencapai ketinggian lebih dari 24 m?

Jawab h > 24

–3t2 + 18t > 24

–3t2 + 18t – 24 > 0 3t2– 18t + 24 < 0 t2– 6t + 8 < 0 (t – 4)(t – 2) < 0

t1 = 4 dan t2 = 8 maka 4 < t < 8

Figur

grafik fungsi kuadrat berikut
grafik fungsi kuadrat berikut . View in document p.3

Referensi

Memperbarui...