Analisa Geoteknik Dan Penanggulangan Kelongsoran Tanggul Sungai Banjir Kanal Barat Semarang

Teks penuh

(1)

1 ANALISA GEOTEKNIK DAN PENANGGULANGAN KELONGSORAN

TANGGUL SUNGAI BANJIR KANAL BARAT SEMARANG

M Afrol Harison, Syarifudin Adi Saputro, Sri Prabandiyani R.W, Siti Hardiyati

Abstrak

Tugas Akhir ini berisi tentang analisa geoteknik dan penganggulagan kelongsoran Tanggul Sungai Banjir Kanal Barat Semarang. Kondisi tanah yang labil mengakibatkan lereng atau tanggul sungai terjadi longsor, salah satu lereng yang merupakan lereng rawan longsor berada di lokasi WF-80 dan WF-91.

Tugas Akhir ini meliputi kondisi dimana terjadi pergerakan tanah pada lereng diakibatkan tidak stabilnya lereng, perhitungan manual stabilitas lereng dengan menggunakan metode Fellinius. Simulasi kelongsoran dilaksanakan dengan cara membuat model stratigrafi lereng sesuai dengan kondisi lapangan. Penentuan jenis lapisan tanah berdasarkan data nilai SPT yang ada.

Analisis geoteknik menggunakan software finite element Plaxis. Model elastis plastis dan kriteria keruntuhan Mohr-Coulomb dipilih sebagai model tanah. Analisis menunjukkan bahwa penanggulangan paling optimum kelongsoran ini adalah menggunakan perkuatan dinding penahan tanah (DPT) dan memasang grup bored pile dengan diameter 0,6 meter yang dimodelkan dengan elemen elastic-plastic beam. Dengan menggunakan kombinasi DPT + perkuatan bored pile, faktor keamanan lereng minimum menjadi 1,363 untuk WF-80 dan faktor keamanan lereng sebesar 1,541 untuk WF-91.

Kata kunci : longsoran, stabilitas lereng, Fellinius, Plaxis, dinding penahan tanah,

(2)

2 Abstract

This undergraduate thesis is about the landslide Geotechnical Analysis and Landslide Handling on theSlope of West Flood Canal – Semarang. Labile land condition result the slope happened slide,one of the slope is gristle slide there are at WF 80 and WF 91.

This undergraduate thesis involves conditions which the motions of the soil on the slope because of slope unstability, manual calculation slope stability with Fellinius methods. Landslide simulation was carried out by making a model of slope stratigrafi in accordance with field conditions. Determination of soil types was conducted based on SPT values.

Geotechnical analysis using Plaxis finite element software. Plastic and elastic model of Mohr-Coulomb failure criterion was chosen as a model soil. Analysis showed that the most optimum treatment is install retaining wall and group of bored pile with a diameter 0,6 meter which is modeled with elastic-plastic beam elements. By using retaining wall + bored pile reinforcement, minimum slope safety factor beincreased and reached 1,363 for WF-80 and safety factor beincreased and reached 1,541 for WF-91.

Keyword : landslide, slope stability, Fellenius, Plaxis, retaining wall, bored pile construction.

(3)

3 1. Pendahuluan

Sungai Banjir Kanal Barat dengan panjang 192,6 km merupakan salah satu sungai di wilayah Semarang yang bagian hulunya berada di wilayah Gunung Ungaran dan hilirnya bermuara di Laut Jawa dengan catchment area (area tangkapan) sekitar 20532 ha. Adapun daerah tangkapan sungai yaitu berasal dari Sungai Kreo Sungai Kripik dan Sungai Garang Hulu. Kondisi tanah yang labil mengakibatkan lereng atau tanggul sungai terjadi longsor, salah satu lereng yang merupakan lereng rawan longsor terdapat pada bagian kiri lereng arah hilir di titik WF 80R dan WF 90R yang berlokasi di Kelurahan Sampangan Kecamatan Semarang Barat Kota Semarang. Maka untuk mengatasi kelongsoran tersebut dapat dilakukan dengan cara melaksanakan

treathment/mengatasi kelongsoran yang meliputi bored pile, dan dinding penahan tanah. 2. Stabilitas Lereng

2.1. Teori Analisa Stabilitas Lereng

Analisa stabilitas lereng meliputi konsep kemantapan lereng yaitu penerapan pengetahuan mengenai kekuatan geser tanah. Keruntuhan geser pada tanah dapat terjadi akibat gerak relatif antar butirnya. Karena itu kekuatannya tergantung pada gaya yang bekerja antar butirnya, sehingga dapat disimpulkan bahwa kekuatan geser terdiri atas:

1. Bagian yang bersifat kohesif, tergantung pada macam tanah dan ikatan butirnya. 2. Bagian yang bersifat gesekan, yang sebanding dengan tegangan efektif yang

bekerja pada bidang geser.

Dalam menganalisa stabilitas lereng harus ditentukan terlebih dahulu faktor keamanan (FK) dari lereng tersebut. Secara umum faktor keamanan didefinisikan sebagai perbandingan antara gaya penahan dan gaya penggerak longsoran (persamaan 2.1) FK = Penggerak Gaya Penahan Gaya ...(2.1)

Analisa kestabilan lereng dapat dihitung dengan menghitung momen penahan dan momen penggerak pada lingkaran longsoran.

Pada Gambar 2.1 di bawah ini menjelaskan bahwa gaya geser sepanjang bidang gelincir akan berlawanan arah dengan arah gerak masa tanah, sehingga diperoleh persamaan 2.2. di bawah ini:

(4)

4 A B C R O X w T

Gambar 2.1. Mekanika pada sebuah bidang longsoran rotasi

FK = w X T R  . ...(2.2.) Keterangan:

R : jari- jari lingkaran kelongsoran

T : jumlah gaya geser dari bidang longsoran X : jarak titik berat massa ke titik pusat lingkaran w : berat massa di atas lingkaran longsoran 2.2. Metode Fellenius

Analisa stabilitas lereng dengan cara Fellenius (1927) menganggap gaya-gaya yang bekerja pada sisi kanan kiri dari sembarang irisan mempunyai resultan nol pada arah tegak lurus bidang longsornya. Dengan anggapan ini keseimbangan arah vertikal dan gaya-gaya yang bekerja dengan memperhatikan tekanan air pori adalah:

Ni + Ui = Wi cos θ i

Atau

Ni = Wi cos θ i – Ui = Wi cos θ I – uiai

Faktor aman didefinisikan pada persamaan 2.3 sebagai berikut:

(5)

5 Lengan momen dari berat massa tanah tiap irisan adalah R Sin , maka (lihat Persamaan 2.4).

...…… ...(2.4)

Dimana :

R = Jari-jari bidang longsor N = Jumlah irisan

Wi = Berat massa tanah irisan ke-I

= Sudut yang didefinisikan pada gambar di atas

Dengan cara yang sama, momen yang menahan tanah akan longsor adalah (lihat Persamaan 2.5).

………(2.5)

Karena itu, faktor keamanannya menjadi (lihat Persamaan 2.6).

………(2.6)

Gaya-gaya dan asumsi bidang pada tiap pias bidang longsor seperti terdapat pada Gambar 2.2.

(6)

6 Gambar 2.2. Gaya Bidang Longsor Pada Tiap Pias Bidang Longsor

Bila terdapat air pada lerengnya, tekanan air pori pada bidang longsor tidak berpengaruh pada Md, karena resultan gaya akibat tekanan air pori lewat titik pusat lingkaran (Das, Braja M. 1998).Substitusi antara persamaan yang sudah ada sesuai dengan persamaan 2.7. di bawah ini:

………(2.7)

Dimana :

F = Faktor keamanan c = Kohesi tanah

= Sudut geser dalam tanah

ai = panjang bagian lingkaran pada irisan ke-i Wi = Berat irisan tanah ke-i

Ui = Tekanan air pori pada irisan ke-i = Sudut yang didefinisikan pada gambar  Menentukan Lokasi Titik Pusat Bidang Longsor

Untuk memudahkan cara trial and error terhadap stabilitas lereng maka titik-titik pusat bidang longsor yang berupa busur lingkaran harus ditentukan dahulu melalui suatu pendekatan seperti Gambar 2.3. Sedangkan untuk menentukan titik-titik O1,

W1 W 3 W2 W4 W5 W8 W6 W7

(7)

7 O2, O3…..On lebih jelasnya dapat dilihat pada Gambar 2.4. Fellenius memberikan

sudut-sudut petunjuk untuk menentukan lokasi titik pusat busur longsor kritis yang melalui tumit suatu lereng pada tanah kohesif (c-soil) seperti pada Tabel 2.1.

Gambar 2.3. Lokasi Pusat Busur Longsor Kritis Pada Tanah Kohesif Tabel 2.1. Sudut-sudut petunjuk menurut Fellenius

Lereng 1 : n Sudut Lereng ( ° ) Sudut-sudut petunjuk 60° 1 : 1 45° 1 : 1,5 33° 41’ 1 : 2 25° 34’ 1 : 3 18° 26’ 1 : 5 11° 19’

Pada tanah Ø – c untuk menentukan letak titik pusat busur lingkaran sebagai bidang longsor yang melalui tumit lereng dilakukan secara coba-coba dimulai dengan

(8)

8 bantuan sudut-sudut petunjuk Fellenius untuk tanah kohesif (Ø = 0). Grafik Fellenius menunjukkan bahwa dengan meningkatnya nilai sudut geser (Ø) maka titik pusat longsor akan bergerak naik dari Oo yang merupakan titik pusat busur longsor tanah c (Ø=0) sepanjang garis Oo-K yaitu O1, O2, O3,……….,On. Titik K merupakan koordinat pendekatan dimana X = 4,5H dan Y = 2H, dan pada sepanjang garis Oo-K inilah diperkirakan terletak titik pusat bidang longsor. Dan dari busur longsor tersebut dianalisa masing-masing angka keamanannya untuk memperoleh nilai FK (Safety Factor) yang paling minimum sebagai indikasi bidang longsor kritis, untuk lebih jelasnya lihat Gambar 2.4.

Gambar 2.4. Posisi Titik Pusat Busur Longsor Pada Garis Oo-K

K O R1 R0 R2 R3 R4 ßb ßa

(9)

9 contoh analisa kelongsoran metode Fellenius dapat dilihat pada Gambar 2.5. di bawah ini:

(10)

10 Tabel 2.2. menjelaskan perhitungan manual cara Trial Error akibat berat sendiri, dengan R = 12,23 meter sebagai berikut :

Tabel 2.2. Perhitungan Cara Trial Error akibat berat sendiri, R = 12,23 m

Keterangan

I II III IV V VI VII VIII IX X XI XII XIII XIV

Luas (m2) (A) 4,260 2,270 4,666 4,864 4,864 3,915 1,916 10,041 12,877 14,669 13,296 6,602 4,983 4,423 Berat W (kN) 34,123 18,183 37,375 38,961 38,961 31,359 16,363 85,750 109,970 125,273 113,548 56,381 45,893 40,736

α (°) 57 37 20 3 14 28 28 14 3 20 37 57 37 20

W cos α 18,584 14,521 35,121 38,907 37,803 27,688 14,447 83,203 109,819 117,718 90,683 30,707 36,652 38,279 694,135

W Sin α 28,618 10,943 12,783 2,039 9,425 14,722 7,682 20,745 5,755 42,846 68,335 47,285 27,619 13,932 473,610

Gaya Akibat Tekanan Air Pori (Ui) 10,450 28,400 27,280 25,600 27,280 29,040 98,460 170,410 180,230 242,560 267,870 240,770 263,490 160,510

W cos α.tan ø' 3,367 2,631 6,364 7,050 6,850 5,017 4,589 26,426 34,879 37,388 28,801 9,753 17,154 17,915 208,181

(W cos α - Ui) tan ø' 1,474 -2,515 1,421 2,411 1,907 -0,245 -26,683 -27,697 -22,363 -39,650 -56,275 -66,717 -106,162 -57,205 -398,299 Panjang Garis Longsor L (m) 1,490 4,050 3,410 3,200 3,410 3,630 3,230 3,110 3,135 3,210 3,750 5,230 4,050 2,130

C'*L 18,923 51,435 43,307 40,640 43,307 46,101 86,564 83,348 84,018 86,028 100,500 140,164 24,786 13,036 862,157

FK akibat air pada lereng = (∑C'*L+∑ (W cos α-Ui).tan ø')/∑ W sin α = 0,98

Lempung Kepasiran Lempung Pasir

Jumlah SEGMEN

Tabel 4.4 a.Perhitungan Manual Cara Trial Error WF-80, R = 12,23

Contoh perhitungan manual cara Trial Error WF-80, R=12,23 untuk salah satu pias (Pias I)

 A = (2,84 x 1,4) + (0,5 x 0,41 x 1,4) = 4,260 m2

 W = A x γsub x panjang per 1 meter = 4,260 x 8,01 x 1 = 34,123 kN

 Ordinat tekanan air pori diukur = 0,7 m

 Tekanan air pori (ui) = 0,7 x 1 t/m3 = 0,7 t/m3 ; L = R 2 3,14 12,23 1,49m

360 7 2

360     

(11)

11 2.3. Dinding Penahan Tanah

Dinding penahan tanah merupakan salah satu konsep perkuatan tanah yang banyak digunakan dalam pekerjaan rekayasa sipil. Dinding penahan tanah merupakan dinding yang digunakan untukmenahan beban tanah secara vertikal ataupun terhadap kemiringan tertentu.Dinding-dinding penahan adalah konstruksi yang digunakan untuk memberikan stabilitas tanahatau bahan lain yang kondisi massa bahannya tidak memiliki kemiringan alami, dan juga digunakan untuk menahan atau menopang timbunan tanah.

2.3.1Stabilitas Dinding Penahan Tanah a.Stabilitas terhadap Penggeseran

Gaya-gaya yang menggeser dinding penahan tanah akan ditahan oleh: 1. Gesekan antara tanah dengan dasar pondasi

2. Tekanan tanah pasif bila di depan dinding penahan terdapat tanah timbunan. Faktor aman terhadap penggeseran didefinisikan sebagai berikut (persamaan 2.8): SF = Ph Rh   ≥ 1,5……….(2.8) Dimana:

Σ Rh = tahanan dinding penahan tanah terhadap penggeseran

Σ Ph = jumlah gaya-gaya horizontal (kN) b.Stabilitas terhadap Penggulingan

Tekanan tanah lateral yang diakibatkan oleh tanah urug di belakang dinding penahan, cenderung menggulingkan dinding dengan pusat rotasi pada ujung kaki depan pelat pondasi. Momen penggulingan ini dilawan oleh momen akibat berat sendiri dinding penahan dan momen akibat berat tanah di atas pelat pondasi.

Faktor aman terhadap penggulingan didefinisikan sebagai berikut (persamaan 2.9): SF = gl w M M   ≥ 1,5………(2.9) Dimana:

Σ Mw = momen yang melawan penggulingan (kNm)

(12)

12 2.4. Konstruksi Bored Pile

2.4.1. Perhitungan Beban-beban yang Bekerja Pada Bored Pile Beban beban yang bekerja pada bored pile meliputi :

a. Beban atau berat sendiri bored pile:

b. Beban atau berat Dinding Penahan Tanah per meter 2.4.2. Kontrol Bored Pile Terhadap Daya Dukung Tanah:

a. Daya dukung bored pile tunggal untuk WF-80

Metode Skempton (1966) seperti pada persamaan 2.10 berikut ini :

Qult = Qb + Qs………...(2.10) Dimana:

Qult = Daya Dukung Tiang Maksimum (ultimate) pada bored pile

Qb = Tahanan ujung ultimit (kN) Qs = Tahanan gesek ultimit (kN) Qb = μ.Ab.Nc.cb

Ab = Luas Penampang tiang

μ = faktor koreksi, dengan μ = 0,8 untuk d<1m dan μ = 0,75 untuk d>1m Nc = faktor kapasitas dukung menurut Skempton = 9

cb = kohesi tanah di bawah ujung tiang

b. Kontrol jumlah tiang per meter dapat dilihat pada persamaan 2.11. berikut ini: n = tunggal tiang dukung daya meter per beban jumlah ……….(2.11)

c. Daya dukung bored pile dalam group dapat dilihat pada persamaan 2.12. berikut ini:

Q = Qult.n.E………...(2.12)

Dimana:

Q = kapasitas daya dukung bored pile maksimum dalam group Qult = kapasitas daya dukung bored pile maksimum satu tiang (tunggal) n = banyak bored pile dalam group

(13)

13 E = effisien group tiang dapat dilihat pada persamaan 2.13. di bawah ini:

= 1 –θ mn 90 n ) 1 m ( m ) 1 n (    ………...(2.13)

m = banyaknya deretan piles n = banyaknya piles dalam 1 deret

θ = arc tg

s d

(dalam derajat)

s = center to center spacing (jarak pusat ke pusat piles) d. Pengecekan beban terhadap jumlah tiang yang dipasang per meter

P yang menahan > P yang bekerja

2.5. Analisa Menggunakan Software Plaxis versi. 8.2.

Adapun langkah-langkah analisa kelongsoran menggunakan program Plaxis V8.2 adalah sebagai berikut :

1. Plaxis Input V8.2

Membuat file baru dengan cara meng-klik File – New, kemudian mengisi menu

General Setting Project seperti pada Gambar 2.6 dan Dimensions pada Gambar 2.7. di bawah ini

(14)

14 Gambar 2.7. General Setting Dimensions

Apabila tahap pengisian General settings telah selesai maka bidang gambar akan muncul dengan sumbu x dan y. Sumbu x menuju arah kanan (horisontal) dan sumbu y ke arah atas (vertikal). Untuk membuat objek gambar dapat dipilih dari tombol ikon pada toolbar atau dari menu Geometry seperti terlihat pada Gambar 2.8. di bawah ini:

(15)

15 Untuk membuat geometri lereng (Geometry Countur) diperlukan dengan meng-input

atau memasukan titik koordinat sesuai model lereng seperti pada Tabel 2.3. berikut ini : Tabel 2.3. Input Koordinat pada Plaxis V8.2 WF-80

Point X Y Point X Y 0 0 0 22 22,31 12,06 1 45,40 0 23 26,11 17,65 2 45,40 18,93 24 22,64 12,56 3 41,06 19,06 25 22,81 12,79 4 35,06 19,06 26 35,06 17,60 5 26,11 19,02 27 41,06 17,60 6 23,85 19,02 28 45,40 17,28 7 23,99 19,50 29 0 1,41 8 22,90 19,50 30 12,31 2,45 9 19,81 13,56 31 18,31 3,56 10 19,31 13,56 32 22,31 3,56 11 19,31 12,56 33 26,11 13,55 12 22,81 12,56 34 35,06 13,69 13 22,81 13,56 35 41,06 13,69 14 22,31 13,56 36 45,40 13,35 15 23,85 19,02 37 20,31 12,56 16 18,31 13,56 38 20,31 3,56 17 12,31 10,2 39 20,31 12,06 18 0 10,20 40 21,81 12,56 19 0 6,59 41 21,81 3,56 20 12,31 8,41 42 21,81 12,06 21 18,31 12,06

(16)

16 Tampilan model geometri lereng WF-80 dapat dilihat pada Gambar 2.9. di bawah ini:

Gambar 2.9. Model Geometri Lereng WF-80

Untuk beban lalu lintas dimodelkan sebagai beban merata dalam Plaxis V8 .2 disebut sebagai tractions . Besarnya beban adalah sebesar 12 kN/m² sesuai dengan kelas jalan yaitu jalan kelas II (Panduan Geoteknik 4). Pada plaxis, tanda negatif ( - ) menandakan arah gaya ke bawah. Sehingga besarnya tractions adalah –12 kN/m² yang bekerja pada sumbu y sedangkan pada sumbu x tidak ada gaya yang bekerja (Nol). Kemudian meng-klik ganda pada posisi beban tersebut maka akan muncul kotak dialog, dipilih Load System (A) dan mengisi besarnya beban yang bekerja pada posisi tersebut seperti pada Gambar 2.10.

(17)

17 Material lapisan tanah yang dimodelkan kemudian didefinisikan propertisnya dengan meng-klik toolbar Material Sets . Kemudian melakukan dragdata set tiap lapisan dari jendela

Material Sets ke area lapisan tanah yang diikuti oleh perubahan warna pada model geometri. Berikut ini salah satu tampilan material sets sesuai Gambar 2.11 berikut ini:

Gambar 2.11. Properties Lapisan Tanah

Untuk properties DPT WF-80 dapat dilihat pada Tabel 2.4. seperti di bawah ini: Tabel 2.4. Properties DPT WF-80

Jenis

Perkuatan Material Tipe

DPT Non-Porous 20

Kaki DPT Non-Porous 24

(18)

18 Gambar 2.12. Properties untuk Bored Pile WF-80

2. Plaxis Calculation V8.2

Tahap-tahap perhitungan kalkulasi dapat dilihat pada Gambar 2.13. di bawah ini:

Gambar 2.13. Tahap-Tahap Perhitungan kalkulasi

(19)

19 1.Intial Phase, merupakan default dari program (fase 0).

2.Tahap berat sendiri (gravity loading), yaitu phase dimana tegangan dan regangan awal akibat berat tanah sendiri dari model, dihitung (fase 1).

3.Tahap perhitungan faktor keamanan (SF), yaitu fase dimana kestabilan lereng akibat fase 1 dihitung (fase 2).

4.Tahap beban vertikal, yaitu phase akibat berat sendiri struktur dan penambahan beban vertical, dihitung (fase 3).

5.Tahap perhitungan faktor keamanan (SF), yaitu fase dimana kestabilan lereng akibat fase 3 dihitung (fase 4).

6.Tahap DPT, yaitu phase akibat berat sendiri struktur, penambahan beban vertikal dan pemasangan DPT, dihitung (fase 5).

7.Tahap perhitungan faktor keamanan (SF), yaitu fase dimana kestabilan lereng akibat fase 5 dihitung (fase 6).

8.Tahap DPT+Tiang, yaitu phase akibat berat sendiri struktur, penambahan beban vertikal, pemasangan DPT dan Penambahan Tiang, dihitung (fase 7).

9.Tahap perhitungan faktor keamanan (SF), yaitu fase dimana kestabilan lereng akibat fase 7 dihitung (fase 8).

(20)

20 3. Plaxis Output V8.2

1. Tahap Berat Sendiri

Pada tahap ini menunjukkan hasil bahwa dengan berat sendiri tanah, pada bagian tanggul sungai mengalami displacements sebesar 14,337 cm seperti pada Gambar 2.14.

Gambar 2.14. Displacements akibat berat sendiri

2. Tahap Beban Vertikal

Pada tahap ini menunjukkan hasil bahwa dengan beban vertikal tanah dan penambahan beban vertikal (traction), pada bagian tanggul sungai mengalami

displacements sebesar 14,601 cm seperti pada Gambar 2.15.

(21)

21 3. Tahap DPT

Pada tahap ini menunjukkan hasil bahwa dengan berat sendiri tanah dan penambahan beban vertikal (traction) dan pemasangan DPT, pada bagian tanggul sungai mengalami

displacements sebesar 14,667 cm seperti pada Gambar 2.16.

Gambar 2.16. Displacements akibat DPT 4. Tahap DPT+Tiang

Pada tahap ini menunjukkan hasil bahwa dengan berat sendiri tanah dan penambahan beban vertikal (traction) dan pemasangan DPT+Tiang, pada bagian tanggul sungai mengalami displacements sebesar 14,785 cm seperti pada Gambar 2.17.

(22)

22 4. Plaxis Curve V8.2

Nilai angka keamanan WF-80 dengan perkuatan DPT+Tiang dapat dilihat pada Gambar 2.18. di bawah ini:

Gambar 2.18. Angka keamanan WF-80 dengan Perkuatan DPT+Tiang

5. Safety Factor

Berdasarkan Gambar 2.25. didapat nilai Safety Factor : 1. Akibat berat sendiri (Phase 2) = 1,3

2. Akibat beban vertikal (Phase 4) = 1,302 3. Akibat DPT (Phase 6) = 1,302

(23)

23 3. Kesimpulan

a.Hasil analisa secara manual (Metode Fellinius) di titik lokasi penelitian pada kondisi awal terjadinya longsor di peroleh angka keamanan 0,98.

b.Alternatif penanganan berdasarkan nilai keamanan dari program komputer (PLAXIS

Version 8.2) diperoleh angka keamanan dengan perkuatan dinding penahan tanah yaitu sebesar 1,302 dan perkuatan dengan dinding penahan tanah + bored pile diperoleh angka keamanan sebesar 1,363.

c.Kelongsoran disebabkan karena dasar sungai yang dangkal sehingga pada saat banjir muka air banjir hampir sejajar dengan tanggul, hal ini menyebabkan daya dukung di tanggul melemah akibat terendam air. Selain itu akibat pembuangan air dari pemukiman sekitar Kali Garang yang merembes ke tanah di sekitar tanggul sehingga pada saat air kembali ke muka air normal, tanggul yang terendam air kondisi tanahnya melemah. Saran

a.Dalam penentuan parameter tanah diharapkan menggunakan korelasi empiris yang sesuai dan relevan serta didukung data-data yang lengkap, jelas dan teruji kebenarannya guna memperoleh hasil analisa yang akurat.

b.Pengambilan sample tanah tambahan untuk pengujian laboratorium perlu dilakukan untuk mendapatkan data yang lebih representatif.

c.Perlu dilakukan investigasi secara lebih lanjut untuk mendapatkan bidang gelincir yang tepat dengan memasang alat instrumentasi yang dipasang langsung dilokasi penelitian dilapangan, instrumentasi yang digunakan dapat berupa inclinometer atau slip indicator.

(24)

24 DAFTAR PUSTAKA

BBWS Pemali Juana. 1997. Soil Mechanics Survey for The Detailed Design of Flood Control.

Semarang

Bogeman. 1989. Geologi untuk Teknik Sipil. Erlangga. Jakarta.

Bowles, Joseph E., 1987. Sifat-sifat Fisis dan Geoteknis Tanah. Erlangga. Jakarta.

Das, Braja, M., 1998. Mekanika Tanah (Prinsip-Prinsip Rekayasa Geoteknis) Jilid-1, Erlangga. Jakarta.

Das, Braja, M., 1990. Mekanika Tanah (Prinsip-Prinsip Rekayasa Geoteknis) Jilid-2. Erlangga. Jakarta.

Departemen PU. 2002. Panduan Geoteknik Indonesia Timbunan Jalan pada Tanah Lunak. Kimpraswil. Jakarta.

Kusuma Gideon, Ir., M.Eng dan W.C. Vis, Ir. 1997. Grafik dan Tabel Perhitungan Beton Bertulang. Erlangga. Jakarta.

Hardiyatmo, Hary, C. 1992. Mekanika Tanah 1. Gajahmada, Yogyakarta. Hardiyatmo, Hary, C. 2010. Mekanika Tanah 2. Gajahmada, Yogyakarta.

Hardiyatmo, Hary, C.2010.Analisis dan Perancangan Fondasi bagian I. Gajahmada, Yogyakarta.

Hardiyatmo, Hary, C.2010.Analisis dan Perancangan Fondasi bagian II. Gajahmada, Yogyakarta.

Holtz and Kovacs,1981. Soil Mechanics in Engineering Practice. New York Irsyam, Mahsyur. 2001. Rekayasa Pondasi. Bandung.

Kh. Sunggono,Ir. 1984. Mekanika Tanah. Nova. Bandung. Kh. Sunggono,Ir. 1995. Buku Teknik Sipil. Nova. Bandung.

Kopertis, 1997, Rekayasa Pondasi 1 Konstruksi Penahan Tanah. Gunadarma. Jakarta.

Kopertis, 1997, Rekayasa Pondasi II Fundasi Dangakal dan Fundasi Dalam. Gunadarma. Jakarta.

Lambe, T. C., and Whitman, R. V. 1969. Soil Mechanics. New York. Meyerhoff. 1976. Principle of Gotechnical Engineering. PWS Publisher. Nurlina Siti. 2008. Struktur Beton. Malang.

Panitia Teknik Standardisasi Bidang Konstruksi dan Bangunan. 2002. SNI-Standar Nasional Indonesia Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung. Bandung. Terzaghi, K., and Peck, R. 1967. Soil Mechanics in Engineering Practice. New York.

(25)

25 Terzaghi, Karl, Peck, B., Ralph, 1987, Mekanika Tanah Dalam Praktek Rekayasa Jilid-1.

Erlangga. Jakarta.

Terzaghi, Karl, Peck, B., Ralph, 1991, Mekanika Tanah Dalam Praktek Rekayasa Jilid-2. Erlangga. Jakarta.

Figur

Gambar 2.1. Mekanika pada sebuah bidang longsoran rotasi

Gambar 2.1.

Mekanika pada sebuah bidang longsoran rotasi p.4
Tabel 2.1. Sudut-sudut petunjuk menurut Fellenius  Lereng  1 : n  Sudut Lereng ( ° )  Sudut-sudut petunjuk  60°  1 : 1  45°  1 : 1,5  33° 41’  1 : 2  25° 34’  1 : 3  18° 26’  1 : 5  11° 19’

Tabel 2.1.

Sudut-sudut petunjuk menurut Fellenius Lereng 1 : n Sudut Lereng ( ° ) Sudut-sudut petunjuk 60° 1 : 1 45° 1 : 1,5 33° 41’ 1 : 2 25° 34’ 1 : 3 18° 26’ 1 : 5 11° 19’ p.7
Gambar 2.3. Lokasi Pusat Busur Longsor Kritis Pada Tanah Kohesif

Gambar 2.3.

Lokasi Pusat Busur Longsor Kritis Pada Tanah Kohesif p.7
Gambar 2.4. Posisi Titik Pusat Busur Longsor Pada Garis Oo-K

Gambar 2.4.

Posisi Titik Pusat Busur Longsor Pada Garis Oo-K p.8
Gambar 2.5. Cara Trial Error akibat berat sendiri dengan R = 12,23 meter

Gambar 2.5.

Cara Trial Error akibat berat sendiri dengan R = 12,23 meter p.9
Tabel 2.2. Perhitungan Cara Trial Error akibat berat sendiri, R = 12,23 m

Tabel 2.2.

Perhitungan Cara Trial Error akibat berat sendiri, R = 12,23 m p.10
Gambar 2.6. General Setting  – Project

Gambar 2.6.

General Setting – Project p.13
Gambar 2.8. Tampilan Plaxis Versi 8.2.

Gambar 2.8.

Tampilan Plaxis Versi 8.2. p.14
Gambar 2.10. Beban Lalu Lintas

Gambar 2.10.

Beban Lalu Lintas p.16
Gambar 2.9. Model Geometri Lereng WF-80

Gambar 2.9.

Model Geometri Lereng WF-80 p.16
Gambar 2.11. Properties Lapisan Tanah

Gambar 2.11.

Properties Lapisan Tanah p.17
Tabel 2.4. Properties DPT WF-80  Jenis

Tabel 2.4.

Properties DPT WF-80 Jenis p.17
Gambar 2.13. Tahap-Tahap Perhitungan kalkulasi

Gambar 2.13.

Tahap-Tahap Perhitungan kalkulasi p.18
Gambar 2.14. Displacements akibat berat sendiri

Gambar 2.14.

Displacements akibat berat sendiri p.20
Gambar 2.15. Displacements akibat beban vertikal

Gambar 2.15.

Displacements akibat beban vertikal p.20
Gambar 2.16. Displacements akibat DPT

Gambar 2.16.

Displacements akibat DPT p.21
Gambar 2.17.Displacements akibat DPT + tiang

Gambar 2.17.Displacements

akibat DPT + tiang p.21
Gambar 2.18. Angka keamanan WF-80 dengan Perkuatan DPT+Tiang

Gambar 2.18.

Angka keamanan WF-80 dengan Perkuatan DPT+Tiang p.22

Referensi

Memperbarui...