3.6 Menggeneralisasi pola bilangan dan jumlah pada barisan Aritmetika dan Geometri - UKBM MTKA Wajib 3.6.2 Barisan dan Deret

119 

Teks penuh

(1)

BARISAN GEOMETRI

1.Identitas

a. Nama Mata Pelajaran : Matematika XI (Wajib)

b. Semester

: Ganjil

c. Kompetensi Dasar

:

3.6 Menggeneralisasi pola bilangan dan jumlah pada barisan Aritmetika dan Geometri 4.6 Menggunakan pola barisan aritmetika atau geometri untuk menyajikan dan

menyelesaikan masalah kontekstual (termasuk pertumbuhan, peluruhan, bunga majemuk, dan anuitas)

d. Materi Pokok

: Barisan Arimetik dan Geometri

e. Alokasi Waktu

: 4 x 45 menit

f. Tujuan Pembelajaran

:

g. Materi Pembelajaran

o

Lihat dan baca pada Buku Teks Pelajaran (BTP): Sinaga, Bornok,

dkk. 2015. Buku Siswa Matematika X Wajib. Jakarta: Kementrian

Pendidikan dan Kebudayaan, hal. 71 s.d. 96.

2.Peta Konsep

Melalui pendekatan saintifik dengan menggunakan model pembelajaran Discovery Learning (Pembelajaran Penemuan) dan Problem Based Learning (Pembelajaran Berbasis Masalah)/projek, peserta didik diharapkan dapat Menggeneralisasi pola bilangan dan jumlah pada barisan Aritmetika dan Geometri serta Menggunakan pola barisan aritmetika atau geometri untuk menyajikan dan menyelesaikan masalah kontekstual (termasuk pertumbuhan, peluruhan, bunga majemuk, dan anuitas)

(2)

3.Kegiatan Pembelajaran

Pertemuan 5 dan 5

a. Pendahuluan

Sebelum belajar pada materi ini silahkan kalian membaca dan

memahami cerita di bawah ini.

Untuk dapat menyelesaikan persoalan tersebut, silahkan kalian

lanjutkan ke kegiatan belajar berikut dan ikuti petunjuk yang ada

dalam UKBM ini.

b. Kegiatan Inti

1)

Petunjuk Umum UKB

a)

Baca dan pahami materi pada buku Sinaga, Bornok, dkk.

2017. Buku Siswa Matematika XI Wajib. Jakarta:

Kementrian Pendidikan dan Kebudayaan, hal. 198 s.d. 115.

b) Setelah memahami isi materi dalam bacaan berlatihlah

untuk berfikir tinggi melalui tugas-tugas yang terdapat

pada UKB ini baik bekerja sendiri maupun bersama teman

sebangku atau teman lainnya.

c)

Kerjakan UKB ini di buku kerja atau langsung mengisikan

pada bagian yang telah disediakan.

d) Kalian dapat belajar bertahap dan berlanjut melalui

kegiatan ayo berlatih, apabila kalian yakin sudah paham

dan mampu menyelesaikan permasalahan-permasalahan

dalam kegiatan belajar 1, kalian boleh melanjutkan ke

kegiatan belajar 2.

2)

Kegiatan Belajar

Ayo…, ikuti kegiatan belajar berikut dengan penuh kesabaran dan

konsentrasi

!

Kegiatan Belajar 5 dan 6

Informasi yang ada:

Misalkan banyak gandum pada kotak ke-n adalah Un

(3)

Banyak gandum pada setiap kotak adalah dua kali banyak gandum pada kotak

sebelumnya.

Coba kita sederhanakan dengan tabel:

Kotak

ke-n Sukuke- gandumJumlah GeometriBarisan

1 u1 = a 1 1 = 1.20

2 u2 2 2 = 1.21

3 u3 4 4 = 1.22

4 u4 8 8 = 1.23

5 u5 ... ...

6 u6 ... ...

64 U64 ... ...

Banyaknya gandum di atas membentuk barisan geometri dengan perbandingan yang tetap.

1, 2, 4, 8, ...

Berapakah nilai perbandingan itu?

Dari mana mendapat nilai perbandingan itu

Jika nilai perbandingan itu adalah r dan barisan geometri tadi adalah u1, u2, u3, ..., un -1, un

maka rumus r =

Coba lihat pola dari tabel banyaknya gandum tersebut.

u1 u2 u3 u4 ... un

a ar ar2 ar3 ...

Jadi, rumus suku ke-n dari barisan geometri adalah

Dengan rasio barisan geometri adalah r =

… …

… …

Ingat kembali cerita raja yang terkejut tadi. Jadi, berapa butir gandum pada kotak terakhir?

... ... Contoh soal:

(4)

Mari kita aplikasikan rumus barisan geometri yang telah kita temukan. Sambil mempelajari buku paket halaman 198 – 215.

Kerjakanlah soal-soal di bawah ini.

1. Tentukan suku pertama, rasio, dan rumus suku ke-n setiap barisan geometri berikut. a. 2, 6, 18, 54, . . .

b. 16, –32, 64, –128, . . .

2. Carilah suku yang diminta pada setiap barisan geometri berikut! a. 3, 6, 12, …… (U20)

b. 6, 3, 3/2, ……(U10)

3. Jumlah penduduk suatu desa pada tahun 2010 diperkirakan 6.400 jiwa. Kenaikan jumlah penduduk adalah 2 kali lipat setiap tahunnya. Tentukan jumlah penduduk desa tersebut pada tahun 2004.

Materi: Deret Geometri Tujuan:

1. Memahami deret geometri.

2. Menentukan jumlah suku ke-n dari suatu deret geometri 3. Deret Geometri tak hingga

Jika U1, U2, U3, ..., Un, .... merupakan barisan geometri dengan unsur pertama adalah a = U1 dan rasio r, maka U1 + U2 + U3 + ... + Un + ....

disebut deret geometri dengan Un = ar n-1

Rumus jumlah n suku pertama deret geometri dengan suku pertama a dan rasio r, dapat diturunkan dengan cara sebagai berikut.

Misalkan Sn = U1 + U2 + U3 + ... + Un, maka

Sn = a + ar2 + ar3 + ... + arn-1 r

Sn = ar + ar3 + ar4 + ... + arn-1 + arn

Sn - r Sn = a - arn

(1 - r) Sn = (1 -rn)a

Jadi rumus jumlah n suku pertama deret geometri dengan suku pertama adan rasio r

adalah

S

n

=

a

(

1

r

n

)

1

r

untuk r

<

1

, atau

S

n

=

a

(

r

n

1

)

r

1

untuk r

>

1

(5)

Jumlah deret geomatri tak hingga adalah :

S

=

n

lim

→∞

S

n

=

a

1

r

Rumus pada deret geometri berlaku juga untuk n tak terhingga. Adapun untuk n tak terhingga ada dua kasus :

1. Jika -1 < r < 1, maka rn menuju 0 akibatnya

S

=

a

(

1

0

)

1

r

=

a

1

r

Deret geometri dengan -1 < r < 1 ini disebut deret geometri konvergen (memusat) 2. Jika r < -1 atau r > 1, maka untuk n → ∞ nilai rn makin besar akibatny selesaikan soal-soal Uji kompetensi 5.2 halaman 202 s.d. 203, nomor 1 s.d. 10

BUNGA, PERTUMBUHAN DAN PELURUHAN

1. Mendeskripsikan konsep barisan dan deret pada konteks dunia nyata, seperti bunga, pertumbuhan dan peluruhan.

2. Mengidentifikasikan, menyajikan model matematika dan menyelesaikan masalah keseharian yang berkaitan dengan barisan dan deret aritmatika, geometri dan yang lainnya.

a) Bunga Tunggal dan Bunga Majemuk 1) BUNGA TUNGGAL

Bunga tunggal adalah bunga yang timbul pada setiap akhir jangka waktu tertentu yang tidak mempengaruhi besarnya modal (besarnya modal tetap).

Besarnya bunga berbanding senilai dengan persentase dan lama waktunya dan umumnya berbanding senilai pula dengan besarnya modal.

Jika modal sebesar M dibungakan dengan bunga p % setahun maka: a. Setelah t tahun, besarnya bunga:

I

=

M

×

p

100

×

t

b. Setelah t bulan, besarnya bunga:

I

=

M

×

p

100

×

t

12

c. Setelah t hari, besarnya bunga:

- Jika satu tahun 360 hari, maka:

I

=

M

×

p

100

×

t

360

- Jika satu tahun 365 hari, maka:

I

=

M

×

p

100

×

t

365

- Jika satu tahun 366 hari (tahun kabisat), maka:

I

=

M

×

p

100

×

t

366

Contoh:

(6)

a. 2 tahun b. 6 bulan c. 50 hari

d. 2 tahun 6 bulan dan 50 hari! Alternatif Penyelesaian

M = 1.000.000 dan p = 18

a. Besarnya bunga selama 2 tahun i =

100

p

x M x t

i =

100

18

x

1000000

x

2

= 360000

Jadi besarnya bunga selama 2 tahun sebesar Rp 360.000,00

b. Besarnya bunga selama 6 bulan: i =

100

p

x M x

12

t

i =

100

18

x 1000000 x

12

6

= 90000

Jadi besarnya bunga adalah Rp 90.000,00

c. Besarnya bunga selama 50 hari: i =

100

p

x M x

360

t

i =

100

18

x 1000000 x

360

50

= 25000

Jadi besarnya bunga dalam 50 hari adalah sebesar Rp 25.000,00

d. Besarnya bunga dalam 2 tahun 6 bulan dan 50 hari dapat dicari dengan jalan menjumlahkan bunga 2 tahun + bunga 6 bulan + bunga 50 hari:

Atau dapat dicari dengan jalan menghitung waktu seluruhnya dalam hari, sehingga 2 tahun 6 bulan 50 hari = 950 hari, sehingga:

i =

100

p

x M x

360

t

i =

100

18

x 1000000 x

950

360

= 475000

Jadi besarnya bunga selama 2 tahun 6 bulan dan 50 hari adalah Rp 475.000,00

2) BUNGA MAJEMUK

Jika kita menyimpan modal berupa uang di bank selama periode bunga tertentu, misalnya satu tahun maka setelah satu tahun kita akan mendapatkan bunga sebesar p % kali modal yang kita bungakan. Jika bunga itu tidak kita ambil, tetapi ditambahkan pada modal awal untuk dibungakan lagi pada periode berikutnya, sehingga besarnya bunga pada setiap periode berikutnya berbeda jumlahnya (menjadi bunga berbunga), maka dikatakan modal tersebut dibungakan atas dasar bunga majemuk.

a) Perbedaan Bunga Tunggal dan Bunga Majemuk

Bunga tunggal dihitung berdasarkan modal yang sama setiap periode sedangkan bunga majemuk dihitung berdasarkan modal awal yang sudah ditambahkan dengan bunga.

(7)

Dengan menggunakan rumus

Jika modal sebesar M dibungakan atas dasar bunga majemuk sebesar p % setahun selama n tahun, maka besarnya modal setelah n tahun adalah:

- Setelah satu tahun

M

1

=

M

+

P

100

M

=

M

(

1

+

P

100

)

- Setelah dua tahun

M

2

=

M

(

1

+

P

100

)

+

P

100

M

(

1

+

P

100

)

=

M

(

1

+

P

100

)(

1

+

P

100

)

=

M

(

1

+

P

100

)

2

- Setelah n tahun

Contoh soal

Modal sebesar Rp 1.000.000,00 diperbungakan dengan dasar bunga majemuk 3% setahun. Hitunglah nilai akhir modal setelah 3 tahun.

Alternatif Penyelesaian

Misalkan M = 1.000.000,00, n = 3 tahun, p = 3%. M3 = M (1+i)3

= 1.000.000 (1+0,03)3 = 1.000.000 (1,03)3 = 1.000.000 x 1,092727 = 1.092.727

Jadi nilai akhir setelah 3 tahun = Rp 1.092.727,00

3) Model Pertumbuhan Penduduk

Penerapan deret ukur yang paling konvensional di bidang ekonomi adalah dalam hal penaksiran jumlah penduduk. Sebagaimana pernah dinyatakan oleh Malthus, penduduk dunia tumbuh mengikuti pola deret ukur. Secara matematik, hal ini dapat dirumuskan sebagai :

Pn = P1 R n -1 dimana R =1 + r

P1 =jumlah pada tahun pertama (basis) Pn =jumlah pada tahun ke-n

r =persentase pertumbuhan per-tahun n =indeks waktu (tahun)

Contoh Soal 1)

M

n

=

M

(

1

+

P

100

)

(8)

Penduduk suatu kota berjumlah 1 juta pada tahun 1991, tingkat pertumbuhannya 4% per tahun. Hitunglah jumlah penduduk kota tersebut pada tahun 2006.

Alternatif Penyelesaian: P1 = 1.000.000 R = 0,04

R = 1,04

P2006 = P16= 1000000 (1,04)15 = 1.000.000 ( 1,800943) = 1.800.943

Contoh Soal 2)

Jumlah penduduk kota X pada tahun 1994 mencapai 2 juta jiwa. Bila jumlah penduduk di kota tersebut meningkat dengan laju 2,5% pertahun dan andaikan laju pertambhan itu tetap sebesar itu dalam setiap tahunnya, tentukanlah banyaknya penduduk di kota X pada tahun 1999.

Alternatif Penyelesaian:

Pertumbuhan penduduk pada dasarnya sama dengan pertambahan tabungan yang disimpan di Bank. Jadi, apabila banyaknya penduduk mula-mula P dengan tingkat kenaikan penduduk I%, sedangkan banyaknya penduduk setelah n tahun adalah Pt, maka tentunya banyaknya penduduk pada saat n tahun adalah :

Pn = P(1 + I)n

Jadi, dari soal di atas kita dapatkan, banyaknya penduduk di kota X pada tahun 1999 (setelah 5 tahun) menjadi :

P5 = 2.000.000 (1 + 0,025)5 = 2 . 106 . (1,025)5 = 2 . 106 (1,1314)

= 2.262.816 (dibulatkan).

c.

Penutup

Bagaimana kalian sekarang?

Setelah kalian belajar bertahap dan berlanjut melalui kegiatan belajar 1, 2,

3, dan 4, berikut diberikan Tabel untuk mengukur diri kalian terhadap materi

yang sudah kalian pelajari. Jawablah sejujurnya terkait dengan penguasaan

materi pada UKB ini di Tabel berikut.

Tabel Refleksi Diri Pemahaman Materi

No

Pertanyaan

Ya

Tida

k

1.

Apakah kalian telah memahami pengertian

Barisan dan Deret Geometri?

2.

Dapatkah kalian menjelaskan Barisan dan

Deret Geometri?

3.

Dapatkah kalian menyusun masalah

(9)

Geometri?

4.

Dapatkah kalian menyelesaikan masalah

kontekstual yang berkaitan dengan Barisan

dan Deret Geometri?

Jika menjawab “TIDAK” pada salah satu pertanyaan di atas, maka pelajarilah

kembali materi tersebut dalam Buku Teks Pelajaran (BTP) dan pelajari ulang

kegiatan belajar 1, 2, atau 3 yang sekiranya perlu kalian ulang dengan

bimbingan Guru atau teman sejawat.

Jangan putus asa untuk mengulang

lagi!.

Dan apabila kalian menjawab “YA” pada semua pertanyaan, maka

lanjutkan berikut

.

Dimana posisimu?

Ukurlah diri kalian dalam menguasai materi Komposisi Fungsi dalam rentang

0 – 100

, tuliskan ke dalam kotak yang tersedia.

Setelah kalian menuliskan penguasaanmu terhadap materi Komposisi

Fungsi, lanjutkan kegaitan berikut untuk mengevaluasi penguasaan kalian!.

Yuk Cek Penguasaanmu terhadap Materi

Barisan dan Deret Geometri!

Agar dapat dipastikan bahwa kalian telah menguasi materi Pola Bilangan, Barisan dan Deret Aritmatika?, maka kerjakan soal berikut secara mandiri di buku kerja kalian masing-masing.

Figur

Tabel Refleksi Diri Pemahaman Materi
Tabel Refleksi Diri Pemahaman Materi. View in document p.8

Referensi

Memperbarui...