• Tidak ada hasil yang ditemukan

STUDI RADIOGRAFI MAKRO DENGAN VARIASI JARAK SUMBER SINAR-BAYANGAN (SID) DAN UKURAN FOKUS TERHADAP PEMBESARAN BAYANGAN. Oleh : NANANG SURIANSYAH

N/A
N/A
Protected

Academic year: 2021

Membagikan "STUDI RADIOGRAFI MAKRO DENGAN VARIASI JARAK SUMBER SINAR-BAYANGAN (SID) DAN UKURAN FOKUS TERHADAP PEMBESARAN BAYANGAN. Oleh : NANANG SURIANSYAH"

Copied!
9
0
0

Teks penuh

(1)

STUDI RADIOGRAFI MAKRO DENGAN VARIASI JARAK SUMBER SINAR-BAYANGAN (SID) DAN UKURAN FOKUS TERHADAP PEMBESARAN BAYANGAN

Oleh :

NANANG SURIANSYAH ABSTRACT

It has been analysed that the influence of the ratio focal spot size to object (

f

/ d

)

to radiograph magnification ( M )

That analysis has done with the object shape like a coin made from iron which different diameter and variation focal spot size. The experiment has done on two condition that the distance of the object to the film, at 0 cm ( object stick the film ) and 45 cm, with the tension tube 50 kV current tube 100 mA and time 0,04 s.

The experiment showed that the increasing (

f

/ d

)

wasn’t accompanied the increasing of (M) when the distance of the object to the film is 0 cm ( b=0 ) but when the distance is more than 0 (b>0) it will be resulted in the increasing of (

f

/ d

)

rate which is companied with in the increasing of (M).

Key word : focal spot, SID , magnification radiograf. PENDAHULUAN

1.1.Latar Belakang

Dewasa ini perkembangan IPTEK semakin pesat termasuk dalam bidang kedokteran. Sejalan dengan itu tingkat kesadaran masyarakat akan pentingnya kesehatan juga semakin tinggi. Akibatnya tuntutan akan pelayanan kesehatan yang baik juga meningkat. Penggunaan sinar–X untuk diagnosis di laboratorium radiologi didasarkan pada hasil rekaman pada film sinar–X. Dari tampilan film sinar–X itu dokter dapat mendignosis suatu kelainan dalam tubuh pasien. dalam mendiagnosis suatu penyakit, diperlukan suatu radiograf yang berkualitas, akan tetapi tetap memperhatikan proteksi radiasi.

Karena keterbatasan mata kita, maka bagian terkecil dari suatu radiograf akan tidak terlihat, untuk itu kita butuh gambaran yang lebih besar dari aslinya, sehingga struktur organ yang terkecil dapat terlihat. Gambaran tersebut akan kita peroleh dengan mengubah

jarak sumber sinar dan bayangan (Source

Image Distance =

SID

) pada saat

pemeriksaan radiografi berlangsung. Teknik radiografi ini sering disebut dengan Radiologi

makro. Salah satu kelebihan dari radiologi

makro adalah untuk memperlihatkan struktur organ yang sekecil-kecilnya, hal ini sesuai dengan salah satu prinsip radiografi makro, yaitu detail yang kecil menjadi lebih besar (Carrol, 1985 ).

Dari pengalaman yang diperoleh di lapangan pemeriksaan radiografi makro ini sering dilakukan dengan mengubah jarak, baik

jarak sumber sinar dan bayangan (

SID

),

jarak sumber sinar dan objek (Source Object

Distance =

SOD

), maupun jarak objek dan

bayangan (Object Image Distance =

OID

).

Radiografi makro dapat dilakukan dengan dua cara, yang pertama yaitu dengan mengubah

jarak sumber sinar dan bayangan (

SID

)

dengan jarak sumber sinar dan objek (

SOD

) tetap. Yang kedua dengan mengubah jarak

sumber sinar dan objek (

SOD

) dengan jarak

sumber sinar dan bayangan (

SID

) tetap.

Namun dilapangan radiografi makro sering dilakukan dengan mengubah ketiga komponen jarak tersebut. Hal ini tentu saja kurang praktis dan akan menyulitkan dalam memperhitungkan pembesaran bayangan yang dihasilkan ( Curry, 1984 ).

Di sisi lain, dengan adanya fokus yang secara riil tidak berupa titik, hal ini akan menimbulkan ketidaktajaman geometri yang akan berpengaruh terhadap pembesaran bayangan (magnifikasi). Dengan menggunakan ukuran fokus besar, jarak

sumber sinar dan bayangan (

SID

) kecil,

jarak sumber sinar dan objek (

SOD

) kecil,

dan jarak objek dan bayangan (

OID

) besar, seperti yang terjadi dilapangan maka akan

(2)

menyebabkan ketidaktajaman geometri yang besar, dimana akan menghasilkan pembesaran bayangan dengan radiograf yang kurang tajam. Untuk menghasilkan radiograf yang tajam dengan pembesaran bayangan yang optimal, dilakukan dengan cara merubah jarak

sumber sinar dan bayangan (

SID

) dengan

jarak sumber sinar dan objek (

SOD

) tetap.

Jika ukuran fokus efektif berupa titik, perhitungan pembesaran bayangan diatas adalah benar,tetapi pada keadaan sebenarnya ukuran fokus memiliki ukuran-ukuran yang tidak berupa sebuah titik. Untuk keadaan seperti ini ukuran fokus efektif dan ukuran objek perlu diperhatikan dalam perhitungan pembesaran bayangan atau magnifikasi (Curry,1984 ).

Dalam pembuatan radiograf pada umumnya jarak sumber sinar bayangan dan ukuran fokus berpengaruh terhadap pembesaran bayangan merupakan suatu yang perlu dicermati.

1.2. Perumusan Masalah

Berdasarkan latar balakang diatas, dapat dikemukakan bahwa pembesaran bayangan dapat memberikan informasi sebenarnya dari suatu objek,ukuran fokus efektif dan ukuran objek perlu diperhitungkan dalam penentuan pembesaran bayangan. Oleh sebab itu pada penelitian ini akan diamati berapa besar pengaruh variasi

SID

dan

ukuran fokus terhadap pembesaran bayangan.

1.3. Pembatasan Masalah

Pada penelitian ini, permasalahan hanya dibatasi pada pengaruh variasi (

SID

) dan ukuran fokus terhadap pembesaran bayangan.

1.4. Tujuan Penelitian

Penelitian ini bertujuan untuk mengamati pengaruh faktor variasi

SID

dan

ukuran fokus terhadap pembesaran bayangan

radiograf.

1.5. Manfaat Penelitian

a. Dapat diketahui ukuran objek yang sebenarnya pada penentuan diagnosa dengan lebih akurat.

b. Dapat digunakan sebagai bahan kajian di lapangan.

TINJAUAN PUSTAKA

2.1. Produksi dan Prinsip Dasar Penggambaran Sinar-X

Sinar–X dihasilkan oleh elektron yang menumbuk target dalam tabung sinar–X. dengan adanya perbedaan tegangan tinggi antara katoda dengan anoda maka terjadilah pancaran elektron dengan kecepatan yang tinggi dari katoda menuju anoda. Lebih kurang 1 % energi kinetik diubah menjadi sinar–X dan 99 % diubah menjadi panas ( Meredith dan Massey,1977).

Tabung sinar-X dibuat hampa udara dengan tujuan untuk menghindari gesekan molekul udara dan elektron katoda yang memancar. Masing-masing elektron yang memancar merupakan suatu satuan energi :

eV

E

=

………( 2.1 ).

dengan

e

,

muatan elektron ( C ), dan

V

beda potensial ( Volt ).

Sinar–X termasuk gelombang elektromagnet dengan besar kecepatan cahaya dalam ruang hampa kira-kira

3

×

10

8 m/detik.

Suatu gelombang elektromagnetik mulai ditimbulkan dengan mempercepat suatu partikel bermuatan, bila hal ini terjadi sebagian energi dari partikel bermuatan ini diradiasikan sebagai radiasi elektromagnetik. Gelombang-gelombang tersebut terdiri dari medan listrik dan medan magnet yang bergetar dan saling tegak lurus satu sama lain terhadap arah perambatan gelombang (Cember, 1983 ).

2.2. Prinsip Dasar Penggambaran Sinar–X Secara sederhana prinsip penggambaran sinar-X adalah melewatkan penyerapan suatu bagian dari berkas sinar–X tersebut. Sedangkan berkas yang diteruskan akan jatuh pada Image Receptor, seperti film sinar–X (lihat gambar 2.1). Kemudian film harus diproses secara kimiawi sebelum akhirnya dapat dibaca ( Cember, 1983 )

(3)

2.3. Prinsip Dasar Radiografi makro Radiografi makro berasal dari kata

macro dan radiography. Menurut Curry

(1984), macro berarti bentuk kombinasi yang besar atau ukuran panjang yang abnormal. Sedangkan radiography berarti membuat film rekama (radiograf) jaringan-jaringan tubuh bagian dalam dengan melewatkan sinar-X atau sinar gacma melewati tubuh agar mencetak gambar pada film yang sensitif (Curry, 1984). Radiografi makro sering juga disebut dengan Magnifikasi radiography, yang berasal dari kata magnification dan radiography.

Magnification adalah proses membuat sesuatu

sehingga nampak lebih besar serta dengan menggunakan lensa atau rasio antara ukuran yang nampak (bayangan) dengan ukuran yang sebenarnya (Curry, 1984).

Pengertian radiografi makro adalah suatu metode pembesaran secara langsung dari pencitraan dengan meletakkan subjek diantara tabung sinar-X dan film sejauh jarak tertentu yang kemudian menghasilkan pembesaran bayangan (magnifikasi).

Untuk memperoleh radiografi makro dilakukan dengan cara :

SOD

tetap,

SID

berubah

SID

tetap,

SOD

berubah ( lihat gambar 2.2)

Gambar 2.2. Pengukuran jarak pada pemeriksaan radiografi makro dengan

F

:

Fokus

,a :

SOD

,

O

:

Objek

,b

:

OID

,

I

: Image

C

:

SID

.

2.4. Faktor-Faktor Penentu Radiografi Makro

Dalam radiografi makro terdapat tiga faktor penentu yaitu : SID,OID, dan Ukuran

focus (Carrol, 1985).

SID

(Source Image

Distance) adalah jarak antara sumber sinar dan bayangan, sering disebut juga dengan

FFD

(Focus Film Distance). Pengaruh terhadap ketidaktajaman geometri

Ketidaktajaman geometri adalah ketidaktajaman akibat adanya penumbra yang disebabkan oleh faktor geometri. Pada saat objek diletakkan secara langsung pada film, ketidaktajaman menjadi kecil. Ketidaktajaman tinggi yang didapatkan sebanding dengan jarak sumber sinar dan bayangan (

SID

) dan jarak sumber sinar- objek (

SOD

) yang bertambah, karena penumbra pada radiograf dapat diperkecil (lihat gambar 2.3 ), penumbra tersebut berkurang pada

SID

dan

SOD

yang besar .

Gambar 2.3.

SID

dan

SOD

yang bertambah menyebabkan penumbra yang

kecil (Carrol, 1985 ).

Pada suatu radiograf terdapat kekaburan suatu detail yang meluas sampai daerah tertentu dinamakan ketidaktajaman, ketidaktajaman geometri akan meningkat disertai dengan bertambahnya panjang focal

spot efektif, berkurangnya jarak dari fokus ke

film, serta bertambahnya jarak dari objek ke film, ketidaktajaman geometri akan semakin besar jika focal spot efektif semakin besar, jarak fokus ke film semakin kecil serta jarak objek ke film semakin besar

Pengaruh terhadap pembesaran bayangan (magnifikasi )

Secara umum

SID

dan

SOD

yang bertambah harus digunakan untuk meminimalkan magnifikasi ( lihat gambar 2.4)

(4)

Gambar 2.4. Magnifikasi pada penambahan

SID

dan

SOD

(Carrol, 1985).

OID

(Objeck Image Distance)

Adalah jarak antara objek dan bayangan sering juga disebut dengan

OFD

(Object Film Distance). Jarak antara objek dan bayangan (

OID

) merupakan faktor penting dalam pengaturan ketajaman radiograf. Ketika objek diletakkan langsung diatas film, maka ketajaman radiograf akan optimal. Oleh karena itu diusahakan untuk meminimalkan (

OID

) pada semua prosedur pemeriksaan radiograf normal ( Carrol, 1985 ).

Pengaruh terhadap ketajaman geometri Pada saat

OID

bertambah ( lihat gambar 2.5 ) ketajaman tidak sebesar ketika objek dekat dengan film, lebih besar

OID

, maka akan lebih besar penumbra yang dihasilkan, sehingga akan lebih besar ketidaktajamannya.

Gambar 2.5.

OID

yang bertambah menyebabkan penumbra yang besar

(Carrol, 1985 ).

Pengaruh terhadap pembesaran bayangan (magnifikasi)

Pada saat objek dekat dengan film, magnifikasi akan minimal, dengan

SID

besar atau kecil. Radiograf akan selalu

dimagnifikasi ketika

OID

bertambah ( lihat gambar 2.6 ).

Gambar 2.6. Magnifikasi pada penambahan

OID

( Carrol, 1985 ).

Gambar 2.7. Magnifikasi pada penambahan

SID ( Carrol, 1985 ).

Ukuran Fokus

Menurut Meredith dan Messey (1977) sinar–X berasal dari suatu bidang yang berukuran kecil pada target. Bidang ini disebut dengan focal spot. Dengan adanya permukaan target yang miring ini akan sangat menguntungkan, kerana akan dapat mengurangi ukuran focal spot (disebut juga dengan fokus atau sumber sinar). Pada gambar 2.7. terlihat bahwa garis (a) mencerminkan fokus efektif / nyata (effective focus), hal ini merupakan proyeksi dari garis (b) ( actual

focus ).

Gambar 2.7. Effective focus dan actual focus

a

= b

sin

φ

………..( 2. 2 ). dengan

a

, Effective focus

b

, Actual focus

φ

, Sudut Inklinasi (Meredith dan Messey, 1977 ).

(5)

Pengaruh terhadap ketidaktajaman geometri

Pertambahan ukuran fokus mengurangi ketajaman radiograf karena penumbra pada radiograf akan membesar (lihat gambar 2.8). Dengan penumbra yang besar, radiograf yang dihasilkan kabur.

Gambar 2.8. Ukuran fokus yang bertambah menyebabkan penumbra

yang besar ( Carrol, 1985 ). Pengaruh terhadap pembesaran bayangan

( magnifikasi )

Apabila ukuran fokus diperbesar maka penumbra yang dihasilkan akan besar, hal ini akan mempengaruhi magnifikasi.

2.4. Pembesaran Bayangan (Magnifikasi) Magnifikasi didefinisikan sebagai perbandingan ukuran gambar terhadap ukuran objek, dengan gambar yang dihasilkan adalah sama atau lebih besar dari ukuran objek aslinya ( Curry,1984 ).

M

=

o

I

………. ( 2. 3 ).

dengan M, Magnifikasi, I, Ukuran

gambar, dan O, Ukuran objek.

Menurut ( Carrol 1985 ) rasio magnifikasi dapat dirumuskan dengan :

M

=

SOD

SID

atau

M

=

OID

SID

SID

………….( 2. 4 ).

Radiografi makro akan menghasilkan

true magnifikasi (

M

) atau disebut juga

magnifikasi total dan geometri magnifikasi

(

m

) atau disebut juga normal magnifikasi (Curry, 1984 ).

2.5. Faktor-faktor yang berpengaruh terhadap magnifikasi

Sinar–X yang dihasilkan dari sebuah fokus yang berupa titik (lihat gambar 2.9) akan menghasilkan true magnification (

M

) dan geometri magnification (

m

) yang sama ( Curry, 1984 ).

M

=

m

=

a

b

a

+

……… ( 2. 5 ). dengan

M

, True magnification, m ,

geometri magnification,

a

, jarak sumber

sinar dan objek (

SOD

), dan

b

, jarak objek

dan bayangan (

OID

).

Gambar 2.9. Bayangan yang telah mengalami magnifikasi yang dihasilkan

oleh sebuah fokus yang berupa titik (Curry, 1984 ).

Jika

OID

digandakan dan kemudian

SID

juga digandakan ( lihat gambar 2.10 ).

Gambar 2.10.

OID

dan

SID

digandakan menyebabkan magnifikasi dan penumbra yang sama besar

(6)

(Carrol, 1985).

Perbandingan antara

OID

dan

SID

akan tetap sama. Faktor magnifikasi yang terjadi adalah satu dan tidak ada perubahan pada penumbra dan magnifikasi (Carrol, 1985).

Menurut Carrol (1985)

OID

besar sering dipakai dalam prosedur khusus yang sengaja memperbesar detail-detail kecil pada radiograf. Dengan pemakaian ukuran fokus yang sangat kecil, ketajaman akan tetap baik sepanjang magnifikasi dibuat dengan memperbesar

OID

. Teknik magnifikasi seharusnya tidak digunakan pada saat ukuran fokus yang besar, karena akan menyebabkan ketajaman pada radiograf berkurang.

METODE PENELITIAN

3.1. Tempat dan waktu Penelitian a. Tempat Penelitian

Penelitian dilakukan di Instalasi Radiologi Rumah Sakit Umum Dokter Agoesdjam Kabupaten Ketapang Kalimantan barat. b. Waktu penelitian

Selama : 3 ( tiga ) bulan. 3.2. Alat dan bahan

Alat-alat yang digunakan dalam penelitian ini terdiri dari :

1. Pesawat sinar- X : Merk Toshiba Model : Tipe KXO – 32 R Tahun Pembuatan : 2005

Tegangan Tabung : 150 kV

2. Bahan atau benda yang digunakan sebagai objek adalah koin logam dengan ukuran diameter yang bervariasi yakni 0,6 cm, 1 cm, 1,2 cm, 2 cm, dan 5 cm. Sedangkan variasi ( SID ) 49 cm, 50 cm, 53 cm, 55 cm, 58 cm, 68 cm, 70 cm, 73 cm, 75 cm, 77 cm dan 80 cm.

Peralatan lain yang digunakan dalam pembuatan radiograf adalah antara lain kaset film berukuran ( 24

×

30 cm ) dan ( 18

×

24 cm ), serta gabus dengan ketinggian 45 cm, dengan tegangan tabung 50 kV arus tabung 100 mA dan waktu 0,04 s.

3.3. Skema Penelitian

Dalam penelitian yang akan dilakukan penulis menyusun skema penelitian sebagai berikut :

Gambar 3.1. Skema Penelitian 3.4. Pada gambar skema berikut

menunjukkan proses pembuatan gambar radiograf.

Untuk mendapatkan data mengenai jarak sumber sinar-bayangan (

SID

), ukuran fokus dan pembesaran bayangan dari hasil radiograf yang didapat dengan langkah-langkah sebagai berikut :

1) Untuk data jarak sumber sinar–bayangan (

SID

) dan pembesaran bayangan, kaset yang sudah terisi film diletakkan diatas meja pemerikasaan.

2) Koin logam (dengan diameter bervariasi) diletakkan diatas kaset dengan (

SOD

) 45 cm dan (

SID

) bervariasi.

3) Pemotretan dilakukan satu lembar film dibagi menjadi beberapa bagian, dengan satu bagian untuk satu kali pemotretan. 4) Lakukan kembali pemotretan beberapa

kali dengan (

SOD

) sama tetapi (

SID

)

berbeda ( 49, 50, 53, 55, 58, 68, 70, 73, 75, 77, 80 cm ), dengan cara koin logam diletakkan diatas gabus dengan ketinggian 45 cm.

5) Kemudian film diproses sehingga menghasilkan radiograf.

(7)

Untuk mendapatkan data ukuran fokus dan pembesaran bayangan dilakukan langkah-langkah sebagai berikut :

1) Kaset yang sudah terisi film diletakkan diatas meja pemerksaan

2) Kion logam dengan diameter bervariasi diletakkan tepat diatas kaset dengan (

SID

) 75 cm pemotretan dilakukan. 3) Lakukan kembali pemotretan beberapa

kali dengan (

SID

) sama tetapi ukuran fokus berbeda (0,6 ; 1 ; 1,2 ; 2 ; 5) cm. 4) Kemudian film diproses sehingga

menghasilkan radiograf.

5) Kemudian hasil dicatat dan dianalisa menurut jarak sumber sinar-bayangan (

SID

) dan ukuran fokus dengan pembesaran bayangan yang dihasilkan.

HASIL DAN PEMBAHASAN

Magnifikasi dari penelitian ini diperoleh dengan dua cara yaitu melalui perhitungan dan eksperimen. Sedangkan magnifikasi melalui eksperimen diperoleh dengan membandingkan diameter radiograf dan diameter obyek. Diameter radiograf dari setiap obyek (koin) yang digunakan dalam penelitian ini dapat dilihat pada lampiran III. 4.1. Magnifikasi untuk jarak obyek ke film

0 cm (obyek menempel kaset film) Hasil perhitungan dan hasil eksperimen diplot pada grafik. Gambar 4.1, 4.2, 4.3, 4.4. dan 4.5. menunjukkan grafik magnifikasi perhitungan dan pengukuran untuk lima ukuran focal spot efektif (0,6; 1; 1,2; 2; 5) cm pada jarak focal spot efektif ke film 75 cm dan jarak obyek – film 0 cm.

0 0.5 1 1.5

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

Perbandingan ukuran focal spot efektif terhadap obyek (f/d)

M a g n if ik a s i

Magnifikasi geometri Magnifikasi radiografi

Gambar 4.1. Grafik magnifikasi sebagai fungsi perbandingan ukuran

focal spot efektif terhadap objek

(f/d) untuk ukuran focal spot efektif : 0,6 cm. 0 0.2 0.4 0.6 0.8 1 1.2 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 Perbandingan ukuran focal spot efektif terhadap obyek (f/d)

M a g n if ik a s i

Magnifikasi geometri Magnifikasi radiografi

Gambar 4.2. Grafik magnifikasi sebagai fungsi perbandingan ukuran

focal spot efektif terhadap

objek (f/d) untuk ukuran focal

spot efektif : 1 cm. 0 0.5 1 1.5 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Perbandingan ukuran focal spot efektif terhadap obyek (f/d)

M a g n if ik a s i

Magnifikasi geometri Magnifikasi radiografi

Gambar 4.3. Grafik magnifikasi sebagai fungsi perbandingan ukuran

focal spot efektif terhadap

objek (f/d) untuk ukuran focal

spot efektif : 1,2 cm. 0 0.5 1 1.5 0.0000 0.5000 1.0000 1.5000 2.0000

Perbandingan ukuran focal spot efektif terhadap obyek (f/d)

M a g n if ik a s i

Magnifikasi geometri Magnifikasi radiografi

Gambar 4.4. Grafik magnifikasi sebagai fungsi perbandingan ukuran

focal spot efektif terhadap

objek (f/d) untuk ukuran focal

spot efektif : 2 cm 0 0.2 0.4 0.6 0.8 1 1.2 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 Perbandingan ukuran focal spot efektif terhadap obyek (f/d)

M a g n if ik a s i

Magnifikasi geometri Magnifikasi radiografi

Gambar 4.5. Grafik magnifikasi sebagai fungsi perbandingan ukuran

focal spot efektif terhadap

objek (f/d) untuk ukuran focal

(8)

Hasil perhitungan memberikan magnifikasi geometri (m) dan magnifikasi radiograf (M) yang sama yaitu 1. Ketika ukuran focal spot efektif diubah 1 cm pada kondisi yang sama, menyebabkan nilai f/d bertambah tetapi tidak diikuti dengan bertambahnya nilai M. Hal serupa terjadi ketika ukuran focal spot efektif diubah menjadi 1,2 cm pada kondisi yang sama. Pada ukuran demikian dikatakan tidak terjadi magnifikasi dan grafik yang diperoleh berupa garis horizontal yang identik seperti tampak pada gambar 4.1, 4.2, 4.3, 4.4. dan 4.5.

Hasil pengukuran memberikan nilai magnifikasi geometri dan magnifikasi radiograf yang menunjukkan kecenderungan yang hampir sama dengan hasil perhitungan. Sedikit perbedaan yang muncul disebabkan adanya faktor simpangan pada pengukuran dan pembulatan dalam setiap perhitungan. 4.2. Magnifikasi dengan jarak obyek ke

film 45 cm

Grafik magnifikasi sebagai fungsi dari perbandingan ukuran focal spot efektif terhadap obyek (f/d) untuk lima ukuran focal spot efektif (0,6; 1; 1,2; 2; 5) cm dan jarak obyek – film 45 cm ditunjukkan pada gambar 4.6, 4,7, 4,8, 4.9, 4.10. 0.0000 1.0000 2.0000 3.0000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 f/d M

Magnifikasi geometri Magnifikasi radiografi

Gambar 4.6. Magnifikasi Radiograf sebagai

fungsi perbandingan ukuran focal spot efektif terhadap objek (f/d), jarak focal spot objek 49 dan ukuran focal spot efektif 0,6 cm 0.0000 1.0000 2.0000 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 f/d M

Magnifikasi geometri Magnifikasi radiografi

Gambar 4.7. Magnifikasi Radiograf sebagai fungsi perbandingan ukuran focal spot efektif terhadap objek (f/d), jarak focal spot

objek 50, dan ukuran focal spot efektif 1 cm 0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 f/d M

Magnifikasi geometri Magnifikasi radiografi

Gambar 4.8. Magnifikasi Radiograf sebagai fungsi perbandingan ukuran focal spot efektif terhadap objek (f/d), jarak focal spot objek 53, dan ukuran focal spot efektif 1,2 cm

Gambar 4.9. Magnifikasi Radiograf sebagai fungsi perbandingan ukuran focal spot efektif terhadap objek (f/d), jarak focal spot objek 55, dan ukuran focal spot efektif 2 cm

Gambar 4.10. Magnifikasi Radiograf sebagai fungsi perbandingan ukuran focal spot efektif terhadap objek (f/d), dengan jarak focal spot objek 58 dan ukuran focal spot efektif 5 cm

Hasil perhitungan memberikan nilai magnifikasi geometri (m) dan magnifikasi radiograf (M) yang tidak sama. Peningkatan nilai perbandingan ukuran focal spot efektif dan obyek menyebabkan bertambahnya nilai

(9)

magnifikasi radiograf, hal ini dapat dilihat pada gambar 4.6. Ketika ukuran focal spot efektif diubah dengan menggunakan ukuran 1 cm pada kondisi yang sama mengakibatkan bertambahnya nilai perbandingan ukuran focal spot efektif dan obyek disertai dengan meningkatnya nilai magnifikasi radiograf, ada nilai simpangan magnifikasi radiograf di bawah nilai magnifikasi geometrik seperti terlihat pada gambar 4.6 dan 4.7 hal ini disebabkan oleh pengaruh jarak sumber sinar bayangan (SID) dengan jarak sumber sinar objek (SOD) begitu dekat dan ukuran focal spot efektif yang digunakan.

Hasil pengukuran magnifikasi radiograf menunjukkan kecenderungan yang hampir sama pada tiap-tiap ukuran fokal spot, perbedaan nilai antara hasil perhitungan dengan hasil pengukuran, hal ini disebabkan karena adanya pengaruh faktor magnifikasi geometri dan magnifikasi radiograf.

Dari pembahasan di atas bisa disimpulkan bahwa yang menyebabkan terjadinya magnifikasi adalah faktor geometri, dalam hal ini adalah jarak obyek ke film. Hal ini terbukti ketika jarak obyek ke film sama dengan 0, bertambahnya nilai perbandingan ukuran focal spot efektif dan obyek tidak menyebabkan bertambahnya nilai magnifikasi radiograf, tetapi ketika jarak obyek ke film tidak sama dengan 0, bertambahnya nilai perbandingan ukuran focal spot efektif dan obyek menyebabkan bertambahnya nilai magnifikasi radiograf.

KESIMPULAN DAN SARAN 5.1. Kesimpulan

Berdasarkan hasil studi ini disimpulkan beberapa hal sebagai berikut:

1. Perbandingan ukuran focal spot efektif terhadap obyek tidak berpengaruh pada magnifikasi radiograf jika jarak obyek ke film adalah 0 cm.

2. Pengaruh perbandingan ukuran focal spot efektif terhadap obyek terlihat ketika jarak obyek ke film tidak sama dengan 0. meningkatnya nilai perbandingan ukuran focal spot efektif dan obyek mengakibatkan bertambahnya magnifikasi radiograf untuk obyek dan film yang mempunyai jarak tertentu. 3. Pola peningkatan magnifikasi secara

eksperimen mempunyai kecenderungan

yang sama dengan magnifikasi radiograf hasil perhitungan.

4. Magnifikasi radiograf akan sama dengan magnifikasi geometri jika objek menempel pada kaset.

5.2. Saran

Pada penulisan tugas akhir ini diperoleh data-data, dilakukan pengolahan data dan diperoleh hasil penelitian sehingga didapatkan kesimpulan. Berpedoman pada hasil penelitian tersebut penulis menyarankan :

1. Praktisi radiograf hendaknya lebih teliti dalam melakukan teknik radiograf bila dalam teknik tersebut menggunakan perhitungan magnifikasi. Perhitungan magnifikasi hendaknya memperhatikan faktor f/d sehingga perhitungannya lebih akurat.

2. Praktisi radiograf dalam melakukan pekerjaannya hendaknya disamping memperhatikan aspek medis juga memperhatikan aspek fisis sehingga tingkat kesalahan menjadi minimal. 3. Praktisi radiograf hendaknya selalu

meningkatkan kemampuannya baik melalui saran formal maupun informal.

DAFTAR PUSTAKA

Bushong, S.C., 1988, “Radiology Science For

Technology” The C.V. Mosby

Company, Toronto, ST. Louis, Washington D.C.

Cember, H., 1983, “Pengantar Fisika

Kesehatan” (diterjemahkan oleh

Achmad Toekiman), IKIP Press, Semarang.

Curry III, Thomas S., 1984, “Christensens

Introduction to The Physics of Diagnostic Radiology” Third Edition,

Lea and Eigher Philadelphia.

Carrol, QB, 1985, “ Principle of Radiographic

Exposure Processing and Quality Control, Third Edition, Charless C,

Thomas Publisher, USA.

Meredith, W.J. and Massey, J.B., 1977, “Fundamental Physics of Radiology” Third Edition, John Wright and Sons LTD Bristol.

Gambar

Gambar 2.1. Prinsip penggambaran sinar–X.
Gambar 2.2. Pengukuran jarak pada  pemeriksaan radiografi makro dengan
Gambar  2.4.  Magnifikasi pada  penambahan SID  dan  SOD
Gambar 2.8. Ukuran fokus yang  bertambah menyebabkan penumbra
+4

Referensi

Dokumen terkait