• Tidak ada hasil yang ditemukan

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Runusan Masalah

N/A
N/A
Protected

Academic year: 2022

Membagikan "BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Runusan Masalah"

Copied!
10
0
0

Teks penuh

(1)

BAB I PENDAHULUAN 1.1 Latar Belakang

Kimia inti adalah ilmu yang mempelajari struktur inti atom dan pengaruhnya terhadap kestabilan inti serta reaksi-reaksi inti yang terjadi pada proses peluruhan radio nuklida dan transmutasi inti. Inti menepati bagian yang sangat kecil dari volume suatu atom, tetapi mengandung sebagian besar massa dari atom karena baik proton maupun neutron berada di dalamnya.

Radiasi dan radionuklida telah lama dikenal manusia, yaitu sejak ditemukanya teknik perunut oleh Hevesy pada tahun 1923, sehingga menambah kemajuan teknik nuklir untuk di gunakan dibidang kedokteran dan industri. Ada beberapa sumber radiasi dilingkungan kita, antara lain televisi, lampu penerangan, komputer. Selain itu ada sumber radiasi yang bersifat unsur alamiah yaitu berada di air, udara dan lapisan bumi. Sumber radiasi dari unsur alamiah adalah thorium dan uranium berada di lapisan bumi, sedangkan karbon dan radon berada di udara.

Selain sumber radiasi alami terdapat juga sumber radiasi buatan manusia.

Ada dua sumber radiasi buatan manusia yaitu sumber radiasi pengion dan non pengion. Radiasi pengion adalah jenis radiasi yang dapat menyebabkan efek ionesasi apabila berinteraksi dengan sel-sel hidup. Jenis radiasi pengion adalah alpha, beta, gamma, neutron dan sinar-X. Radiasi non-pengion adalah jenis radiasi yang tidak menyebabkan ionesasi apabila berinteraksi dengan ion-ion hidup. Jenis radiasinya meliputi gelombang radio, televisi, gelombang radar dan lain-lainnya.

Dalam mempelajari kimia inti dan penerapannya lazim dimulai dengan pembicaraan nuklida-nuklida. Nuklida didefinisikan sebagai suatu spesies nuklir tertentu. Oleh karena itu, pada kesempatan kali ini akan dibahas mengenai kimia inti.

1.2 Runusan Masalah

1. Apa yang dimaksud dengan radioaktifitas dan radionuklida?

(2)

3. Bagaimana reaksi inti?

4. Apa yang dimaksud dengan radioaktivitas ? 1.3 Tujuan

1. Untuk mengetahui pengertian radioaktifitas dan radionuklida.

2. Untuk mengetahui sifat-sifat Radionuklida.

3. Untuk mengetahui bagaimana sifat reaksi inti.

4. Untuk mengetahui Radioaktifitas.

1.4 Manfaat

Makalah ini diharapkan dapat bermanfaat dalam pemahaman mengenai radioaktif dan sifat-sifatnya.

BAB II PEMBAHASAN

2.1 Pengertian Radioaktif dan Radionuklida

Radioaktifitas adalah sifat suatu unsur yang dapat memancarkan radiasi (pancaran sinar) secara spontan. Tergolong ke dalam zat radioaktif, unsur tersebut biasanya bersifat labil, berarti tergolong zat radioaktif adalah isotopnya, karena untuk mencapai kestabilan salah satunya harus melakukan peluruhan. Peluruhan zat radioaktif untuk menghasilkan unsur yang lebih stabil sambil memancarkan partikel seperti, partikel alpha α (sama dengan inti 4He), partikel beta (β), dan partikel gamma (γ). Radioaktivitas digunakan untuk memperoleh energi nuklir, dan juga digunakan dalam pengobatan (radioterapi dan radiologi) dan aplikasi industri (misalnya mengukur ketebalan dan ukuran kerapatan).

Suatu unsur dikatakan radionuklida atau isotop radioaktip ialah apabila unsur tersebut dapat memancarkan radiasi. Pada umumnya radionuklida digunakan untuk berbagai keperluan seperti dalam bidang kedokteran dan industri. Radionuklida yang digunakan tersebut tidak terdapat di alam, disebabkan waktu paruh dan beberapa factor lainnya yang kurang memenuhi persyaratan. Untuk beberapa tujuan radionuklida harus dikombinasikan dengan senyawa tertentu melalui bebarapa cara reaksi kimia. Dengan demikan tujuan

(3)

utama produksi radionuklida ialah menyediakan unsur atau senyawa radioaktif tertentu yang memenuhi persyaratan sesuai penggunaanya.

Produksi radionuklida dengan proses aktivasi dilakukan dengan cara menembaki isotop stabil dengan neutron di dalam teras reaktor. Proses ini lazim disebut penyinaran neutron, sedang bahan yang disinari disebut target atau sasaran. Neutron yang ditembakkan akan masuk ke dalam inti atom target sehingga jumlah neutron dalam inti target tersebut bertambah. Peristiwa ini dapat mengakibatkan ketidakstabilan inti atom sehingga berubah sifat menjadi radioaktif.

2.2 Sifat Radionuklida

Peran radionuklida sebagai pencari jejak tidak terlepas dari sifat-sifat khas yang dimilikinya. Sifat-sifat tersebut adalah:

1. Radionuklida memancarkan radiasi manapun dia berada dan mudah dideteksi. Radionuklida ibarat lampu yangtidak pernah padam senantiasa memancarkan cahayanya.Radionuklidadalam jumlah sedikit sekali pun dapatdengan mudah diketahui keberadaannya. Dengan teknologi pendeteksian radiasi saat ini, radionuklida dalam kisaran pikogram (satu per satu trilyun gram) pun dapat dikenali dengan mudah. Sebagai ilustrasi, jika radionuklida dalam bentuk carrier free (murni tidak mengandung isotop lain) sebanyak 0,1 gram saja dibagi rata ke seluruh penduduk bumi yang jumlahnya lebih dari 5 milyar, jumlah yang diterima oleh masing-masing orang dapat diukur secara tepat.

2. Laju peluruhan tiap satuan waktu (radioaktivitas) hanya merupakan fungsi jumlah atom radionuklida yang ada, tidak dipengaruhi oleh kondisi lingkungan baik temperatur, tekanan, pH dan sebagainya. Penurunan radioaktivitas ditentukan oleh waktu paruh, waktu yang diperlukan agar intensitas radiasi menjadi setengahnya. Waktu paruh ini merupakan bilangan khas untuk tiap-tiap radionuklida. Misalnya karbon-14 memiliki waktu paruh 5.730 tahun, sehingga radioaktivitasnya berkurang menjadi separuhnya setelah 5.730 tahun berlalu. Seluruh radionuklida yang telah

(4)

radionuklida bervariasi dari kisaran milidetik sampai ribuan tahun. Waktu paruh ini merupakan faktor penting dalam pemilihan jenis radionuklida yang tepat untuk keperluan tertentu.

3. Intensitas radiasi ini tidak bergantung pada bentuk kimia atau senyawa yang disusunnya. Hal ini dikarenakan pada reaksi kimia atau ikatan kimia yang berperan adalah elektron, utamanya elektron pada kulit atom terluar, sedangkan peluruhan radionuklida merupakan hasil dari perubahan pada inti atom.

4. Radionuklida memiliki konfigurasi elektron yang sama dengan isotop lain sehingga sifat kimia yang dimiliki radionuklida sama dengan isotop-isotop lain dari unsur yang sama. Radionuklida karbon-14, misalnya, memiliki karakteristik kimia yang sama dengan karbon-12.

5. Radiasi yang dipancarkan, utamanya radiasi gamma, memiliki daya tembus yang besar. Lempengan logam setebal beberapa sentimeter pun dapat ditembus oleh radiasi gamma, utamanya gamma dengan energi tinggi. Sifat ini mempermudah dalam pendeteksian.

2.3 Reaksi Inti

Reaksi inti sangat berbeda dengan reaksi kimia, karena pada dasarnya reaksi

inti ini terjadi karena tumbukan (penembakan) inti sasaran (target) dengan suatu proyektil (peluru). Secara skematik reaksi inti dapat digambarkan :

Reaksi Inti

Contoh reaksi inti antara lain adalah 7N14 + 2He48O17 + 1H1 yaitu inti atom Nitrogen ditembak dengan partikel (2He4) menjadi inti atom Oksigen dengan disertai timbulnya proton (1H1), inti atom oksigen yang terbentuk bersifat radioaktif.

Hukum Fisika Dalam Reaksi Inti

Dalam reaksi inti juga berlaku hukum-hukum Fisika seperti yang terjadi pada peristiwa-peristiwa Fisika yang lainnya antara lain berlaku :

(5)

hukum kekekalan momentum,

hukum kekekalan energi,

hukum kekekalan jumlah muatan (nomor atom),

hukum kekekalan jumlah nukleon (nomor massa).

Sehingga momentum, energi, nomor atom, dan nomor massa inti sebelum reaksi dan sesudah reaksi harus sama.

Energi reaksi inti yang timbul diperoleh dari penyusutan massa inti, yaitu perbedaan jumlah massa inti atom sebelum reaksi dengan jumlah massa inti atom sesudah reaksi. Menurut Albert Einstein dalam kesetaraan antara massa dan energi dinyatakan bahwa energi total yang dimiliki oleh suatu massa sebesar m adalah E = mc2. Apabila semua massa inti atom dinyatakan dalam sma (satuan massa atom), maka energi total yang dimiliki massa sebesar 1 sma setara dengan energi sebesar 931 MeV (1 sma = 1,66 × 10-27 kg, c = 3 × 108 m/s dan 1 eV = 1.6 × 10-19 Joule) Misalnya suatu reaksi inti dinyatakan menurut persamaan :

A + a → B + b + Q

Besarnya energi yang timbul dapat dicari dengan persamaan : Q = {(mA + ma) – (mB + mb)} × 931 MeV

dengan :

(mA+ma) = jumlah massa inti atom sebelum reaksi

(mB + mb) = jumlah massa inti atom sesudah reaksi

Q = energi yang timbul selama reaksi terjadi

Jenis Reaksi Inti

Dalam reaksi inti jika diperoleh Q > 0, maka reaksinya dinamakan reaksi eksoterm yaitu selama reaksi berlangsung dilepaskan energi sedangkan jika Q

< 0, maka reaksinya dinamakan reaksi indoterm yaitu selama reaksi

(6)

berlangsung diperlukan energi. Reaksi inti dibedakan menjadi dua, yaitu reaksi fisi dan reaksi fusi.

1. Reaksi Fisi

Reaksi fisi yaitu reaksi pembelahan inti atom berat menjadi dua inti atom lain yang lebih ringan dengan disertai timbulnya energi yang sangat besar.

Misalnya inti atom uranium-235 ditembak dengan neutron sehingga terbelah menjadi inti atom Xe-235 dan Sr-94 disertai dengan timbulnya 2 neutron yang memiliki energi tinggi. Reaksinya dapat dituliskan :

92U235 + 0n154Xe235 + 38Sr94 + 20n1 + Q

Dalam reaksi fisi yang terjadi akan dihasilkan energi kira-kira sebesar 234 Mev. Dalam reaksi fisi ini timbul -baru yang berenergi tinggi. Neutron- neutron yang timbul akan menumbuk inti atom berat yang lain sehingga akan menimbulkan reaksi fisi yang lain. Hal ini akan berlangsung terus sehingga semakin lama semakin banyak reaksi inti yang dihasilkan dan dalam sekejab dapat timbul energi yang sangat besar. Peristiwa semacam ini disebut reaksi fisi berantai. Reaksi fisi berantai yang tak terkendali akan menyebabkan timbulnya energi yang sangat besar dalam waktu relatif singkat, sehingga dapat membahayakan kehidupan manusia. Reaksi berantai yang tak terkendali terjadi pada Bom Atom. Energi yang timbul dari reaksi fisi yang terkendali dapat dimanfaatkannya untuk kehidupan manusia. Reaksi fisi terkendali yaitu reaksi fisi yang terjadi dalam reaktor nuklir (Reaktor Atom). Di mana dalam reaktor nuklir neutron yang terbentuk ditangkap dan tingkat energinya diturunkan sehingga reaksi fisi dapat dikendalikan.

(7)

Reaksi Fisi Dari Uranium

Pada umumnya untuk menangkap neutron yang terjadi, digunakan logam yang mampu menangkap neutron yaitu logam Cadmium atau Boron.

Pengaturan populasi neutron yang mengadakan reaksi fisi dikendalikan oleh batang pengendali yang terbuat dari batang logam Cadmium, yang diatur dengan jalan memasukkan batang pengendali ke dalam teras-teras bahan bakar dalam reaktor. Dalam reaktor atom, energi yang timbul kebanyakan adalah energi panas, di mana energi panas yang timbul dalam reaktor ditransfer keluar reaktor kemudian digunakan untuk menggerakkan generator, sehingga diperoleh energi listrik.

2. Reaksi Fusi

Reaksi fusi yaitu reaksi penggabungan dua inti atom ringan menjadi inti atom lain yang lebih berat dengan melepaskan energi.

(8)

Reaksi Fusi Dari Uranium

Misalnya penggabungan deutron dengan deutron menghasilkan triton dan proton dilepaskan energi sebesar kira-kira 4,03 MeV. Penggabungan deutron dengan deutron menghasilkan inti He-3 dan neutron dengan melepaskan energi sebesar 3,3 MeV. Penggabungan triton dengan triton menghasilkan inti He-4 dengan melepaskan energi sebesar 17,6 MeV, yang reaksi fusinya dapat dituliskan :

1H2 + 1H21H3 + 1H1 + 4 MeV

1H2 + 1H22He3 + 0n1 + 3,3 MeV

1H3 +1 H3 2He4 + 0n1 + 17,6 MeV

Agar dapat terjadi reaksi fusi diperlukan temperatur yang sangat tinggi sekitar 108 K, sehingga reaksi fusi disebut juga reaksi termonuklir. Karena untuk bisa terjadi reaksi fusi diperlukan suhu yang sangat tinggi, maka di matahari merupakan tempat berlangsungnya reaksi fusi. Energi matahari yang sampai ke Bumi diduga merupakan hasil reaksi fusi yang terjadi dalam matahari. Hal ini berdasarkan hasil pengamatan bahwa matahari banyak mengandung hidrogen (1H1). Dengan reaksi fusi berantai akan dihasilkan inti helium-4. Di mana reaksi dimulai dengan penggabungan antardua atom hidrogen membentuk deutron, selanjutnya antara deutron dengan deutron membentuk inti atom helium-3 dan akhirnya dua inti atom helium-3

(9)

bergabung membentuk inti atom helium -4 dan 2 atom hidrogen dengan melepaskan energi total sekitar 26,7 MeV, yang reaksinya dapat dituliskan:

1H1 + 1H11H2 + 1e0 + Q1 1H2 + 1H22H3 + γ + Q2 2H3 + 2H32He4 + 2 1H1 + Q3

Reaksi tersebut dapat ditulis:

4 1H1 2He4 + 2 1e0 + Q 2.4 Radioaktivitas

Atom terdiri atas inti atom dan elektron-elektron yang beredar mengitarinya. Reaksi kimia biasa (seperti reaksi pembakaran dan penggaraman), hanya menyangkut perubahan pada kulit atom, terutama elektron pada kulit terluar, sedangkan inti atom tidak berubah. Reaksi yang menyangkut perubahan pada inti disebut reaksi inti atau reaksi nuklir (nukleus=inti).

Reaksi nuklir ada yang terjadi secara spontan ataupun buatan. Reaksi nuklir spontan terjadi pada inti-inti atom yang tidak stabil. Zat yang mengandung inti tidak stabil ini disebut zat radioaktif. Adapun reaksi nuklir tidak spontan dapat terjadi pada inti yang stabil maupun,inti yang tidak stabil. Reaksi nuklir disertai perubahan energi berupa radiasi dan kalor. Berbagai jenis reaksi nuklir disertai pembebasan kalor yang sangat dasyat, lebih besar dan reaksi kimia biasa.

Pada tahun 1895, W.C. Rontgen menemukan bahwa tabung sinar katode mengahasilkan suatu radiasi berdaya tembus tinggi yang dapat menghitamkan film potret, walupun film tersebut terbungkus kertas hitam. Karena belum mengenal hakekatnya, sinar ini dinamai sinar X.

Ternyata sinar X adalah suatu radiasi elektromagnetik yang timbul karena benturan berkecepatan tinggi (yaitu sinar katode dengan suatu materi (anode). Sekarang sinar X disebut juga sinar rontgen dan digunakan untuk rongent yaitu untuk mengetahui keadaan organ tubuh bagian dalam.

(10)

Penemuan sinar X membuat Henry Becguerel tertarik untuk meneliti zat yang bersifat fluorensensi, yaitu zat yang dapat bercahaya setelah terlebih dahulu mendapat radiasi (disinari), Becquerel menduga bahwa sinar yang dipancarkan oleh zat seperti itu seperti sinar X. Secara kebetulan, Becquerel meneliti batuan uranium. Ternyata dugaan itu benar bahwa sinar yang dipancarkan uranium dapat menghitamkan film potret yang masih terbungkus kertas hitam. Akan tetapi, Becqueret menemukan bahwa batuan uranium memancarkan sinar berdaya tembus tinggi dengan sendirinya tanpa harus disinari terlebih dahulu. Penemuan ini terjadi pada awal bulan Maret 1986. Gejala semacam itu, yaitu pemancaran radiasi secara spontan, disebut keradioaktifan, dan zat yang bersifat radioaktif disebut zat radioaktif.

Zat radioaktif yang pertama ditemukan adalah uranium. Pada tahun 1898, Marie Curie bersama-sama dengan suaminya Pierre Curie menemukan dua unsur lain dari batuan uranium yang jauh lebih aktif dari uranium. Kedua unsur itu mereka namakan masing-masing polonium (berdasarkan nama Polonia, negara asal dari Marie Curie), dan radium (berasal dari kata Latin radiare yang berarti bersinar).

Ternyata, banyak unsur yang secara alami bersifat radioaktif. Semua isotop yang bernomor atom diatas 83 bersifat radioaktif. Unsur yang bernomor atom 83 atau kurang mempunyai isotop yang stabil kecuali teknesium dan promesium. Isotop yang bersifat radioaktif disebut isotop radioaktif atau radioi isotop, sedangkan isotop yang tidak radiaktif disebut isotop stabil.

Dewasa ini, radioisotop dapat juga dibuat dari isotop stabil. Jadi disamping radioisotop alami juga ada radioisotop buatan.

Pada tahun 1903, Ernest Rutherford mengemukakan bahwa radiasi yang dipancarkan zat radioaktif dapat dibedakan atas dua jenis berdasarkan muatannya.

Radiasi yang berrnuatan positif dinamai sinar alfa, dan yang bermuatan negatif diberi nama sinar beta. Selanjutnya Paul U.Viillard menemukan jenis sinar yang ketiga yang tidak bermuatan dan diberi nama sinar gamma.

Referensi

Dokumen terkait

Ulkomaisia kriittisen pedagogiikan teoreetikoita viime vuosikymmeniltä ovat esimerkiksi David Buckingham (kriittinen mediakasvatus), Henry A. Kriittisen kulttuuri- ja

dalam rangka mencapai target kinerja jangka menengah seperti yang telah di tetapkan dalam dokumen perencanaanb. Keberhasilan dan kegagalan pencapaian target

Petugas sirkulasi mencap kembali pada kartu peminjam, slip tanggaal dan kartu buku.Anggota diminta memberi paraf pada kartu buku disamping nomor buku dan kartu anggota

Untuk itu dalam penelitian ini, peneliti akan menelusuri sampai di mana dan bagaimanan penerapan tata kelola perencanaan sistem TIK khususnya dari sisi penerapan

Brower dkk., (1990) menyatakan bahwa suatu komunitas dikatakan mempunyai keanekaragaman spesies yang tinggi apabila terdapat banyak spesies dengan jumlah individu

Apersepsi dengan menggali pengetahuan mahasiswa terkait dengan materi bangun ruang yang telah disampaikan pada pertemuan sebelumnya, yaitu tentang kubus  dan   balok.. Tanya jawab

ari jumlah terse#ut le#ih dari $0% adalah remaja usia 202 tahun&amp; Berapakah tepatnya remaja.. dari $0% adalah remaja usia 202 tahun&amp; Berapakah tepatnya remaja

Yaitu proses penuangan logam cair dari tungku ke dalam ladel yang dilakukan setelah logam alumunium mencair dan telah ditaburi flux pada permukaan alumunium agar gas hydrogen