Lampiran A: Gambar Bagian- bagian dari Alat Penukar Kalor Berdasarkan Standar TEMA

Teks penuh

(1)

Lampiran – A: Gambar Bagian- bagian dari Alat Penukar Kalor Berdasarkan Standar TEMA

(Sumber: Lit. 1 hal. 2)

(2)

Lampiran – B: Tabel Tebal Shell Minimum

(Sumber: Lit. 1 hal. 30)

Lampiran – C: Tabel Diameter Ruang Bebas untuk Selongsong

(Sumber: Lit. 1 hal. 30)

Lampiran – D: Tabel Standar Batang Pengikat

(Sumber: Lit. 1 hal. 36)

(3)

Lampiran – E: Tabel Pipa

(Sumber: Lit. 31)

(4)

Lampiran - F: Tabel Flens

(Sumber: Lit. 32)

(5)

Lampiran – G: Tabel Laju Pengotoran untuk Fluida

(Sumber: Lit. 2)

(6)

Lampiran –H: Konduktivitas Termal Untuk Benda Padat

(Sumber: Lit. 4)

(7)

Lampiran – I: Parameter untuk Sifat Gas Buang SolidWorks Flow Simulation

Dynamic Viscosity

85 K -188.15 oC 0.000005741 Pa.s 100 K -173.15 oC 0.000006615 Pa.s 200 K -73.15 oC 0.00001203 Pa.s 300 K 26.85 oC 0,00001683 Pa.s 400 K 126.85 oC 0.00002113 Pa.s 500 K 226.85 oC 0.00002501 Pa.s 800 K 526.85 oC 0.00003492 Pa.s 1000 K 726.85 oC 0.00004060 Pa.s 1500 K 1226.85 oC 0.00005298 Pa.s 2000 K 1726.85 oC 0.00006301 Pa.s 2300 K 2026.85 oC 0.00006773 Pa.s 2500 K 2226.85 oC 0.00007046 Pa.s 3000 K 2726.85 oC 0.00007791 Pa.s

Spesific Heat

100 K -173.15 oC 1031 J/Kg.K 110 K -163.15 oC 1030 J/Kg.K 120 K -153.15 oC 1030 J/Kg.K 130 K -143.15 oC 1030 J/Kg.K 140 K -133.15 oC 1031 J/Kg.K 150 K -123.15 oC 1031 J/Kg.K 160 K -113.15 oC 1032 J/Kg.K 170 K -103.15 oC 1032 J/Kg.K 180 K -93.15 oC 1033 J/Kg.K 190 K -83.15 oC 1034 J/Kg.K 200 K -73.15 oC 1035 J/Kg.K 210 K -63.15 oC 1036 J/Kg.K 220 K -53.15 oC 1037 J/Kg.K 230 K -43.15 oC 1039 J/Kg.K 240 K -33.15 oC 1040 J/Kg.K 250 K -23.15 oC 1042 J/Kg.K 260 K -13.15 oC 1043 J/Kg.K 270 K -3.15 oC 1045 J/Kg.K 280 K 6.85 oC 1047 J/Kg.K 290 K 16.85 oC 1049 J/Kg.K 300 K 26.85 oC 1051 J/Kg.K 350 K 76.85 oC 1062 J/Kg.K 400 K 126.85 oC 1075 J/Kg.K 450 K 176.85 oC 1089 J/Kg.K 500 K 226.85 C 1103 J/Kg.K

(8)

Thermal Conductivity

83.15 K -190 oC 0.008903 W/m.K 93.15 K -180 oC 0.009626 W/m.K 103.15 K -170 oC 0.01035 W/m.K 113.15 K -160 oC 0.01107 W/m.K 123.15 K -150 oC 0.01179 W/m.K 173.15 K -100 oC 0.01540 W/m.K 223.15 K -50 oC 0.02256 W/m.K 273.15 K 0 oC 0.02256 W/m.K 373.15 K 100 oC 0.02965 W/m.K 473.15 K 200 oC 0.03664 W/m.K 573.15 K 300 oC 0.04352 W/m.K 673.15 K 400 oC 0.05026 W/m.K 773.15 K 500 oC 0.05687 W/m.K 873.15 K 600 oC 0.06332 W/m.K 973.15 K 700 oC 0.06963 W/m.K 1073.15 K 800 oC 0.07578 W/m.K 1500 K 1226.85 oC 0.1003 W/m.K 2000 K 1726.85 oC 0.1261 W/m.K 2500 K 2226.85 oC 0.1492 W/m.K 3000 K 2726.85 oC 0.1695 W/m.K

(9)

Lampiran J: Report untuk Alat Penukar Kalor 1 – 1 Lintasan

INPUT DATA Initial Mesh Settings

Automatic initial mesh: On Result resolution level: 5

Advanced narrow channel refinement: Off Refinement in solid region: Off

Geometry Resolution

Evaluation of minimum gap size: Automatic Evaluation of minimum wall thickness: Automatic Computational Domain

Size

X min -1.454 m

X max 0.194 m

Y min -0.251 m

Y max 0.251 m

Z min -0.140 m

Z max 0.140 m

Boundary Conditions

2D plane flow None

At X min Default

At X max Default

At Y min Default

At Y max Default

At Z min Default

At Z max Default

Physical Features

Heat conduction in solids: On Heat conduction in solids only: Off Radiation: Off

Time dependent: Off Gravitational effects: Off

Flow type: Laminar and turbulent High Mach number flow: Off Humidity: Off

(10)

Default roughness: 0 micrometer

Default outer wall condition: Adiabatic wall Initial Conditions

Thermodynamic parameters Static Pressure: 101325.00 Pa Temperature: 20.05 °C

Velocity parameters Velocity vector

Velocity in X direction: 0 m/s Velocity in Y direction: 0 m/s Velocity in Z direction: 0 m/s Solid parameters Default material: Steel Stainless 321

Initial solid temperature: 20.05 °C Radiation Transparency: Opaque Turbulence parameters Turbulence intensity and length

Intensity: 2.00 % Length: 0.003 m

Material Settings

Fluids Flue Gas Water Solids

Steel Stainless 321 Copper

Insulator

Fluid Subdomains Fluid Subdomain 1

Thermodynamic Parameters Static Pressure: 101325.00 Pa Temperature: 20.05 °C Velocity Parameters Velocity in X direction: 0 m/s

Velocity in Y direction: 0 m/s Velocity in Z direction: 0 m/s Turbulence parameters type: Turbulence intensity and length

Intensity 2.00 %

Length 0.003 m

Flow type Laminar and Turbulent

Humidity Off

Default fluid type Gas

Fluids Flue Gas

Faces Face<1>@LID1-1

(11)

Thermodynamic Parameters Static Pressure: 101325.00 Pa Temperature: 20.05 °C Velocity Parameters Velocity in X direction: 0 m/s

Velocity in Y direction: 0 m/s Velocity in Z direction: 0 m/s Turbulence parameters type: Turbulence intensity and length

Intensity 2.00 %

Length 0.003 m

Flow type Laminar and Turbulent

Cavitation Off

Default fluid type Liquid

Fluids Water

Faces Face<1>@LID4-1

Coordinate system Face Coordinate System

Reference axis X

Solid Materials Copper Solid Material 1

Components TUBE-1@APK 1-1 PASS

Solid substance Copper

Radiation Transparency Opaque

Steel Stainless 321 Solid Material 1

Components cover-1@APK 1-1 PASS

SHELL-1@APK 1-1 PASS BAFFLE-1@APK 1-1 PASS TUBESHEET-2@APK 1-1 PASS cover-2@APK 1-1 PASS

TUBESHEET-1@APK 1-1 PASS

Solid substance Steel Stainless 321

Radiation Transparency Opaque

Insulator Solid Material 1

Components PACKING-2@APK 1-1 PASS

PACKING-3@APK 1-1 PASS PACKING-4@APK 1-1 PASS PACKING-1@APK 1-1 PASS

Solid substance Insulator

Radiation Transparency Opaque

Boundary Conditions Inlet Mass Flow Gas Buang

Type Inlet Mass Flow

Faces Face <1>

Coordinate system Face Coordinate System

(12)

Reference axis X

Flow parameters Flow vectors direction: Normal to face Mass flow rate normal to face: 0.0440 kg/s Fully developed flow: Yes

Thermodynamic parameters Approximate pressure: 101325.00 Pa Temperature: 159.68 °C

Static Pressure Gas Buang

Type Static Pressure

Faces Face <1>

Coordinate system Face Coordinate System

Reference axis X

Thermodynamic parameters Static pressure: 101325.00 Pa Temperature: 80.19 °C

Turbulence parameters Turbulence intensity and length Intensity: 2.00 %

Length: 0.003 m

Boundary layer parameters Boundary layer type: Turbulent Inlet Mass Flow Air

Type Inlet Mass Flow

Faces Face <1>

Coordinate system Face Coordinate System

Reference axis X

Flow parameters Flow vectors direction: Normal to face Mass flow rate normal to face: 0.0830 kg/s Fully developed flow: Yes

Thermodynamic parameters Temperature: 28.00 °C Static Pressure Air

Type Static Pressure

Faces Face <1>

Coordinate system Face Coordinate System

Reference axis X

Thermodynamic parameters Static pressure: 101325.00 Pa Temperature: 38.82 °C

Turbulence parameters Turbulence intensity and length Intensity: 2.00 %

Length: 0.003 m

Boundary layer parameters Boundary layer type: Turbulent

Goals

(13)

Goal type Temperature of Fluid

Calculate Maximum value

Coordinate system Global coordinate system

Use in convergence On

Calculation Control Options

Finish Conditions

Finish conditions If one is satisfied

Maximum travels 4.000

Goals convergence Analysis interval: 0.500

Solver Refinement Refinement: Disabled Results Saving

Save before refinement On

Advanced Control Options Flow Freezing

Flow freezing strategy Disabled

(14)

Lampiran J: Gambar Desain Alat Penukar Kalor 1. Penutup

Penutup Depan APK 1-1 Pass Penutup Belakang APK 1-1 Pass

Penutup Depan APK 1- 2 Pass Penutup Belakang APK 1- 2 Pass

(15)

Penutup Depan APK 1 - 4 Pass Penutup Belakang APK 1 - 4 Pass 2. Sekat

(a) (b) (c)

Gambar: Penutup Pelat, (a) 1 - 1 APK Pass, (b) 1 – 2 Pass, (c) 1 – 4 Pass

3. Penutup pelat

Penutup pelat dan paking memiliki bentuk geometri yang sama hanya berbeda ketetebalan dan jenis materialnya.

(a) (b) (c)

Gambar: Penutup Pelat, (a) 1 - 1 APK Pass, (b) 1 – 2 Pass, (c) 1 – 4 Pass

(16)

Lampiran H: Grafik Hubungan Hasil Perhitungan dan Simulasi CFD

Gambar: Hubungan penurunan tekanan pada sisi tabung terhadap jumlah pass

Gambar: Hubungan penurunan tekanan pada sisi selongsong (Metode Kern) terhadap jumlah pass

(17)

Gambar: Hubungan penurunan tekanan pada sisi selongsong (Metode Bell – Dellaware) terhadap jumlah pass

Gambar: Hubungan suhu keluar pada sisi tabung terhadap jumlah pass

(18)

Gambar: Hubungan suhu keluar pada sisi selongsong terhadap jumlah pass

Gambar: Hubungan efektivitas alat penukar kalor (Metode Kern) terhadap Pjumlah pass

(19)

Gambar: Hubungan efektivitas alat penukar kalor (Metode Bell – Dellaware) terhadap jumlah pass

Figur

Memperbarui...

Referensi

Memperbarui...

Related subjects :