• Tidak ada hasil yang ditemukan

Karakteristik AC mobil menggunakan putaran kompresor 1036 rpm.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Karakteristik AC mobil menggunakan putaran kompresor 1036 rpm."

Copied!
149
0
0

Teks penuh

(1)

ABSTRAK

Kebutuhan akan mesin pendingin semakin meluas. Salah satunya adalah AC Mobil yang sering dugunakan pada mobil-mobil masakini. AC Mobil digunakan untuk menyejukan ruangan kabin agar penggunanya merasa nyaman ketika berada didalam mobil. Tujuan dari penelitian ini adalah: a)Merancang dan membuat AC yang dipergunakan di mobil. b) Mengetahui karakteristik, COPaktual, COPideal, dan menghitung efisiensi mesin AC mobil. Menghitung kerja kompresor, kalor yang diserap evaporator dan kalor yang dilepas kondensor dari mesin pendingin per satuan massa.

Metode yang digunakan adalah dengan metode eksperimental. Mesin AC mobil yang dipergunakan dalam penelitian menggunakan siklus kompresi uap dan menggunakan putaran kompresor 1036 RPM. Selain itu refrigeran yang digunakan dalam AC mobil adalah R-134a. komponen-komponen utama yang digunakan dalam AC mobil meliputi kompresor, kondensor, katup ekspansi, dan evaporator. Dalam penelitian ini, penggerak awal mesin AC mobil dipilih motor listrik dengan daya sebesar 2 HP dengan RPM 1480. Serta ukuran kabin panjang 1,5 m, lebar 1,25 m, tinggi 1,25 m dan tebal triplek 3,5 mm.

(2)

ABSTRACT

The need for refrigeration increasingly widespread. One is AC cars are often used on cars refrigeration currently. AC cars are used for cooling room cabin so that users feel comfortable when you’re in the car. The purpose of this study are: a) Designing and making AC used in the car. b) knowing the characteristic, COPactual, COPideal, and calculate the efficiency of the air conditioning of the car. Calculating the compressor work, heat that absorbed by the evaporator and released by condenser from the cooling machine per unit mass.

The method used is the experimental method. AC engine car used in the study using the evaporator compression cycle and using 1036 RPM compressor rotation. Additionally refrigerant used in car air conditioning includes the compressor, condenser, expansion valve, and evaporator. In this study, the ignition machine from air conditioner cars have AC machine electric motor with a power of 2 HP at 1480 RPM As well as the size of the cabin 1.5 m long, 1.2 m wide, 1.25 m high, and 3.5 mm thick plywood.

(3)

KARAKTERISTIK AC MOBIL MENGGUNAKAN PUTARAN

KOMPRESOR 1036 RPM

SKRIPSI

(4)

CAR AC CHARACTERISTICS USING 1036 RPM

COMPRESSOR ROTATION

FINAL PROJECT

Presented as partial fulfillment of the requirement to obtain the Sarjana Teknik degree in Mechanical Engineering

By

TRIYADI

Student Number : 115214026

MECHANICAL ENGINEERING STUDY PROGRAM

MECHANICAL ENGINEERING DEPARTMENT

FACULTY OF SCIENCE AND TECHNOLOGI

SANATA DHARMA UNIVERSITY

(5)
(6)
(7)
(8)
(9)

ABSTRAK

Kebutuhan akan mesin pendingin semakin meluas. Salah satunya adalah AC Mobil yang sering dugunakan pada mobil-mobil masakini. AC Mobil digunakan untuk menyejukan ruangan kabin agar penggunanya merasa nyaman ketika berada didalam mobil. Tujuan dari penelitian ini adalah: a)Merancang dan membuat AC yang dipergunakan di mobil. b) Mengetahui karakteristik, COPaktual,

COPideal, dan menghitung efisiensi mesin AC mobil. Menghitung kerja

kompresor, kalor yang diserap evaporator dan kalor yang dilepas kondensor dari mesin pendingin per satuan massa.

Metode yang digunakan adalah dengan metode eksperimental. Mesin AC mobil yang dipergunakan dalam penelitian menggunakan siklus kompresi uap dan menggunakan putaran kompresor 1036 RPM. Selain itu refrigeran yang digunakan dalam AC mobil adalah R-134a. komponen-komponen utama yang digunakan dalam AC mobil meliputi kompresor, kondensor, katup ekspansi, dan evaporator. Dalam penelitian ini, penggerak awal mesin AC mobil dipilih motor listrik dengan daya sebesar 2 HP dengan RPM 1480. Serta ukuran kabin panjang 1,5 m, lebar 1,25 m, tinggi 1,25 m dan tebal triplek 3,5 mm.

Hasil penelitian memberikan kesimpulan. a) kerja kompresor persatuan massa refrigerant rata-rata sebesar 61,32 kJ/kg, (b) kalor persatuan massa refrigerant yang diserap evaporator rata-rata sebesar 171,63 kJ/kg, (c) kalor persatuan massa refrigerant yang dilepas kondensor rata-rata sebesar 232,95 kJ/kg, (d) COPactual rata-rata sebesar 2.80 (e) COPideal rata-rata sebesar 5,36, (f)

efisiensi rata-rata mesin AC mobil sebesar 52,28%, (g) laju aliran massa rata-rata sebesar 0,017 kg/s.

(10)

KATA PENGANTAR

Puji syukur saya sampaikan kepada Tuhan Yang Maha Esa atas berkat dan rahmatNya, sehingga Skripsi ini dapat terselesaikan dengan baik. Skripsi ini merupakan salah satu persyaratan untuk mencapai gelar sarjana S-1 program studi Teknik Mesin, Fakultas Sains dan Teknologi, Universitas Sanata Dharma.

Penulis merasa bahwa penelitian yang dilakukan merupakan penelitian yang tidak mudah, karena pada penelitian ini penulis melakukan langsung cara pembuatan dari awal, pengambilan data, pemahaman tentang prinsip kerja alat, dan solusi yang tepat terhadap masalah yang dihadapi.

Berkat bimbingan dan dukungan dari berbagai pihak, Skripsi ini dapat terselesaikan. Pada kesempatan ini dengan segenap kerendahan hati penulis menyampaikan rasa terimakasih yang sebesar-besarnya kepada :

1. Paulina Heruningsih Prima Rosa, S.Si., M.Sc., selaku Dekan Fakultas Sains dan Teknologi Universitas Sanata Dharma Yogyakarta.

2. Ir. Petrus Kanisius Purwadi, M.T., selaku Ketua Program Studi Teknik Mesin, dan Dosen Pembimbing Skripsi.

3. Budi Setyahandana, ST., M.T. selaku Dosen Pembimbing Akademik.

4. Seluruh Staf pengajar Jurusan Tenik Mesin yang telah memberikan materi selama kuliah di Universitas Sanata Dharma.

5. Ag. Rony Windaryawan yang telah membantu memberikan ijin dalam penggunaan fasilitas laboratorium untuk keperluan penelitian ini.

6. Jaimun dan Sundari selaku orang tua penulis dan keluarga penulis yang tidak dapat disebutkan satu persatu yang telah mendukung dan memberikan semangat penulis dalam menyelesaikan Skripsi.

(11)
(12)

DAFTAR ISI

Halaman

HALAMAN JUDUL ... i

TITLE PAGE ... ii

HALAMAN PENGESAHAN ... iii

DAFTAR DEWAN PENGUJI ... iv

PERNYATAAN KEASLIAN TUGAS AKHIR ... v

PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH ... vi

ABSTRAK ... vii

1.3. Tujuan Penelitian ... 3

(13)

1.5. Manfaat Penelitian... 4

BAB II DASAR TEORI DAN TINJAUAN PUSTAKA ... 6

2.1. Dasar Teori ... 6

2.1.1. Bahan Pendingin (Refrigerant) ... 15

2.1.1.1. Syarat-syarat Refrigerant ... 16

2.1.1.2. Jenis-jenis Refrigerant ... 16

2.1.2. Siklus Kompresi Uap ... 18

2.1.3. Rumus-rumus Perhitungan Karakteristik Mesin Pendingin ... 22

2.2. Tinjauan Pustaka ... 28

BAB III PEMBUATAN ALAT ... 31

3.1. Komponen-komponen Mesin AC Mobil ... 31

3.2. Peralatan Pendukung ... 40

3.3. Persiapan Alat dan Bahan ... 46

3.4. Proses Pembuatan Mesin AC Mobil ... 46

BAB IV METODOLOGI PENELITIAN ... 49

4.1. Alur Penelitian ... 49

4.2. Mesin yang Diteliti ... 50

4.3. Posisi Pemasangan Alat Ukur ... 51

4.4. Alat Bantu Penelitian ... 53

(14)

4.6. Cara Mengolah Data ... 56

4.7. Cara Mendapatkan Kesimpulan... 57

BAB V HASIL PENELITIAN DAN PEMBAHASAN ... 58

5.1. Data Hasil Penelitian... 58

5.2. Perhitungan dan Pengolahan Data ... 60

5.3. Hasil Perhitungan... 68

5.4. Pembahasan ... 72

BAB VI KESIMPULAN DAN SARAN ... 81

5.1. Kesimpulan ... 81

5.2. Saran ... 82

DAFTAR PUSTAKA ... 83

(15)
(16)
(17)
(18)

Gambar 4.10 ... 55

Gambar 5.1 ... 64

Gambar 5.2 ... 74

Gambar 5.3 ... 75

Gambar 5.4 ... 76

Gambar 5.5 ... 77

Gambar 5.6 ... 77

Gambar 5.7 ... 78

(19)

DAFTAR TABEL

Halaman

Tabel 4.1... 56

Tabel 5.1... 58

Tabel 5.2... 60

Tabel 5.3... 62

Tabel 5.4... 68

Tabel 5.5... 69

(20)

BAB I

PENDAHULUAN

1.1Latar Belakang

Air Conditioner atau yang sering disebut dengan kata AC adalah mesin pendingin yang dalam bekerjanya menggunakan siklus kompresi uap. Saat ini AC sudah banyak digunakan untuk kebutuhan sehari-hari salah satunya digunakan pada mobil. Adapun kegunaan/fungsi AC mobil yaitu untuk mengkondisikan udara di dalam kabin. AC adalah salah satu mesin pendingin yang berguna untuk mengkondisikan udara di dalam ruangan dan memberikan efek sejuk agar pengguna ruangan tersebut merasa nyaman. Selain digunakan pada mobil, AC juga sering digunakan pada tempat-tempat dan kendaraan umum seperti, rumah, rumah sakit, bank, mobil, bus, dan kendaraan transportasi lainnya. Latar belakang sebuah mobil dipasangi AC yaitu agar pengemudi dan penumpang merasa nyaman di dalam mobil, tidak merasa panas, tidak berkeringat, terhindar dari debu dan polusi yang disebabkan oleh kendaraan lain.

(21)

mobil tidak dipasangi AC maka kondisi udara di dalam kabin akan terasa panas, harus membuka jendela mobil untuk mendapatkan udara yang sejuk sehingga menyebabkan polusi dan debu masuk kedalam kabin dan menggakibatkan pengendara dan penumpang mobil merasa tidak nyaman, dan sopir harus menyiapkan lap untuk membersihkan embun yang ada dikaca apabila musim hujan.

Namun tidak sepenuhnya apabila mobil dipasangi AC itu selalu menguntungkan. Ada kerugian-kerugian yang didapat apabila mobil yang dipasangi AC yaitu, bahan bakar menjadi lebih boros, harga mobil menjadi lebih mahal, jika tidak hati-hati akan membahayakan penggunannya, dan memerlukan waktu kusus untuk membongkar pasang mesin AC mobil. Tidak semua mobil dipasangi AC, hanya mobil jenis-jenis tertentu yang biasanya dipasangi AC. Dan mobil-mobil tersebut yaitu, mobil pribadi, bus, taksi, dan alat transportasi lainnya. Rata-rata mobil yang sudah memakai AC yaitu mobil yang produksi pada tahun 2000an ke atas dikarenakan kemajuan teknologi dan minat konsumen yang semakin meningkat.

Akibat pemanasan Global dan polusi yang semakin meningkat maka penggunaan AC mobil dalam keidupanan sehari-hari menjadi sangat penting untuk memberikan kenyamanan bagi pengendara mobil. Untuk mengetahui karakteristik AC mobil yang ada di pasaran, maka penulis memilih untuk melakukan penelitian tentang AC mobil, supaya dari hasil penelitian tersebut dapat mengetahui fungsi AC mobil, karakteristik AC mobil, COPaktual, COPideal,

(22)

dapat membahayakan dan merugikan mereka. Maka dari itu masyarakat harus mengetahui fungsi dan karakteristik pada AC mobil yang ada di pasaran agar dapat menentukan mobil dengan mesin AC yang sesuai selera.

1.2Rumusan Masalah

Informasi tentang karakteristik mesin AC pada mobil yang ada dipasaran pada umumnya tidak tercantum di name plate-nya dan tidak diberikan pada saat sedang membeli mobil. Padahal informasi tentang COP dan efisiensi AC mobil sangat penting bagi konsumen untuk dapat menentukan mobil dengan mesin AC sesuai dengan seleranya. Berapakah COP dan efisiensi mesin AC mobil yang ada dipasaran?

1.3Tujuan Penelitian

Tujuan dari penelitian ini adalah: a. Merakit AC yang dipergunakan di mobil.

b. Mengetahui karakteristik mesin AC mobil yang telah dirakit yang meliputi:  Besarnya kalor persatuan massa refrigerant yang diserap evaporator. Besarnya kalor persatuan massa refrigerant yang dilepas kondensor. Besarnya kerja persatuan massa refrigerant yang diperlukan kompresor.  Menghitung COP aktual dan COP ideal.

(23)

1.4Batasan Masalah

Batasan-batasan di dalam pembuatan mesin AC mobil ini adalah: a. Refrigerant yang digunakan dalam AC mobil adalah R-134a.

b. Komponen utama AC mobil meliputi kompresor, kondensor, katup ekspansi, dan evaporator, menggunakan komponen standar yang ada di pasran.

c. AC mobil bekerja dengan menggunakan siklus kompresi uap. d. Putaran kompresor sebesar 1036 rpm.

e. Pada penelitian ini, penggerak awal mesin AC mobil dipilih motor listrik sebagai pengganti motor dengan daya sebesar 2 HP, dan putaran sebesar 1480 rpm.

f. Ukuran kabin PxLxT : 1,5 m x 1,25 m x 1,25 m, kabin terbuat dari kayu triplek dengan tebal 3,5 mm.

1.5Manfaat Penelitian

Manfaat penelitian ini adalah:

a. Dapat membantu penulis dalam memahami karakteristik AC mobil yang ada di pasaran.

b. Mendapatkan pengalaman merakit AC mobil.

c. Hasil penelitian dapat digunakan sebagai referensi atau tolok ukur bagi peneliti/perancang yang akan membuat AC mobil.

(24)
(25)

BAB II

DASAR TEORI DAN TINJAUAN PUSTAKA

2.1 Dasar Teori

Mesin AC berfungsi untuk mengkondisikan udara di dalam ruangan kabin seperti suhu udara, kelembaban udara, dan kebutuhan udara segar. Tujuan pengkondisian di dalam ruangan kabin adalah agar pengguna mobil merasa nyaman saat berada di dalam kabin. Suhu udara normal yang dihasilkan oleh AC mobil yaitu 20-25˚c serta kelembaban udara 55%-65%, dan kebutuhan udara segar yang bersih antara 10-15 CFM/orang. Kebersihan udara disebabkan karena adanya filter yang menyaring udara sebelum udara dimasukkan ke dalam ruang kabin. AC mobil ini bekerja dengan sistem kompresi uap dan menggunakan refrigerant sebagai fluida kerjanya. Jenis refrigerant yang digunakan dalam AC mobil pada umumnya mempunyai sifat yang ramah lingkungan. Siklus kompresi uap AC mobil terdiri dari komponen-komponen yang memiliki fungsi sendiri-sendiri. Adapun komponen-komponen tersebut adalah: kompresor, kondensor, filter dryer, katup ekspansi, evaporator, fan, dan kopling magnet.

(26)

udara di dalam mobil. Kaca mobil tentunya terlihat bersih. Udara yang masuk ke dalam mobil juga relative bersih, terhindar dari gas buang mobil-mobil yang ada di jalan raya. Gambar 2.1 menyajikan skematik dari mesin AC mobil, sedamgkan Gambar 2.2 menyajikan AC mobil yang sudah terpasang di dalam mobil.

Gambar 2.1 skematik mesin AC mobil

Gambar 2.2 Mesin AC yang terpasang pada mobil

(Sumber: http://dunia-otomotif-mobil.blogspot.com/2013/04/sistem-ac-air-conditioner-mobil.html)

(27)

a. Kompresor

Kompresor adalah alat yang digunakan untuk menaikkan tekanan refrigerant dalam sistem kompresi uap. Cara kerja dari kompresor yaitu menghisap refrigerant yang ditekan oleh piston dan kemudian diteruskan ke pipa yang menuju kondensor. Ada beberapa macam kompresor yang biasa digunakan dalam mesin AC mobil. Kompresor yang biasa dipakai adalah : swash plate, resipro (crank shaft) dan wobble plate. Dalam penelitian ini kompresor yang digunakan adalah kompresor jenis Swash plate. Kompresor jenis swash plate adalah jenis kompresor yang gerakkan toraknya diatur oleh swash plate pada jarak tertentu dengan 6 atau 10 silinder. Ketika salah satu sisi pada torak melakukan tekanan, maka sisi yang lainnya akan melakukan langkah hisap. Kompresor swash plate pada dasarnya memiliki proses kompresi yang sama dengan kompresor jenis crank shaft. Akan tetapi kompresor ini memiliki perbedaan tekanan pada katup hisap dan katup tekan. Selain itu, perpindahan gaya pada tipe swash plate tidak melalui batang penghubung (connecting rod), sehingga getarannya lebih kecil.

Gambar 2.3 Kompresor Swash Plate

(28)

b. Kondensor

Gambar 2.4 Kondensor

(Sumber: http://mitrabaterai.blogspot.com/2012/05/cara-kerja-ac-mobil-dan-solusinya.html)

(29)

penurunan suhu, gas jenuh menjadi cair jenuh tanpa ada penurunan suhu, cair jenuh menjadi cair disertai penurunan suhu di pendinginan lanjut. Kondensor yang sering dipakai pada mesin pendingin kapasitas kecil adalah jenis pipa dengan jari-jari penguat, pipa dengan pelat besi dan pipa dengan bersirip. Pada umumnya jenis kondensor yang sering dipakai pada AC mobil adalah jenis pipa bersirip. Dan pada penelitian ini, kondensor yang digunakan adalah kondensor pipa bersirip.

c. Filter Dryer (Receiver/drier)

Filter dryer atau Receiver/drier merupakan tabung merupakan penyimpan refrigerant cair, berisikan fiber dan desiccant (bahan pengering) untuk menyaring benda-benda asing dan uap air yang terikan pada sirkulasi refrigerant. Filter drier menerima cairan refrigerant bertekanan tinggi dari kondensor dan mengalir ke katup ekspansi. Filter drier mempunyai 3 fungsi, yaitu : menyimpan refrigerant, menyaring benda-benda asing, menyaring uap air, dan memisahkan gelembung gas dengan cairan refrigerant sebelum masuk ke katup ekspansi.

(30)

plug meleleh sehingga refigerant dapat keluar. Dengan demikian, komponen tidak rusak dan solderan khusus tersebut meleleh pada suhu 950C sampai dengan 1000C.

Gambar 2.5 Filter Dryer (Receiver Drier)

(Sumber: http://mobil-ac.blogspot.com/search/label/Receiver%2FDryer) d. Katup Ekspansi

(31)

ekspansi, refrigerant berada dalam fase cair penuh, tetapi ketika masuk evaporator fase refrigerant berupa campuran fase cair dan gas.

Gambar 2.6 Katup Ekspansi

(Sumber: http://www.omegaacmobil.com/katub-expansi.php)

Gambar 2.7 Katup Ekspansi

(Sumber: http://id.aliexpress.com/w/wholesale-toyota-corolla-expansion-valve.html)

(32)

e. Evaporator

(33)

f. Blower/fan

(34)

sehingga putaran motor penggerak terputus dari poros kompresor (putaran mesin

Dalam suatu sistem pendingin yang mengunakan siklus kompresi uap, refrigerant merupakan komponen yang penting. Refrigerant berfungsi sebagai cairan untuk menyerap kalor di evaporator dan melepas kalor di kondensor. Refrigerant yang sering digunakan pada AC mobil adalah R-134a karena ramah lingkungan dan tidak merusak lapisan ozon saat terjadi penguapan.

2.1.1.1Syarat-syarat Refrigerant

Refrigerant yang dipergunakan dalam mesin pendingin siklus kompresi uap sebaiknya mememiliki sifat-sifat sebagai berikut:

(35)

b. Tidak menyebabkan korosi pada bahan logam yang dipakai pada mesin pendingin.

c. Tidak dapat terbakar atau meledak jika bercampur dengan minyak pelumas, udara, dan sebagainya.

d. Mempunyai titik didih dan tekanan kondensasi yang rendah.

e. Mempunyai kalor laten penguapan yang besar, agar alor yang diserap evaporator besar.

f. Mempunyai konduktifitas termal yang tinggi. Secara khusus sifat dari refrigerant R-134a adalah: a. Tidak mudah terbakar.

b. Tidak merusak lapisan ozon/ramah lingkungan tidak menimbulkan pemanasan global.

c. Tidak beracun, berbau, dan berwarna. d. Memiliki kestabilan yang tinggi. e. Umur hidup di udara pendek. 2.1.1.2Jenis-jenis Refrigerant

Contoh beberapa refrigerant yang ada dipasaran: a. Amoniak (NH3)

(36)

Refrigerant ini biasa dilambangkan R-12 dan mempunyai rumus kimia CCl2 F2 (Dichloro Difluoro Methane). Refigerant jenis ini dilarang digunakan pada saat ini karena tidak ramah lingkungan. R-12 mempunyai titik didih -21,6 oF (-29,8 oC) pada tekanan 1 atm. Untuk melayani refrijerasi rumah tangga dan di dalam pengkondisian udara kendaraan otomotif.

c. Refrigerant-22

Refrigerant ini biasa dilambangkan R-22 dan mempunyai rumus kimia CHClF2. R-22 mempunyai titik didih -40,8 oC pada tekanan 1 atm. Refrigerant ini telah banyak digunakan untuk menggantikan R-12, tetapi pada saat ini penggunaan refigerant jenis ini dilarang untuk digunakan karena kurang ramah lingkungan.

d. HFC (hydro Fluoro Carbon)

Refrigerant jenis ini yang saat ini paling sering digunakan karena memiliki sifat yang ramah lingkungan sehingga tidak merusak lapisan ozon.

Pada penelitian penulis memilih menggunakan jenis refigerant yang aman, refigerant yang dipilih adalah refigerant jenis HFC (hydro fluoro carbon) atau R-134a. Freon 134a ataupun HFC-134a adalah refrigerant haloalkana yang tidak menyebabkan penipisan ozon dan memiliki sifat-sifat yang mirip dengan R-12 (diklorodiflorometana). R134a mempunyai rumus molekul CH2FCF3 dan titik didih pada−96,6 °C pada tekanan 101,321 kPa (1 atm). Secara khusus sifat dari

(37)

e. Udara

Penggunaan udara sebagai refrigerant umumnya dipergunakan di pesawat terbang, sistem pendingin menggunakan refrigerant udara menghasilkan COP yang rendah tetapi aman.

2.1.2 Siklus Kompresi Uap

Dari sekian banyak mesin refigerasi sebagian besar menggunakan siklus kompresi uap. AC mobil merupakan salah satu mesin refrigerasi yang menggunakan siklus kompresi uap. Sistem refrigerasi mempunyai empat komponen utama yaitu, kompresor, kondensor, katup ekspansi, dan evaporator. Gambar 2.12 menyajikan siklus konpresi uap.

Gambar 2.12 Skema Siklus Kompresi Uap

(38)

kondensor, refrigerant akan mengalami proses kondensasi. refrigerant membuang panas ke lingkungan sehingga refrigerant berubah fase dari gas panas lanjut menjadi gas jenuh yang disertai dengan penurunan suhu, dari gas jenuh ke cair jenuh dan dari cair jenuh ke cair lanjut. Kemudian refrigerant menuju ke katup ekspansi. Sesuai dengan fungsinya katup ekspansi ini akan menurunkan tekanan refrigerant sebelum masuk ke evaporator. Selain menurunkan tekanan katup ekspansi juga merubah fase dari cair jenuh menjadi campuran cair dan gas, sehingga pada saat refrigerant masuk kedalam evaporator sudah dalam bentuk campuran cair dan gas. Di evaporator terjadi perubahan fase dari campuran cair dan gas menjadi gas panas lanjut yang di sertai peningkatan suhu sebelun dihisap kembali oleh kompresor. Proses ini akan berlangsung secara berulang-ulang.

Siklus kompresi uap pada diagram p-h di sajikan pada gambar 2.2.

(39)

Gambar 2.14 T-S Diagram Dengan Pemanasan Lanjut dan Pendinginan Lanjut

Proses dari kompresi uap tersusun ada beberapa proses. (a) proses kompresi (b) proses kondensasi (c) proses ekspansi (d) proses evaporasi.

a. Proses (1-2) Proses Kompresi

Proses ini dilakukan oleh kompresor dan berlangsung secara isentropik adiabatik. Dalam proses ini diperlukan tenaga dari luar untuk menggerakkan kompresor (Win). Kondisi awal refrigerant pada saat masuk ke dalam kompresor adalah uap panas lanjut bertekanan rendah, setelah mengalami kompresi refrigerant akan menjadi uap panas lanjut bertekanan tinggi. Karena proses ini berlangsung secara isentropic (iso entropi atau entropi tetap), maka temperatur ke luar kompresor pun meningkat.

b. Proses (2-2’) Proses Penurunan Suhu Gas Panas Lanjut

(40)

suhunya turun. Perpindahan kalor dapat terjadi karena suhu refrigerant lebih tinggi dibandingkan dengan suhu udara di sekitar kondensor.

c. Proses (2’-3’) Proses Pengembunan

Proses ini berlangsung pada kondensor. Refrigerant bertemperature tinggi masuk kondensor untuk melepaskan kalor karena perbedaan suhu refrigerant lebih tinggi dari pada suhu lingkungan sekitar. Dalam proses ini terjadi perubahan fase refrigerant yaitu perubahan gas jenuh menjadi cair jenuh. Hal ini berarti bahwa di dalam kondensor terjadi pertukaran kalor antara refrigerant dengan lingkungannya. Proses ini berlangsung pada tekanan dan suhu tetap, meskipun refrigerant mengeluarkan kalor.

d. Proses (3’-3) Proses Pendinginan Lanjut

Pada proses pendinginan lanjut terjadi penurunan suhu. Proses pendinginan lanjut membuat membuat refrigerant yang keluar dari kondensor benar-benar dalam keadaan cair. Hal ini membuat refrigerant lebih mudah mengalir melalui katup ekspansi dalam sebuah sistem pendingin. Proses ini terjadi pada entalpi tetap.

e. Proses (3-4) Proses Penurunan Tekanan

Proses penurunan tekanan ini berlangsung di katup ekspansi. Pada proses ini tidak terjadi perubahan entalpi tetapi terjadi penurunan tekanan dan temperatur. Katup ekspansi selain berfungsi menurunkan tekanan dan suhu, berfungsi untuk mengatur laju aliran refrigerant. Pada proses ini, refrigerant mengalami perubahan fase dari fase cair menjadi campuran cair dan gas.

(41)

Proses ini berlangsung secara isobar isothermal (tekanan konstan, temperatur konstan) di dalam evaporator. Panas dari lingkungan akan diserap oleh cairan refrigerant yang bertekanan rendah sehingga refrigerant berubah fase dari campuran cair dan gas menjadi uap bertekanan rendah. Kondisi refrigerant saat masuk evaporator dalam fase campuran cair dan gas. Proses pendidihan berlangsung pada tekanan konstan, dan suhu konstan.

g. Proses (1’-1) Proses Pemanasan Lanjut

Pada proses pemanasan lanjut terjadi kenaikan suhu. Proses berlangsung pada tekanan konstan. Dengan adanya pemanasan lanjut, refrigerant yang akan masuk ke dalam kompresor benar-benar dalam kondisi gas. Hal ini membuat kompresor bekerja lebih ringan dan aman.

2.1.3 Rumus-rumus Perhitungan Karakteristik Mesin Pendingin

Untuk menentukan hasil dari unjuk kerja dari mesin pendingin diperlukan rumus-rumus perhitungan, antara lain seperti, kerja kompresor, kalor yang dilepas evaporator persatuan massa refrigerant, kalor yang diserap evaporator persatuan massa refrigerant, COPaktual, COPideal, efisiensi dan laju aliran massa.

a. Kerja Kompresor.

Besar kerja kompresi per satuan massa refrigerant dapat dihitung dengan menggunakan Persamaan (2.1).

Win = h2– h1 (2.1) Pada Persamaan (2.1) :

(42)

o h1 : entalpi refrigerant saat masuk kompresor o h2 : entalpi refrigerant saat keluar kompresor

b. Kalor yang dilepas kondensor

Besar kalor per satuan massa refrigerant yang dilepas kondensor dapat dihitung dengan menggunakan Persamaan (2.2)

Qout = h2– h3 (2.2) Pada Persamaan (2.2) :

o Qout : besar kalor persatuan massa refrigerant yang dilepas kondensor o h2 : entalpi refrigerant saat keluar kompresor

o h3 : entalpi refrigerant saat masuk katup ekspansi

c. Kalor yang diserap evaporator

Besar kalor per satuan massa refrigerant yang diserap evaporator dapat dihitung dengan menggunakan Persamaan (2.3)

Qin = h1– h4 (2.3) Pada Persamaan (2.3) :

o Qin : besar kalor persatuan massa refrigerant yang diserap evaporator o h1 : entalpi refrigerant saat masuk kompresor

o h4 : entalpi refrigerant saat masuk evaporator

(43)

COP dipergunakan untuk menyatakan perfomance (unjuk kerja) dari siklus refrijerasi. Semakin tinggi COP yang dimiliki oleh suatu mesin pendingin maka akan semakin baik mesin pendingin tersebut. COP tidak mempunyai satuan karena merupakan perbandingan antara dampak refrigerasi (h1-h4) dengan kerja

kompresor (h2-h1) dinyatakan dalam Persamaan (2.4)

COP aktual =

(2.4) Pada Persamaan (2.4) :

o COP aktual : koefisien prestasi mesin AC mobil aktual

o h1 : entalpi refrigerant saat masuk kompresor o h2 : entalpi refrigerant saat keluar kompresor o h4 : entalpi refrigerant saat masuk evaporator

e. COP ideal (Coefficient Of Performance).

Besarnya koefisien yang menyatakan performance dalam posisi ideal pada siklus kompresi uap dapat dihitung dengan Persamaan (2.5)

(44)

f. Efisiensi mesin AC mobil

Besarnya efisiensi mesin AC mobil dapat dihitung dengan menggunakan Persamaan (2.6)

 =

(2.6)

Pada Persamaan (2.6) :

o COPideal : koefisien prestasi maksimum mesin AC mobil

o COPaktual : koefisien prestasi aktual mesin AC mobil

g. Laju liran massa refrigerant.

(45)
(46)
(47)

2.2Tinjauan Pustaka

Amna Citra Farhani (2007) meneliti tentang penggantian R12 dengan R22 pada mesin pendingin. Hasil penelitian memperlihatkan bahwa penggantian R22 pada mesin pendingin kompresi uap yang menggunakan refrigerant R12 mempengaruhi kinerja komponen mesin pendingin. Efek pendinginan, panas buang kondensor dan kompresi. Hasil kompresi yang didapat dari R22 lebih besar, akan tetapi tidak diikuti dengan laju pendinginan yang cepat. Besarnya nilai ketiga parameter ini dikarenakan besarnya laju aliran massa yang terjadi. Suhu evaporasi yang dapat dicapai R22 lebih rendah dari pada R12 karena kurangnya kalor serap air sebagi medium pendingin.

(48)

Maclaine (2004) telah melakukan pengujian tentang Usage and risk of hydrocarbon refrigerants in motor cars for Australia and the United States. Penggunan refrigerant HC-290/600 di Australia sebesar 0,33 ± 0,12 x 106 pada tahun 2002 dan di Amerika sebesar 4,7 ± 1,7 x 106 pada tahun 2002. Penggunaan 290/600 memberikan hasil : tidak mudah terbakar dan risiko penggunaan HC-290/600 jauh lebih kecil dibanding dengan refrigerant yang dijual di pasaran.

Willis (2013) melakukan penelitian yang membandingkan prestasi kerja refrigerant R22 dengan R134a pada mesin pendingin. Penelitian ini membahas mengenai perbandingan refrigerant R22 dengan R134a untuk menentukan refrigerant mana yang lebih baik untuk digunakan, baik dari efek refrigerasi maupun COP (koefisien prestasi) dan ramah tehadap lingkungan. Dari hasil penelitian yang dilakukan pada kedua jenis refrigerant, diketahui bahwa karakteristik dari kedua refrigerant berbeda yang kemudian akan berpengaruh pada prestasi kerjanya. R22 dari segi prestasinya lebih baik dari R134a, akan tetapi R22 tidak ramah lingkungan. Sedangkan R134a prestasi kerjannya lebih rendah dibandingkan dengan R22, akan tetapi R134a lebih ramah lingkungan dari pada R22.

(49)

mobil terdiri dari : kompresor, kondensor, receiver drier, katup ekspansi, dan evaporator. Fluida kerja yang digunakan yaitu refrigeran CFC-12 dan HFC-134a. Pengujian dilakukan dengan memvariasikan putaran kompresor , yaitu 1000 rpm, 1200 rpm, 1500 rpm, 1800 rpm, dan 2000 rpm. Hasil penelitian menunjukkan semakin tinggi putaran kompresor maka COP akan mengalami penurunan. CFC-12 mempunyai COPcarnot, COPstandar, dan COPaktual yang lebih tinggi dibandingkan

(50)

BAB III

PEMBUATAN ALAT

3.1 Komponen-komponen mesin AC mobil

Komponen utama pada mesin AC mobil yang dipergunakan dalam penelitian ini adalah kompresor, kondensor, katup ekspansi, receiver drier, evaporator, dan refrigeran R-134a.

a.) Kompresor

Kompresor yang dipergunakan dalam penelitian ini adalah sebagai berikut:

(51)

Gambar 3.2 Kompresor

Jenis kompresor : swash plate

Voltase : 220 volt

b.) Kondensor

(52)

Gambar 3.3 Kondensor

Gambar 3.4 Kondensor

Jenis Kondensor : Kondensor Pipa Bersirip

Ukuran : p x l x t = 50 cm x 30 cm x 3 cm

(53)

Bahan Sirip : Besi, jarak antar sirip : 3 cm

Jumlah Sirip : 1100

c.) Katup Ekspansi

Katup ekspansi yang di gunakan dalam penelitian ini memiliki spesifikasi sebagai berikut:

(54)

Gambar 3.6 Katup Ekspansi

Diameter Katup Ekspansi : 0,028 inchi

Bahan Katup Ekspansi : Tembaga

d.) Evaporator

(55)

Gambar 3.7 Evaporator

(56)

Bahan Pipa Evaporator : tembaga, Dimeter : 6 mm

Sirip Evaporator : alumunium

Ukuran Evaporator : P x l x t = 30 cm x 10 cm x 5 cm

e.) Receiver Dryer/Filter Dryer

Receiver Dryer yang di gunakan dalam penelitian ini memiliki spesifikasi sebagai berikut:

(57)

Gambar 3.10 Receiver Dyer

Bahan tabung receiver/drier : besi

Diameter : 6 cm

Panjang (tinggi) : 25 cm

f.) Refrigerant R134a

Refrigerant R134a digunakan sebagai fluida kerja pada mesin AC mobil yang dibuat.

(58)

Gambar 3.11 Tabung Refrigerant R134a

g.) Motor Listrik

Motor listrik berfungsi sebagai engine yang memutar kompresor agar sistem AC dapat berjalan. Berikut adalah spesifikasi dari motor listrik:

(59)

Gambar 3.12 Motor Listrik

3.2 Peralatan Pendukung

a) Pompa Vakum

Pompa vakum adalah alat yang digunakan untuk mengeluarkan udara dari dalam system AC mobil sebelum diisi Freon.

(60)

b) Sterofoam

Berfungsi sebagai isolator agar tidak terjadi kebocoran di dalam sistem AC mobil.

Gambar 3.14 Sterofoam c) Manifold Gauge

Alat yang berfungsi untuk mengukur tekanan refrigerant pada saat pengisian Freon maupun pada saat AC mobil sedang bekerja. Yang berwarna biru untuk tekanan rendah dan berwarna merah untuk tekanan tinggi.

(61)

d) Adaptor

Adaptor mempunyai fungsi untuk merubah arus dari AC ke DC. Spesifikasi adaptor sebagai berikut :

Arus : 7.5 A

Voltase : 6 Volt, 9 Volt, 12 Volt, 13,2 Volt

Gambar 3.16 Adaptor

(62)

e) Alat Pemotong Pipa

Alat pemotong pipa adalah alat yang mempunyai fungsi untuk memotong pipa, agar hasil potongan menjadi rapi. Selain ini juga mudah untuk dipergunakan, pipa tidak bengkok dan tidak menghasilkan tatal.

Gambar 3.18 Alat Pemotong Pipa

f) Blower

Blower digunakan untuk menghembuskan udara dingin dari evaporator ke ruang kabin mobil.

(63)

g) Kipas Kondensor

Kipas kondensor berfungsi untuk mengalirkan fluida udara melewati kondensor agar proses pelepasan kalor pada kondensor dapat dipercepat.

Gambar 3.20 Kipas Kondensor h.) Tang Meter

Tang meter digunakan sebagai alat untuk mendeteksi daya yang digunakan oleh motor listrik pada saat kopling magnet berfungsi dan tidak berfungsi.

(64)

i.) Tachometer

Tachometer berfungsi untuk mengukur rpm pada pully yang berada kopling magnet.

Gambar 3.22 Tachometer j.) Kabin (ruang AC mobil)

Kabin ini berfungsi sebagai ruang pendinginan AC mobil yang terbuat dari triplek dan rangka kayu dan dilapisi dengan sterefoam. Ruang pendinginan ini memiliki ukuran p x l x t ( 1,5 m x 1.2 m x 1 m ).

(65)

3.3 Persiapan Alat dan Bahan

Untuk mempercepat dan mempermudah proses pembuatan AC mobil maka diperlukan tahap-tahap sebagai berikut seperti, persiapan komponen-komponen. Berikut adalah komponen-komponen utama yang harus di persiapkan ( Kompresor, Kondensor, Evaporator, Katup Ekspansi), dan alat bantu yang di perlukan dalam pembuatan AC mobil.

Setelah semua komponen sudah lengkap maka tahap berikutnya yaitu proses penyambungan komponen-komponen AC mobil.

3.4 Proses Pembuatan Mesin AC mobil

Dalam pembuatan AC mobil diperlukan langkah-langkah sebagai berikut: a. Proses Pembuatan Rangka dan Perakitan Komponen

(66)

Gambar 3.24 Rangkaian Listrik dari Sumber Listrik - Adaptor - Kipas Kondensor.

Gambar 3.25 Rangkaian Listrik dari Sumber Listrik – adaptor – blower

b. Proses Pemasangan Manifold Gauge

(67)

c. Proses Pemvakuman AC mobil.

Proses ini bertujuan untuk mengeluarkan udara-udara yang terjebak di dalam saluran-saluran AC mobil agar siklus dalam AC mobil dapat berjalan dengan lancar. Dalam proses ini di perlukan pompa vakum sebagai alat untuk menghisap udara yang ada di dalam saluran-saluran mesin AC mobil.

d. Proses Pengisian Refrigerant R134a.

Dalam proses ini diperlukan refrigerant R134a sebagai fluida kerja AC mobil. Tekanan refrigerant yang akan dimasukan dalam siklus AC mobil harus sesuai dengan standar kerja AC mobil agar dapat bekerja dengan maksimal. e. Proses Pengujian AC mobil

(68)

BAB IV

METODOLOGI PENELITIAN

4.1 Alur Penelitian

Langkah-langkah kerja yang dilakukan dalam penelitian tentang AC mobil ini mengikuti alur penelitian seperti tersaji pada Gambar 4.1

Persiapan komponen : motor listrik, kompresor, kondensor, evaporator, katup ekspansi, adaptor, kipas kondensor, blower

evaporator, dan ruang kabin.

Perakitan Komponen-Komponen AC mobil

Proses pemvakuman

Penggambaran siklus kompresi uap pada P-h diagram untuk memperoleh h1, h2, h3, h4, Te, dan Tc

(69)

4.2 Mesin yang Diteliti

Dalam penelitian ini, mesin AC mobil yang digunakan menggunakan siklus kompresi uap dengan komponen-komponen AC mobil standar yang ada di pasaran. Mesin AC mobil yang digunakan untuk penelitian merupakan hasil rakitan sendiri yang proses bekerjanya disertai dengan pemanasan lanjut dengan pendinginan lanjut dan putaran kompresor sebesar 1036 rpm.Proses pendinginan yang terjadi dalam AC mobil ini dilakukan dengan cara menghembuskan udara melewati evaporator. Udara dingin yang dihasilkan kemudian dialirkan ke ruang kabin mobil. Gambar 4.2 menyajikan skematik rangkaian komponen mesin AC mobil dan Gambar 4.3 menyajikan gambar hasil AC mobil yang dirakit.

(70)

Gambar 4.3 Mesin AC mobil yang dirakit

4.3 Posisi Pemasangan Alat Ukur

Dalam proses pengambilan data (P1 dan P2) dan (T1 dan T3) langkah

(71)

suhu refrigerant yang mengalir pada pipa-pipa yang terpasang pada komponen AC mobil.

Gambar 4.4 Skematik mesin AC mobil

Keterangan pada Gambar 4.4 :

Titik 1 : Tempat pemasangan termokopel T1 dan alat ukur tekanan P1

Titik 2 : Tempat pemasangan alat ukur tekanan P2

(72)

4.4 Alat Bantu Penelitian

Dalam penelitian AC mobil ini membutuhkan alat-alat bantu lainnya untuk mempermudah proses pengambilan data. Alat-alat bantu tersebut adalah, termokopel dan alat penampilnya, alat ukur tekanan (manifold gauge), dan p-h diagram.

a. Termokopel dan Alat Penampilnya

Fungsi termokopel adalah sebagai alat sensor suhu yang digunakan untuk mengetahui perbedaan suhu pada refrigerant saat bekerja. Alat penampil suhu digital mempunyai fungsi sebagai alat yang memperlihatkan nilai suhu yang diukur.

Gambar 4.5 Penampil suhu Gambar 4.6 Termokopel b. Alat Pengukur Tekanan

(73)

Gambar 4.7 Alat ukur tekanan (manifold gauge) c. P-h Diagram

P – h diagram mempunyai fungsi untuk menggambarkan siklus kompresi uap AC mobil. Dengan P - h diagram, dapat diketahui nilai entalpi di setiap titik yang diteliti, suhu kondensor (Tc), dan suhu evaporator (Te).

(74)

d. Stopwatch

Stopwatch berfungsi untuk mengukur waktu yang diperlukan dalam pengambilan data agar tepat pada waktu yang telah ditentukan.

Gambar 4.9 Stopwatch e. Tachometer

(75)

4.5 Cara Mendapatkan Data Suhu dan Tekanan pada Setiap Titik yang Sudah Ditentukan

Untuk mendapatkan data-data dari hasil penelitian, diperlukan alat ukur seperti termokopel, dan alat ukur tekanan (manifold gauge). Dalam pengukuran suhu dan tekanan dilakukan setiap 3 menit sekali pada saat kopling magnet menghubungkan roda pulli dan poros kompresor sehingga menyebabkan refrigerant mengalir pada setiap komponen utama AC mobil. Ketika suhu di

(76)

diagram dapat diketahui nilai entalpi (h1, h2, h3, h4), suhu kondensor, suhu

evaporator dan suhu refrigerant keluar kompresor.

b. Data nilai-nilai entalpi yang sudah didapat kemudian digunakan untuk menghitung besarnya energi kalor persatuan massa yang dilepaskan kondensor, menghitung kerja kompresor, menghitung besarnya energi kalor persatuan massa yang diserap evaporator, nilai COP ideal, nilai COP aktual AC

mobil dan efisiensi, serta laju aliran massa refrigerant.

c. Perhitungan dilakukan dengan menggunakan persamaan-persamaan yang ada seperti Persamaan (2.1) untuk menghitung kerja kompresor, Persamaan (2.2) untuk menghitung energi kalor yang dilepas kondensor, Persamaan (2.3) untuk menghitung kalor yang diserap evaporator, Persamaan (2.4) untuk menghitung COP aktual, Persamaan (2.5) untuk menghitung COP ideal,

Persamaan (2.6) untuk menghitung efisiensi AC mobil dan Persamaan (2.7) untuk menghitung laju aliran massa refrigerant.

d. Hasil-hasil perhitungan (Qin, Qout, Win, COP aktual, COP ideal, Efisiensi, Laju

aliran massa) kemudian digambarkan dalam bentuk grafik agar memudahkan pembahasan. Dalam proses pembahasan harus mempertimbangkan hasil-hasil penelitian sebelumnya dan juga tidak lepas dari tujuan penelitian.

4.7 Cara Mendapatkan Kesimpulan

(77)

BAB V

HASIL PENELITIAN DAN PEMBAHASAN

5.1. Data Hasil Penelitian

Data hasil penelitian untuk nilai tekanan refrigerant (P1 & P2), suhu

refrigerant (T1 & T3), Tegangan (V), dan Arus (I) pada titik-titik yang telah

ditentukan pada waktu tertentu, disajikan pada Tabel 5.1.

(78)

Tabel 5.1 data hasil pengukuran T1, T3, P1, P2, V, dan I (lanjutan)

- P1 : Tekanan refrigerant saat masuk kompresor (Psia).

(79)

- T3 : Suhu refrigerant saat masuk katup ekspansi (oC).

- V : Tegangan listrik yang digunakan (Volt). - I : Arus listrik yang digunakan (Ampere)

5.2. Perhitungan dan Pengolahan Data.

Dari data suhu dan tekanan yang diperoleh dan dengan menggambarkannya pada diagram P-h dapat ditentukan besarnya entalpi (h). Pada penelitian ini dipergunakan diagram P-h R134a. Besar nilai entalpi (h) disetiap titik 1,2,3,4 dari waktu ke waktu disajikan pada Tabel 5.2.

(80)

Tabel 5.2 Nilai enthalpi (h) dalam Btu/lb (lanjutan)

(81)
(82)

Tabel 5.3 Nilai entalpi (h) dalam satuan kJ/kg (lanjutan)

Contoh untuk menentukan besaran nilai nilai entalpi dapat dilihat dari diagram tekanan-entalpi pada jenis refrigerant R-134a. Dari diagram dapat dilihat nilai h2 saat t menit ke-141 adalah 139 Btu/lb. Dalam perhitungan satuan h

dinyatakan dalam kJ/kg jadi nilai h2 = 139 Btu/lb = 323,31 kJ/kg (139 Btu/lb x

2,326 kJ/kg).

Keterangan dari diagram P-h pada Gambar 5.1 :

h1= 260,51 kJ/kg h3 = 90,71 kJ/kg

(83)
(84)

1) Kerja Kompresor persatuan massa refrigerant (Win)

Untuk mendapatkan kerja kompresor persatuan massa refrigerant yang dihasilkan oleh AC mobil, dapat menggunakan Persamaan (2.1) :

Win = h2-h1

= 323,31 kJ/kg – 260,51 kJ/kg

= 62,80 kJ/kg

Maka kerja kompresor persatuan massa refrigerant sebesar 62,80 kJ/kg (pada saat t = 141 menit)

2) Kalor persatuan massa refrigerant yang dilepas Kondensor (Qout)

Untuk mendapatkan nilai kalor persatuan massa refrigerant yang dilepas kondensor pada AC mobil, dapat menggunakan Persamaan (2.2) :

Qout = h2-h3

= 323,31 kJ/kg – 90,71 kJ/kg

= 232,60 kJ/kg

Maka kalor persatuan massa refrigerant yang dilepas kondensor sebesar 232,60 kJ/kg (pada saat t = 141 menit)

(85)

Untuk mendapatkan kalor persatuan massa refrigerant yang diserap evaporator pada AC mobil, dapat menggunakan Persamaan (2.3) :

Qin = h1-h4

= 260,51 kJ/kg – 90,71 kJ/kg

= 169,80 kJ/kg

Maka kalor persatuan massa refrigerant yang diserap evaporator sebesar 169,80 kJ/kg (pada saat t = 141 menit)

4) COP aktual

COPaktual dipergunakan untuk menyatakan perfomance (unjuk kerja) dari

(86)

COP ideal =

Untuk mendapatkan efisiensi AC mobil dapat dihitung dengan menggunakan Persamaan (2.6)

Efisiensi η =

x 100%

η = x 100%

η = 50%

Maka efisiensi η AC mobil sebesar 50% (pada saat t = 141 menit)

7) Laju aliran massa refrigerant (ṁ)

(87)

Maka laju aliran massa AC mobil sebesar 0,01 kg/s (pada saat t = 141 menit)

5.3. Hasil Perhitungan

Hasil perhitungan secara keseluruhan dari waktu (t) 0 menit sampai (t) 240 menit untuk nilai kerja kompresor persatuan massa refrigerant (Win), kalor

persatuan massa refrigerant yang dilepas kondensor (Qout), kalor persatuan massa

refrigerant yang diserap evaporator (Qin), COP aktual, COP ideal, efisiensi dan laju

(88)

Tabel 5.4 hasil perhitungan P1, P2, T1, T3, Te, dan Tc (lanjutan)

(89)
(90)

Tabel 5.5.Hasil perhitungan Karakteristik AC mobil (lanjutan)

Tabel 5.6. Hasil perhitungan Karakteristik AC mobil No Waktu t

(Menit) COP ideal Efisiensi laju aliran massa ṁ (kg/s)

(91)
(92)

dengan baik (kompresor tidak bocor, kondensor berfungsi dengan baik, kipas kondensor berfungsi dengan baik, katup ekspansi bekerja dengan baik, evaporator berfungsi dengan baik, blower bekerja dengan baik) sehingga dapat menghasilkan data yang baik. Hasil dari pengambilan data yang dilakukan pada mesin AC mobil dapat digambarkan pada P-h diagram dan membentuk siklus kompresi uap dengan proses pemanasan lanjut dan pendinginan lanjut. Dari penelitian yang sudah dilakukan, kerja kondensor dapat menghasilkan suhu lebih tinggi dari suhu lingkungan sekitar sehinngga proses pelepasan kalor dapat bejalan dengan baik. Suhu kerja kondensor yang dihasilkan yaitu sekitar 43,46 oC. Begitu juga suhu yang dihasilkan oleh kerja evaporator lebih rendah dari suhu udara yang berada ruangan di dalam ruang kabin mobil, suhu kerja evaporator yang dihasilkan yaitu sekitar -6,32 ˚C.

(93)

Dari hasil perhitungan yang telah dilakukan, dapat diperoleh informasi bahwa besar Win, Qin, Qout, dan COP dari mesin AC mobil dengan pemanasan

lanjut dan pendinginan lanjut dari waktu ke waktu memiliki nilai yang berbeda-beda. Gambar grafik hasil perhitungan secara keseluruhan disajikan pada Gambar 5.2, Gambar 5.3, Gambar 5.4, Gambar 5.5, Gambar 5.6, Gambar 5.7.

Gambar 5.2 Hubungan kerja kompresor persatuan massa refrigerant dan waktu Gambar 5.2 memperlihatkan kerja kompresor persatuan massa refrigerant (Win) dari waktu ke waktu. Dari hasil perhitungan yang telah dilakukan, Nilai

kerja kompresor persatuan massa refrigerant terendah sebesar 55,82 kJ/kg dan nilai kerja kompresor persatuan massa refrigerant tertinggi sebesar 65,13 kJ/kg. Nilai rata-rata dari hasil kerja kompresor persatuan massa refrigerant dari waktu (t) = 3 menit sampai waktu (t) = 240 menit sebesar 61,32 kJ/kg. Dalam proses kerjanya kompresor dapat berubah pada setiap menit, hal ini dapat terjadi karena kerja kopling magnet yang selalu memutus dan menghubungkan ke kompresor pada saat suhu dalam kabin sudah mencapai suhu yang diinginkan. Semakin besar kerja kompresor, maka energi yang dibutuhkan oleh kompresor juga semakin

(94)

besar. Sehingga hal tersebut dapat mengakibatkan borosnya bahan bakar yang dipergunakan oleh mobil yang menggunakan AC.

Gambar 5.3 Hubungan kalor persatuan massa refrigerant yang diserap evaporator dan waktu.

Gambar 5.3 memperlihatkan besar nilai kalor persatuan massa refrigerant yang diserap evaporator (Qin) dari waktu ke waktu. Nilai kalor terendah yang

diserap evaporator adalah 167,47 kJ/kg dan nilai kalor tertinggi yang diserap evaporator adalah sebesar 174,45 kJ/kg. Nilai rata-rata kalor persatuan massa refrigerant yang diserap adalah sebesar 171,63 kJ/kg. Pengambilan data yang dilakukan, membuat kalor persatuan massa refrigerant yang diserap evaporator cenderung tidak konstan. Hal ini kemungkinan dipengaruhi oleh kerja kompresor (Win) yang tidak konstan. Besarnya energi kalor yang diserap oleh evaporator dari

dalam kabin maka semakin besar pula nilai Qin yang didapatkan. Dari hal ini dapat

(95)

Gambar 5.4 Hubungan kalor persatuan massa refrigerant yang dilepas kondensor dan waktu

Gambar 5.4 memperlihatkan besar nilai kalor persatuan massa refrigerant yang dilepas kondensor (Qout) dari waktu ke waktu. Nilai kalor persatuan massa

(96)

Gambar 5.5 Hubungan koefisien prestasi COPaktual dan waktu

Gambar 5.5 memperlihatkan besar Koefisien Prestasi (COP)aktual dari

waktu ke waktu. Nilai COPaktual terendah adalah 2,61 dan nilai COPaktual tertinggi

adalah sebesar 3.13. Nilai rata-rata COPaktual adalah sebesar 2,80. Perubahan kerja

kompresor juga berpengaruh pada koefisien prestasi COPaktual.

(97)

Gambar 5.6 memperlihatkan besar Koefisien Prestasi COPideal dari waktu

ke waktu. Nilai COPideal terendah adalah 5,11 dan nilai COPideal tertinggi adalah

sebesar 5,46. Nilai rata-rata COPideal adalah 5,36. Perubahan yang terjadi pada

kompresor yang diikuti COPaktual juga mengakibatkan perubahan nilai nilai

COPideal.

Gambar 5.7 Hubungan efisiensi dan waktu

Gambar 5.7 memperlihatkan efisiensi dari waktu ke waktu. Nilai efisiensi terendah adalah 48,27% dan nilai efisiensi tertinggi adalah sebesar 57,21%. Nilai rata-rata efisiensi adalah sebesar 52,28%. Perubahan kerja kompresor yang semakin berat oleh karena transfer kalor yang terjadi, sistem perpipaan yang ditekuk sehingga ada kemungkinan aliran refrigerant pada pipa tidak sempurna dan ruang pendingin (kabin) yang terbuat dari triplek masih memiliki cacat / lubang kecil, tidak dapat tertutup secara sempurna. Dan hal inilah yang kemungkinan menyebabkan efisiensi mesin AC mobil tidak dapat 100% karena pengaruh kerja kompresor. Hal lain yang dapat mempengaruhi efisiensi tidak

(98)

mencapai 100% yaitu tidak maksimalnya kerja dari komponen-komponen AC mobil.

Gambar 5.8 Hubungan laju aliran massa refrigerant dan waktu Gambar 5.8 memperlihatkan laju aliran massa dari waktu ke waktu. Nilai laju aliran massa terendah adalah 0,008 kg/s dan nilai laju aliran masa tertinggi adalah sebesar 0,021 kg/s. Nilai rata-rata laju aliran massa adalah sebesar 0,017 kg/s. Tertutupnya evaporator oleh butiran air yang membeku, mengakibatkan laju aliran massa menurun sesuai dengan kerja kompresor yang terjadi.

(99)
(100)

BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Dari pengujian mesin AC mobil, dapat diambil beberapa kesimpulan sebagai berikut :

a. Mesin AC mobil yang bekerja dengan siklus kompresi uap telah berhasil dibuat dan mampu bekerja dengan baik dengan suhu kerja kondensor sekitar 43,46oC dan suhu kerja evaporator sekitar -6,32oC.

b. Kerja kompresor per satuan massa refrigerant (Win) mempunyai nilai rata-rata

sebesar 61,32 kJ/kg.

c. Kalor per satuan massa refrigerant yang diserap evaporator (Qin) mempunyai

nilai rata-rata sebesar 171,63 kJ/kg.

d. Kalor per satuan massa refrigerant yang dilepas kondensor (Qout) mempunyai

nilai rata-rata sebesar 232,95 kJ/kg.

e. COPaktual dari mesin AC mobil yang telah berhasil dibuat mempunyai nilai

(101)

6.2 Saran

Beberapa saran yang dapat disampaikan terkait dengan penelitian ini :

a. Waktu pengambilan data sebaiknya tidak terlalu lama, cukup membutuhkan waktu sekitar 50 menit karena sudah stabil.

b. Rangkaian kelistrikan sebaiknya tersusun dengan rapi dan menempel pada bodi agar tidak membahayakan pada saat dilakukan pengujian.

c. Penggunaan thermometer yang digunakan untuk mengukur suhu ruangan kabin sebaiknya yang sekaligus dilengkapi dengan alat pengukur kelembaban sehingga dapat langsung mengetahui kelembaban suhu di dalam kabin.

d. Pada saat pengambilan data pemasangan termokopel sebaiknya benar-benar harus diperhatikan. Apabila tidak kencang dalam pemasangannya maka suhu yang dihasilkan tidak falid karena pengaruh suhu lingkungan sekitar.

e. Sebelum pengambilan data dimulai sebaiknya alat-alat ukur yang akan digunakan dicek ulang. Apabila alat ukurnya rusak atau kehabisan baterai maka data yang dihasilkan akan tidak baik.

f. Pengambilan data sebaiknya dilakukan di laboratorium sehingga apabila terjadi kerusakan pada alat dapat segera diperbaiki.

(102)

DAFTAR PUSTAKA

Amna Citra Farhani., 2007, meneliti tentang penggantian R12 dengan R22 pada mesin pendingin.

http://repository.ipb.ac.id/handle/123456789/7464/browse?value=F arhani%2C+Amna+Citra&type=author. Diakses Pada Tanggal 16 April 2015

Anwar, K, 2010, Efek Beban Pendinginan Terhadap Performa Sistem Mesin Pendingin, Jurnal Teknik Mesin, 8.hal.203-204.

Maclaine, I.L., 2004, Usage and risk hydrocarbon refrigerants in motor cars for Australia and the United States. School of Mechanical and Manufacturing Engineering, The University of New South Wales, UNSW Sydney 2052, Australia

Wilis, GR., 2013, : Melakukan penelitian terhadap penggunaan refrigeran R22 dan R134a Pada Mesin Pendingin, Jurnal Teknik Mesin, 8.hal.125 – 235.

Yuswandi, A., 2007, Pengujian Unjuk Kerja Sistem AC Mobil Statik Eksperimen Menggunakan Refrigeran CFC-12 dan HFC-134a Dengan Variasi Putaran(RPM) Kompresor.

(103)

LAMPIRAN

(104)
(105)
(106)
(107)
(108)
(109)
(110)
(111)
(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
(123)
(124)
(125)
(126)
(127)
(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)
(147)
(148)
(149)

Gambar

Gambar 2.5 Filter Dryer (Receiver Drier) http://mobil-ac.blogspot.com/search/label/Receiver%2FDryer
Gambar 2.6 Katup Ekspansi http://www.omegaacmobil.com/katub-expansi.php
Gambar 2.8 Evaporator
Gambar 2.10 Blower/Fan
+7

Referensi

Dokumen terkait

Pada regenerasi tahap pertama dari perlakuan yang diberikan sebelumnya ternya-ta tidak terjadi interaksi antara dosis radiasi dengan komponen seleksi terhadap jumlah dan tinggi

Data ini dipeIjelas dengan rataan tinggi tanaman (Gambar 28) dan jumlah polong bemas (Gambar 29) pada somaklon R2 zuriat masing-masing tanaman R 1, tanpa inokulasi

Unit Pengumpul Zakat (UPZ) adalah organisasi yang dibentuk oleh Badan Amil Zakat disemua tingkatan dengan tugas mengumpulkan zakat dan untuk melayani muzakki yang berada pada

Selain itu, adanya komitmen bersama yang sudah dideklarasikan oleh para pihak, diharapkan dapat ditindaklanjuti bersama, meliputi: (i) upaya nyata dalam

3 (20-30 m) kepadatan yang tinggi diperoleh pada pengamatan pagi dan siang hari, yaitu stasiun 2, 3, dan 6 dengan rata-rata nilai area backscattering coefficient 150 m/nmi 2 , di

Populasi dalam penelitian ini adalah seluruh bayi (5-12bln) di Desa Manunggal Kecamatan Ngusikan Kabupaten Jombang yang baru selesai imunisasi DPT Combo 2 dan 3 sampai