Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tace20
Journal of Asian Ceramic Societies
ISSN: (Print) 2187-0764 (Online) Journal homepage: http://www.tandfonline.com/loi/tace20
Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique
M. Thirumoorthi & J. Thomas Joseph Prakash
To cite this article: M. Thirumoorthi & J. Thomas Joseph Prakash (2016) Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique, Journal of Asian Ceramic Societies, 4:1, 124-132, DOI: 10.1016/j.jascer.2016.01.001 To link to this article: https://doi.org/10.1016/j.jascer.2016.01.001
© 2016 The Ceramic Society of Japan and the Korean Ceramic Society
Published online: 20 Apr 2018.
Submit your article to this journal
Article views: 5
View related articles
View Crossmark data
ContentslistsavailableatScienceDirect
Journal of Asian Ceramic Societies
HOSTED BY
jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j a s c e r
Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique
M. Thirumoorthi
a, J. Thomas Joseph Prakash
b,∗aDepartmentofPhysics,H.H.TheRajah’sCollege(AffiliatedtoBharathidasanUniversity),Pudukkottai622001,India
bDepartmentofPhysics,GovernmentArtsCollege(AffiliatedtoBharathidasanUniversity),Trichy620022,India
a r t i c l e i n f o
Articlehistory:
Received3November2015 Receivedinrevisedform 27December2015 Accepted5January2016 Availableonline20January2016
Keywords:
ITOthinfilms
Nebulizerspraypyrolysis X-raymethods Surfacesroughness Electricalproperties
a b s t r a c t
Indiumtinoxide(ITO)thinfilmshavebeenpreparedbyjetnebulizerspraypyrolysistechniquefor differentSnconcentrationsonglasssubstrates.X-raydiffractionpatternsrevealthatallthefilmsare polycrystallineofcubicstructurewithpreferentiallyorientedalong(222)plane.SEMimagesshowthat filmsexhibituniformsurfacemorphologywithwell-definedsphericalparticles.TheEDXspectrumcon- firmsthepresenceofIn,SnandOelementsinpreparedfilms.AFMresultindicatesthatthesurface roughnessofthefilmsisreducedasSndoping.TheopticaltransmittanceofITOthinfilmsisimproved from77%to87%invisibleregionandopticalbandgapisincreasedfrom3.59to4.07eV.Photolumi- nescencespectrashowmainlythreeemissionspeaks(UV,blueandgreen)andashiftobservedinUV emissionpeak.ThepresenceoffunctionalgroupsandchemicalbondingwasanalyzedbyFTIR.Halleffect measurementsshowpreparedfilmshavingn-typeconductivitywithlowresistivity(3.9×10−4-cm) andhighcarrierconcentrations(6.1×1020cm−3).
©2016TheCeramicSocietyofJapanandtheKoreanCeramicSociety.Productionandhostingby ElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction
Indiumtinoxide(ITO)isawellknownn-typetransparentcon- ductingoxidematerial.Heretinactsasacationicdopantinthe In2O3latticeandasasubstituteontheindiumsitestobindwith theinterstitialoxygen.Duetoitshighopticaltransmittance,electri- calconductivityandwidebandgap(>3.5eV),ITOhasbeenwidely appliedinvariousoptoelectronicdevicessuchasphotovoltaiccells [1],liquidcrystaldisplays[2]andgassensors[3].TheITOthinfilms arecommonlyfabricatedbyemployingdifferenttechniquessuch asmagnetron sputtering [4–8],sol–gelprocess [9–11],thermal evaporation[12],pulsedlaserdeposition[13,14],chemicalvapor deposition[15,16], spray pyrolysis[17–22]and nebulizer spray pyrolysis(NSP)[23].Allofthesemethods haveadvantages and disadvantages,butjetnebulizerspraypyrolysishasanoticeable advantage;itisa low-costandnon-vacuumtechniqueforlarge areaapplicationsandcanproducehighqualityfilmwithlowpre- cursorvolume.TheworkingofNSPmethodisbasedontheBernoulli principle;i.e.,whenapressurizedflowofairisdirectedthrougha
∗Correspondingauthor.Tel.:+919842470521.
E-mailaddress:[email protected](J.ThomasJosephPrakash).
PeerreviewunderresponsibilityofTheCeramicSocietyofJapanandtheKorean CeramicSociety.
constrictedorifice,thevelocityoftheairflowisincreasedtocre- ateajetstream.Theimpactofajetstreamwithliquidproduces aerosolparticles(particlesize∼2.5m)[24].Themistformofsolu- tionishelpingtoimprovethequalityoffilmandtoobtainauniform growthduetogradualnucleationwithminimumwastage.Inthe presentstudy,thetindopedindiumoxidethinfilmswereprepared byasimpleandlow-costjetnebulizerspraypyrolysistechnique.
Thestructure,surfaces,optical,photoluminescenceandelectrical propertiesofpreparedfilmswereinvestigatedindetail.
2. Experiment
A jet nebulizer spray pyrolysisapparatus (Fig.1)is used in this work,which consistsofa jet nebulizerspraying unit, sub- strateholderwithheaterandaircompressor.Topreparetindoped indium oxidethin films, theindium(III)chloride (InCl3)isdis- solvedin 100mLdouble distilled water tomake 0.4Mstarting solution.Tindopingwasachievedbyaddingtin(II)chloridedihy- drates(SnCl2·2H2O)tothestartingsolution.Afewdropsofacetic acidwereaddedtoobtainaclearandhomogeneoussolution.The dopinglevelinthesolutionwasvariedfrom0to30wt%insteps of10wt%.Themixturewasstirredunderconstantspeed for1h witha magneticstirrer.Priortothedeposition,glasssubstrates (1in.2) were cleaned with acetone, isopropyl alcohol, and dis- tilledwatersuccessivelyfor15mininultrasonicator.Thesubstrate http://dx.doi.org/10.1016/j.jascer.2016.01.001
2187-0764©2016TheCeramicSocietyofJapanandtheKoreanCeramicSociety.ProductionandhostingbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Nomenclature
D Crystallitesize(nm) k Scherrer’sconstant d Latticespacing(Å) h,k,l Millerindices TC Texturecoefficient I(hkl) Peakintensity N Numberofpeaks T Transmittance(%) h Photonenergy(eV) Eg Opticalbandgap(eV) n Carrierconcentrations(cm−3) ˇ Fullwidthathalfmaximum(rad) WavelengthofX-ray(Å)
Bragg’sangle(deg)
ε Strain
˛ Absorptioncoefficient Resistivity(-cm) Mobility(cm/(Vs))
temperatureforeachdepositionwaskeptat500◦Cintheairatmo- sphere.Thepreparedsolutionwassprayed witha jetnebulizer (HUDSONRCImicromist,dropletsizeis∼2.7m)ontheheated substratewithsprayrate0.5mL/minusingcompressedairasacar- riergas.Thenebulizerwaskeptatadistanceof5cmfromsubstrate surface.
ThestructuralparametersofspraycoatedITOfilmswereana- lyzedbyX-raydiffractometer(XRD)usingthePANalyticalsystem withCu K␣1 radiation (k=1.54056 ˚A). Surface morphology and topographywerecarriedoutbythescanningelectronmicroscope (ESEMQUANTA200,FEI-Netherlands)andatomicforcemicroscopy (Agilent5500)respectively.Elementalanalysiswasmadebyusing energydispersiveX-rayspectroscopy(attachedtoSEM).Thewater contact angle measurement was made by using a protractor frommicrophotograph.Theopticalpropertiesofthefilmswere examinedwithadoublebeamspectrophotometer(Oceansoptics HR2000-USA)intheUV–visregions.Thefilmthicknesswasmea- suredbyaprofilometer(SJ-301Mitutoyo).Thephotoluminescence (PL)spectrawererecordedusingaspectrofluorometer(CaryEclipse EL08083851)withxenonarclamp.TheIRspectrumwasrecorded
Fig.1.Schematicdiagramofjetnebulizerapparatus.
80 70 60
50 40
30 20 0 500 1000 1500 2000 2500 3000 3500
(800)
(444)(622)
(611)
(440)(521)
(431)
(411)(400)
(222)
(211)
I n t e n s i t y ( a.u )
2 θθ ( d e g r e e )
0 wt%
10 wt%
20 wt%
30 wt%
Fig.2. X-raydiffractionpatternsofITOthinfilmsfordifferentSnconcentrations.
32.0 31.5 31.0 30.5 30.0 29.5 29.0 0 500 1000 1500 2000 2500 3000 3500
(222)
I n t e n s i t y ( a.u )
2 θθ ( d e g r e e )
0 wt%
10 wt%
20 wt%
30 wt%
Fig.3.ShiftofpeakpositionofITOthinfilmsalong(222)planefordifferentSn concentrations.
usingFTIRspectrophotometer(PerkinElmer–RXI)intherange of400–4000cm−1.Theelectricalparameterswerecollectedfrom roomtemperatureHalleffectmeasurements(RH2035 PhysTech GmbH)system.
3. Resultsanddiscussion 3.1. Structuralanalysis
X-raydiffractionpatternsareusedtostudythecrystalstruc- tureofpreparedITOthinfilms.Fig.2showstheX-raydiffraction patternsofindiumtinoxidethinfilmsfordifferenttinconcen- trationsonglasssubstrates.Itcanbeseenthatallthefilmsare polycrystallineinnatureandcrystallizeinacubicstructure(JCPDS:
71-2194)withpredominant(222)peak.Aswitchingintheprefer- entialgrowthfromthe(400)to(222)planeswasobservedwhen tindopedwithindiumoxide.Theincreasingintensityofthe(222) planeisattributedtotheincreaseinthedegreeofpreferentialcrys- talorientation.ItisevidentfromtheXRDspectrathatnodiffraction peaksofSnorotherimpurityphasesaredetectedintheprepared samples.AsshowninFig.3shiftofthe(222)peaktowardsmaller2
Table1
StructuralparametersofpreparedITOthinfilmsfordifferentSnconcentrations.
Sample 2(deg) hkl FWHM(deg) d-space(Å) Crystallitesize (nm)
Dislocation density,ı (×1014lines/m2)
Strain,ε (×10−4)
Lattice constant(Å)
TC
Observed Standard
0wt%
21.47 211 0.13 4.1354 4.1302 62.19 2.5855 5.573 10.1296 0.7347
30.52 222 0.11 2.9266 2.9205 74.85 1.7849 4.631 10.1381 0.6047
35.37 400 0.12 2.5356 2.5292 69.49 2.0708 4.988 10.1424 3.6168
37.67 411 0.16 2.3859 2.3846 52.45 3.6350 6.609 10.1225 1.0069
45.60 431 0.15 1.9877 1.9841 57.47 3.0298 6.034 10.1353 0.9044
49.22 521 0.30 1.8497 1.8471 29.12 11.793 11.90 10.1312 0.5721
50.94 440 0.12 1.7912 1.7884 73.34 1.8598 4.726 10.1325 1.4156
55.92 611 0.26 1.6429 1.6411 34.59 8.3579 10.02 10.1275 0.7312
60.57 622 0.16 1.5274 1.5252 57.48 3.0266 6.030 10.1316 0.1023
63.68 444 0.27 1.4601 1.4602 34.63 8.3386 10.01 10.1158 0.2796
75.02 800 0.19 1.2651 1.2646 52.71 3.5992 6.576 10.1201 1.0416
Average 54.3927
10wt%
30.47 222 0.11 2.9313 2.9205 74.84 1.7853 4.632 10.1543 1.5071
35.32 400 0.17 2.5391 2.5292 49.03 4.1592 7.070 10.1564 1.1216
50.87 440 0.19 1.7935 1.7884 46.28 4.6688 7.489 10.1455 0.6831
60.47 622 0.21 1.5297 1.5252 43.76 5.2221 7.920 10.1468 0.6883
Average 53.4775
20wt%
30.42 222 0.11 2.9360 2.9205 74.84 1.7853 4.631 10.1706 1.4303
35.42 400 0.13 2.5391 2.5292 64.13 2.4315 5.405 10.1564 1.3201
50.80 440 0.13 1.7958 1.7884 67.64 2.1857 5.124 10.1585 0.6223
60.35 622 0.17 1.5324 1.5252 54.11 3.4154 6.413 10.1647 0.6271
Average 65.18
30wt%
30.37 222 0.11 2.9407 2.9205 74.85 1.7849 4.631 10.1868 1.9836
35.25 400 0.11 2.5440 2.5292 75.78 1.7413 4.574 10.1761 1.0333
50.79 440 0.12 1.7961 1.7884 73.31 1.8606 4.728 10.1602 0.6046
60.38 622 0.13 1.5397 1.5252 70.72 1.9994 4.901 10.2132 0.4345
Average 73.665
valueisduetothereplacementofsmallerradiusSn4+ion(0.71 ˚A) inindiumsitesandalsorelatedtochangesofstraininthecrystal lattice[25].
ThecrystallitesizewascalculatedfromtheXRDpatternusing Debye-Scherrerformula[26]:
D= 0.9
ˇcos, (1)
whereisX-raywavelength(=1.54060 ˚A),ˇisfullwidthathalf maximuminradianandisBragg’sangle.
Thedislocationdensity(ı)andstrain(ε)werecalculatedusing thefollowingequations[26]:
ı= 1
D2 (2)
ε= ˇcos
4 (3)
Texturecoefficient(TC)measurestherelative degreeof pre- ferredorientationamongcrystalplanes,whichisobtainedfrom followingexpression[27]:
TC(hkl)=
I(hkl)/Io(hkl)N−1
N(I(hkl)/Io (hkl))
(4)
whereI(hkl)isthemeasuredintensityoftheplane(hkl),Io(hkl)isthe standardintensityoftherespectivediffractionplane,accordingto theJCPDSdatacard(71-2194)andNisthenumberofdiffraction peakspresented.
ThecalculatedstructuralparametersofpreparedITOthinfilms using the above equations are listed in Table 1. The observed improvement in average crystallite size is attributed to strain formedinthenanocrystal.Thedislocationdensity(ı)istomea- surethedisorderoflatticeplanesinthecrystalstructure.Thestrain arisesduetopointdefects(vacancies,sitedisorder),dislocations
andextendeddefectsinthecrystalstructures.Thecalculatedval- uesofthelatticeconstant‘a’areingoodagreementwithstandard values (71-2194). Obtained lattice constant values are slightly increasedfor(222)planewithincreaseddopinglevel,whichcan berelatedtouniform-strainofthegrains.Thetexturecoefficient TC(hkl)valuescalculatedforthedifferentplanesofthefilmsare showninTable1.Theresultsindicatethatthepreferentialorienta- tionforpureindiumoxidefilmalong(400)plane,isshiftedto(222) planeforSndopedindiumoxidefilms.Thechangeofpreferredori- entationmaybeduetooccupancyofadditionalindiumvacancy sitesbytinatomswhichareunoccupiedpreviously.Infact,itis wellknownthatIn2O3thinfilmshaveseveraldefectlevelssuchas indiuminterstitialoxygenandindiumvacancies[28].Theincrease inpreferredorientationisassociatedwiththeincreaseofcrystallite growthalongthatplane.Thechangeinpeakintensity,d-value,lat- ticeconstantsandstrainconfirmsthesubstitutionofSnintoIn–O lattice.
3.2. Surfacemorphologicalanalysis
Forthinfilmsthesurfacemorphologydependsonthedeposition techniqueanditsparameters.Thesurfacemorphologymayinflu- encethefilmpropertiessuchasmechanical,electricalandoptical properties.Fig.4showsthescanningelectronmicroscopicimages ofITOfilmsfordifferentSnconcentrationsdepositedonglasssub- strates.It canbeseenthat allthefilmshave auniformsurface morphologyconsistingofsphericalparticleswithoutanyvoidsand cracks.Theloweringgrainboundaryandlargeactivesurfacehelp toimprovetheelectricalconductivityandopticaltransmittance.
Energy dispersive X-ray spectroscopy (EDX) is an analytical techniqueusedfortheelementalanalysisofasample.TheEDX spectraofthepreparedITOthinfilmsareshowninFig.5.Thespec- trarevealthatthepresenceofIn,OandSnelementsinthedeposited
Fig.4. Scanningelectronmicroscopyimages(60,000×magnification)ofpreparedITOthinfilms.
films.Theweightpercentageisalmostnearlyequaltotheirnominal stoichiometrywithintheexperimentalerror.
Topography is one of the most important physical charac- teristics of surfaces, which influence theirsignificant technical properties.Fig.6showsthe3D-AFMimagesofpreparedITOthin filmsfordifferentSnconcentrations.Theun-dopedindiumoxide
filmhasalargedifferencebetweenpeakandvalleythanSndoped films. As shown in Table 2 the surface profile parameters are changedwithincreasingSnconcentration.Thesurfaceroughness (Sa)androotmeansquare(RMS)(Sq)valuesarereducedasincreas- ingSnconcentrations.TheobtainedRMSvalueofITOfilmsislower thanthepreparedonebyothertechniquessuchasink-jetprinting
Fig.5.EnergydispersiveX-rayspectraofITOthinfilms.
Fig.6. AFM3DimagesofpreparedITOthinfilmsfordifferentSnconcentrations.
[29],RFsputtering[30],chemicalvapordeposition[31]andspray pyrolysis[32].Theaverageroughnessisthemeanvalueofpeak andvalleyascalculatedoverthemeasuredentiresurfacearea.It isusefulfordetectinggeneralvariationsinoverallprofileheight characteristics.Rootmeansquareroughnessisthesquarerootof thedistributionofsurface heightandis consideredtobemore sensitivethantheaverageroughness.Itrepresentsthestandard deviationoftheprofileheightsandisusedinthecomputations ofskewnessandkurtosis.Surfaceskewness(Ssk)isusedtomea- surethesymmetryofthevariationsofsurfaceaboutthemeanline andismoresensitivetooccasionaldeepvalleysorhighpeaks.Sur- facekurtosis(Sku)isusedtomeasurethedistributionofthespikes aboveandbelowthemeanline.Theroughnessreductionofthe filmshelpstoreducethescatteringofincidentlightandleadingto increaseofopticaltransmittance.
Fig. 7 shows the microphotographs of water droplet on the ITO surface, and thus it can be perceived that the water contact angles (127◦, 114◦, 106◦ and 92◦ for 0, 10, 20 and
30wt%respectively)aredecreased.Thisresultindicatesthatthe hydrophilicities of ITO surface are increased with Sn doping concentrations,andsuchabehaviorisduetoreductionofsurface roughness.
3.3. Opticalstudies
The optical properties of thin films are known to depend stronglyonthefilmthickness,microstructures,levelsofimpurities anddepositionparameters.Fig.8showstheopticaltransmittance andtheabsorptionspectrumofpreparedITOthinfilmsfordifferent dopingconcentrations.Itisfoundthattheaveragetransmittance ofthepureindiumoxidefilmis77%andthatoftheSndopedfilms couldbeintherangeof82–87%,andsuchresultsmayberelatedto lowscatteringoflightandthickness.AsshowninFig.8(inset)the absorptionedgeisshiftedtolowerwavelengthforSndopedindium oxidefilms.Thetransmissionspectrashowjusttheoppositetrend oftheopticalabsorptionspectra.Theabsorptionofallthefilmsis
Table2
HeightparametersofITOthinfilmobtainedfromAFManalysis.
Parameters 0wt% 10wt% 20wt% 30wt%
Rootmeansquare(Sq)(nm) 20.2 15.3 11 12
SurfaceSkewness(Ssk) 0.455 0.244 0.468 0.106
Coefficientofkurtosis(Sku) 5.21 3.27 4.25 2.85
Maximumpeakheight(Sp)(nm) 137 63.5 55.7 47.2
Tenpointmeanheight(Sz)(nm) 431 119 99.5 82.8
Averagesurfaceroughness(Sa)(nm) 17.6 12.1 8.29 9.58
Filmthickness(nm) 96 43 37 32
Fig.7.MicrophotographsofwaterdropletonITOsurface.
1100 1000 900 800 700 600 500 400 300 0 10 20 30 40 50 60 70 80 90 100
0.0 0.5 1.0 1.5 2.0 2.5 3.0
450 440 430 420 410 25 400 30 35 40 45 50 55 60 65 70
T r a n s m i t t a n c e ( % )
W a v e l e n g t h ( n m )
T r a n s m i t t a n c e ( % )
W a v e l e n g t h ( n m )
0 wt%
10 wt%
20 wt%
30 wt%
A b s o r p t i o n ( % )
Fig.8. UV–vistransmittanceandabsorptionspectrumofITOthinfilms.Inserted imageshowstheblueshiftofabsorptionedges.
intherangeof0.04–1.10%inthevisibleregion,thelowabsorption ofincidentlightisessentialforTCO.
Theopticalbandgap(Eg)values calculated fromtheplotof (˛h)2versus(h)isshowninFig.9(a)–(d)forthepreparedfilms.
Theabsorptioncoefficient(˛)iscalculatedfromthefollowingrela- tion[26]:
˛=
1d
ln
1T
(5) wheredisthicknessofthefilmsandTistransmittance.Theabsorp- tioncoefficient(˛)andincidentphotonenergy(h)isrelatedbythe followingrelation[26]:
(˛h)2=A(h−Eg) (6)
whereAisaconstant,hisphotonenergyandEgisopticalbandgap.
ObtainedbandgapsareplottedasafunctionofSnconcentrations thatareshowninFig.9(e).Itisobservedthatbandgapincreases rapidlyfrom3.59eV(0wt%)to4.07eV(10wt%)andthendecreased slightlyto4.01eV(30wt%).Similarbehaviorofbandgapwidening andthennarrowingforhigherdopingoftinisreportedpreviously byBenamaretal.[20].Thewideningoftheopticalbandgapis relatedtoincreasedcarrierconcentrationandwhichisexplained byusingMoss–Bursteineffect[33].Thenarrowingofbandgapfor higher Sndopingmaybe duetomany-body interactioneffects eitherbetweenfreecarriersorbetweenfreecarriersandionized impurities[34].
3.4. Photoluminescencestudies
Theroomtemperaturephotoluminescence (PL)spectroscopy techniqueisaselectiveandextremelysensitiveprobeofdiscrete electronicstates. Fig.10 shows theroomtemperaturePL spec- tra of ITOthin filmsrecorded underthe excitationwavelength =310nm.Mainlythreeemissionpeaksareobservedasfollows:
a strongUVemission peak (P1 at363nm),a strongblueemis- sionpeak(P2at493nm)andaweakgreenemissionpeak(P3at 521nm).TheUVemissionpeakisalsocallednearbandedge(NBE) emission,anditoriginatesduetotherecombinationofthefreeexci- tonthroughanexciton–excitoncollisionprocess[35].Asshownin Fig.10(inset)achangeobservedintheUVemissionspeakindicated thattherecombinationcentersaremodifiedbySndoping.Ablue emissionbandindicatedthatanewdefectlevelisintroducedinto thebandgapbytheSndoping[36].Theoriginofgreenemission isgenerallyascribedtodeepleveldefectssuchassurfacedefects andsinglyionizedoxygenvacancies[37].Arapiddecreaseinthe intensityofallpeaksandthechangeofUVemissionpeakposition confirmthesubstitutionofSnatominindiumsites.
0 5 10 15 20 25 30 3.6
3.7 3.8 3.9 4.0 4.1
(e)
E g ( e V )
Sn doping (wt%)
2.62.83.03.23.43.63.84.04.24.44.64.85.0 2.50E-022
5.00E-022 7.50E-022 1.00E-021 1.25E-021 1.50E-021 1.75E-021 2.00E-021 2.25E-021 2.50E-021
(d)
(
ααh
νν)
2(e V /c m )
2h
νν(eV)
30 wt%2.62.83.03.23.43.63.84.04.24.44.64.85.0 5.00E-022
7.50E-022 1.00E-021 1.25E-021 1.50E-021 1.75E-021 2.00E-021 2.25E-021 2.50E-021 2.75E-021
(c)
(
ααh
νν)
2(e V /c m )
2h
νν(e V)
20 wt%2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.00E-022
7.50E-022 1.00E-021 1.25E-021 1.50E-021 1.75E-021 2.00E-021 2.25E-021
(b)
(
ααh
νν)
2(e V /c m )
2h
νν(eV)
10 wt%2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 2.00E-022
4.00E-022 6.00E-022 8.00E-022 1.00E-021 1.20E-021 1.40E-021 1.60E-021 1.80E-021
(a)
(
ααh
νν)
2( eV /c m )
2h
νν(eV)
0 wt%Fig.9. (a–d)The(˛h)2versushplotsofITOthinfilmsfordifferentSnconcentrations;(e)variationsofopticalbandgapasfunctionofSnconcentrations.
550 500
450 400
350 1 2 3 4 5 6 7 8
390 385 380 375 370 365 360 355 350 345 340 335 330 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
5.5
P1
I n t e n s i t y (a.u)
W a v e l e n g t h (nm)
P3 P2 P1
0 wt%
10 wt%
20 wt%
30 wt%
I n t e n s i t y (a.u)
W a v e l e n g t h (nm)
Fig.10.Roomtemperaturephotoluminescence(PL)spectrumofITOthinfilms;
(insert)theobservedchangeofUVemissionspeaksposition.
3.5. FTIRanalysis
FTIRtechniqueisusedtoobtaininformationaboutthechem- icalbondingand thepresenceof certainfunctionalgroups in a
500 1000 1500 2000 2500 3000 3500 4000 20 30 40 50 60 70 80 90 100
433
592
885
1519 1827 2225 0 wt%
10 w t%
20 w t%
30 w t%
T r a n m i t t a n c e ( % )
W a v e n u m b e r ( cm-1 )
Fig.11.FTIRspectraofITOthinfilmsfordifferentSnconcentrationsinwavenumber rangefrom400to4000cm−1atroomtemperature.
material. Fig. 11 shows the FTIR spectra of prepared ITO thin films for different Sn concentrations. The broad band around 3500–1900cm−1 is attributedto theO H stretchingvibrations ofhydroxylsfromabsorbingwater molecules[38].Wecanalso recognizethestrongabsorptionbandat1827cm−1isrelatedto
0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010
30 25 20 15 10 5
0 2.0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
30 25 20 15 10 5 0
30 32 34 36 38 40 42 44 46 48 50 52
R e s i s i t i v i t y (ρ) (ohm-cm)
Sn d o p i n g ( wt% )
Carrier concentrations (n) (1020 cm-3 ) ρρ n μμ
M o b i l i t y (μ) (cm2 /Vs)
Fig.12.ElectricalparametersofpreparedITOthinfilmsasfunctionofSnconcen- trations.
C Ostretchingvibrationof carboxylicacids,amediumbandat 1519cm−1 isrelatedtoC Cstretchingvibrationofarenesanda mediumbandat885cm−1isascribedtoC Hbendingvibration.
Theweakbandsat592cm−1and433cm−1areattributedtoIn O bond[39].
3.6. Electricalstudies
Fig.12showsthemeasuredelectricalparametersofprepared ITOthinfilmsasafunctionofdifferentSnconcentrations.Itcan beseenthattheresistivityisdecreased,carrierconcentrationis increasedandmobility is increasedasincreasingSnconcentra- tions, and this behavioris desirable for transparentconducting oxide.Theresultsindicatethat thepreparedITOthin filmsare highlydegenerating n-typeconductivity.Theincrease ofcarrier concentrationvalueofITOfilmisduetothevalence difference betweenSn4+andIn3+ions,whichgeneratesextraonefreecar- rierperatomicsubstitutionandleadingtodecreaseofresistivity.
TheincorporationofSndopantinindiumoxidefilmschangesthe overallelectricalpropertiessignificantly.Weobtainedaminimum electricalresistivity(3.9×10−4-cm)andmaximumcarriercon- centration(6.1×1020cm−3)for20wt%oftindopedindiumoxide thinfilm.Similarresultswerereportedinpreviousliteratureby Sekietal.[40].Theincreaseofmobilityisrelatedtoreductionof grainboundaryscattering.Theelectronictransportpropertyforthe ultrathinfilmsisentirelyrelatedtothemicrostructureofthefilms anddopingconcentration.
4. Conclusions
Transparentconductingindiumtinoxide(ITO)thinfilmswere successfullypreparedbyjetnebulizerspraypyrolysistechnique.
Effects of Sn dopingconcentrations onstructure, surface, opti- cal,photoluminescenceandelectricalpropertieswereinvestigated.
Thefollowingconclusionsarederivedaftertheseinvestigations:
•TheXRDpatternsrevealedthatpreparedITOfilmsarepolycrys- tallinein naturewithcubic structure. We observeda shiftof preferentialgrowthfrom(400)planeforpureindiumoxideto (222)planeforSndopedindium oxidethinfilms. Thechange observed in the peak position of (222) plane and structural parametersconfirmsthesubstitutionsofSninIn–Olattice.
•SEMimagesshowtheuniformdistributionofsphericalparticles andthesurfacemorphologyalsochangedwithSndoping.
•TheEDXspectrumrevealsthepresenceofIn,OandSnelements inthedepositedfilmswiththeirnominalpercentage.
•Accordingtothe3D-AFMimagesthesurfacetopographyofthe filmsisbetterthanundopedfilms.Theroughnessandrootmean squarevaluesarereducedasincreasedSnconcentrations.
•Opticaltransmissionsofthefilmshaveimprovedfrom77%to87%
andshowanoppositetrendoftheopticalabsorptionresults.The observedinitialblueshiftinenergybandgapfrom3.59to4.07eV canbeexplainedbytheBurstein–Mosseffect.
•Thedecreasingphotoluminescencepeakintensityandobserved shiftinUVemissionspeakpositionsisindicatingthesubstitution ofSninIn–Osystem.
•Thepresence offunctional groups andchemical bonding was confirmedbyFTIR.
•HalleffectmeasurementsshowthatSndopinginindiumoxide filmseffectivelyincreasesthecarrierconcentrationandreduces itsresistivitywithanimprovementinthemobility.
Fromthesefindings,weconcludethatITOthinfilmsaresuitable foroptoelectronicapplicationsandthejetnebulizerspraypyrolysis techniqueissuitableforproducinguniformthinfilmswithgood quality.
References
[1]B.G.LewisandD.C.Paine,MRSBull.,25,22–27(2000).
[2]J.C.Manifacier,ThinSolidFilms,90,297–307(1982).
[3]G.Neri,A.Bonavita,G.Micali,G.Rizzo,E.CalloneandG.Carturan,Sens.Actu- atorsB,132,224–233(2008).
[4]J.H.Park,C.Buurma,S.Sivananthan,R.Kodama,W.GaoandT.A.Gessert,Appl.
Surf.Sci.,307,388–392(2014).
[5]K.-S.TsengandY.-L.Lo,Appl.Surf.Sci.,285P,157–166(2013).
[6]K.C.Heo,Y.k.SohnandJ.S.Gwag,Ceram.Int.,41,617–621(2015).
[7]Y.S.Jung,D.W.LeeandD.Y.Jeon,Appl.Surf.Sci.,221,136–142(2004).
[8]A.KloEppel,W.Kriegseis,B.K.Meyer,A.Scharmann,C.Daube,J.Stollenwerk andJ.Trube,ThinSolidFilms,365,139–146(2000).
[9]Y.Wang,J.Liu,X.WuandB.Yang,Appl.Surf.Sci.,308,341–346(2014).
[10]M.T.KesimandC.Durucan,ThinSolidFilms,545,56–63(2013).
[11]L.Korosi,S.KorosiandI.Dekany,ThinSolidFilms,519,3113–3118(2011).
[12]K.-Y.Pan,L.-D.Lin,L.-W.ChangandH.C.Shih,Appl.Surf.Sci.,273,12–18(2013).
[13]J.B.Choi,J.H.Kim,K.A.JeonandS.Y.Lee,Mater.Sci.Eng.B,102,376–379(2003).
[14]J.M.Dekkers,G.RijndersandD.H.A.Blank,Appl.Phys.Lett.,88,151908(2006).
[15]Y.C.Park,Y.S.Kim,H.K.Seo,S.G.AnsariandH.S.Shin,Surf.Coat.Technol.,161, 62–69(2002).
[16]Y.S.Kim,Y.C.Park,S.G.Ansari,B.S.LeeandH.S.Shin,ThinSolidFilms,426, 124–131(2003).
[17]V.Brinzari,I.Damaskin,L.Trakhtenberg,B.K.ChoandG.Korotcenkov,Thin SolidFilms,552,225–231(2014).
[18]P.K.Manoj,B.Joseph,V.K.VaidyanandD.SumangalaDeviAmma,Ceram.Int., 33,273–278(2007).
[19]H.ElRhaleb,E.Benamar,M.Rami,J.P.Roger,A.HakamandA.Ennaoui,Appl.
Surf.Sci.,201,138–145(2002).
[20]E.Benamar,M.Rami,C.Messaoudi,D.SayahandA.Ennaoui,Sol.EnergyMater.
Sol.Cells,56,125–139(1999).
[21]A.R.Babar,S.S.Shinde,A.V.Moholkar,C.H.Bhosale,J.H.KimandK.Y.Rajpure, J.AlloysCompd.,509,3108–3115(2011).
[22]K.RavichandranandK.Thirumurugan,J.Mater.Sci.Technol.,30,(2)97–102 (2014).
[23]S. Marikkannu, M. Kashif, N. Sethupathy, V.S. Vidhya, S. Piraman, A.
Ayeshamariam,M.Bououdina,N.M.AhmedandM.Jayachandran,Mater.Sci.
Semicond.Process.,27,562–568(2014).
[24]V.Gowthami,M.Meenakshi,P.Perumal,R.SivakumaandC.Sanjeeviraja,Mater.
Sci.Semicond.Process.,27,1042–1049(2014).
[25]G.B.Gonzalez,J.B.Cohen,J.H.Hwang,T.O.Mason,J.P.HodgesandJ.D.Jorgensen, J.Appl.Phys.,89,2550–2555(2001).
[26]M.ThirumoorthiandJ.ThomasJosephPrakash,SuperlatticesMicrostruct.,85, 237–247(2015).
[27]S.S.Shinde,P.S.Shinde,S.M. Pawar,A.V.Moholkar,C.H.BhosaleandK.Y.
Rajpure,SolidStateSci.,10,1209–1214(2008).
[28]Y.-R.LyuandT.-E.Hsieh,Surf.Coat.Technol.,231,219–223(2013).
[29]H.-Y.Lai,T.-H.ChenandC.-H.Chen,Mater.Lett.,65,3336–3339(2011).
[30]T.KonryandR.S.Marks,ThinSolidFilms,492,313–321(2005).
[31]N.Wolf,M.Rydzek,D.Gerstenlauer,M.Arduini-SchusterandJ.Manara,Thin SolidFilms,532,60–65(2013).
[32]E.S.RajandK.L.Choy,Mater.Chem.Phys.,82,489–492(2003).
[33]E.Burstein,Phys.Rev.,93,632–701(1954).
[34]A.Walsh,J.L.F.DaSilvaandS.-H.Wei,Phys.Rev.B,78,075211(2008).
[35]A. Umar, B. Karunagaran, E.K. Suh and Y.B. Hahn, Nanotechnology, 17, 4072–4079(2006).
[36]Y.A.Cao,W.S.Yang,W.F.Zhang,G.Z.LiuandP.L.Yue,NewJ.Chem.,28,218–222 (2004).
[37]Y.Li,Y.BandoandD.Golberg,Adv.Mater.,15,581–585(2003).
[38]R.J.Keller,TheSigmaLibraryofFTIRSpectra,vol.2,SigmaChemical,St.Louis (1986).
[39]R.A.NyquistandR.O.Kagel,InfraredSpectraofInorganicCompounds,vol.4, AcademicPress,NewYork(1971).
[40]S.Seki,Y.Sawada,M.Ogawa,M.Yamamoto,Y.Kagota,A.ShidaandM.Ide,Surf.
Coat.Technol.,169–170,525–527(2003).