aliran berlawanan

Top PDF aliran berlawanan:

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

Skripsi ini berjudul “Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)”. Dalam penulisan skripsi ini, banyak tantangan dan hambatan yang penulis hadapi, baik secara teknis maupun non teknis. Penulis telah berupaya keras dengan segala kemampuan dan penyajian, baik dengan disiplin ilmu yang diperoleh, serta bimbingan dan arahan dari Dosen Pembimbing.

21 Baca lebih lajut

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Pemanfaatan alat penukar kalor sekarang ini semakin luas dan dapat dilihat sebagai cara untuk meningkatkan efektifitas dan kualitas produk dengan cara memanfaatkan panas. Alat penukar kalor tabung sepusat merupakan salah satu jenis alat penukar kalor (APK) yang dimanfaatkan untuk memanaskan metanol sebagai salah satu bahan baku dalam industri pembuatan formaldehid yang nantinya akan diolah lagi menjadi berbagai macam produk seperti plastik, cat, peledak dan tekstil. Pemanfaatan alat penukar kalor tabung sepusat ini mendorong untuk dilakukannya berbagai perancangan dan penelitian alat penukar kalor yang lebih efektif. Tujuan penelitian ini adalah untuk mengetahui efektifitas tertinggi dan faktor yang mempengaruhi efektifitas alat penukar kalor tabung sepusat. Penelitian yang telah dilakukan dari hasil perancangan alat penukar kalor tabung sepusat dengan menggunakan variasi kapasitas fluida panas (air) yaitu 180 L/jam, 240 L/jam, 300 L/ jam dan 360 L/jam pada temperatur masuk fluida panas 40°C, 45°C, 50°C dan 55°C dengan kapasitas aliran fluida dingin (metanol) yaitu 180 L/jam, 240 L/jam dan 360 L/jam. Efektifitas tertinggi alat penukar kalor tabung sepusat untuk aliran berlawanan dari hasil perancangan yang dilakukan diperoleh 20,787 % dengan ketidakpastian pengukuran flowmeter sebesar ±2,99%. .
Baca lebih lanjut

150 Baca lebih lajut

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Skripsi ini berjudul “Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol) ”. Dalam penulisan skripsi ini, banyak tantangan dan hambatan yang penulis hadapi, baik secara teknis maupun non teknis. Penulis telah berupaya keras dengan segala kemampuan dan penyajian, baik dengan disiplin ilmu yang diperoleh, serta bimbingan dan arahan dari Dosen Pembimbing.

27 Baca lebih lajut

ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN BERLAWANAN TERHADAP EFEKTIVITAS HEAT EXCHANGER TIPE SHELL AND TUBE DENGAN PENAMBAHAN VARIASI DIMENSI SIRIP (FIN) LONGITUDINAL PADA TUBE

ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN BERLAWANAN TERHADAP EFEKTIVITAS HEAT EXCHANGER TIPE SHELL AND TUBE DENGAN PENAMBAHAN VARIASI DIMENSI SIRIP (FIN) LONGITUDINAL PADA TUBE

menyatakan dengan sesungguhnya bahwa skripsi yang berjudul: “ Analisis Pengaruh Kecepatan Fluida Panas Aliran Berlawanan Terhadap Efektivitas Heat Exchanger Tipe Shell And Tube Dengan Penambahan Variasi Dimensi Sirip (Fin) Longitudinal Pada Tube” adalah benar-benar hasil karya sendiri, kecuali jika dalam pengutipan substansi disebutkan sumbernya, dan belum pernah diajukan pada instansi manapun, serta bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

20 Baca lebih lajut

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Pemanfaatan alat penukar kalor sekarang ini semakin luas dan dapat dilihat sebagai cara untuk meningkatkan efektifitas dan kualitas produk dengan cara memanfaatkan panas. Alat penukar kalor tabung sepusat merupakan salah satu jenis alat penukar kalor (APK) yang dimanfaatkan untuk memanaskan metanol sebagai salah satu bahan baku dalam industri pembuatan formaldehid yang nantinya akan diolah lagi menjadi berbagai macam produk seperti plastik, cat, peledak dan tekstil. Pemanfaatan alat penukar kalor tabung sepusat ini mendorong untuk dilakukannya berbagai perancangan dan penelitian alat penukar kalor yang lebih efektif. Tujuan penelitian ini adalah untuk mengetahui efektifitas tertinggi dan faktor yang mempengaruhi efektifitas alat penukar kalor tabung sepusat. Penelitian yang telah dilakukan dari hasil perancangan alat penukar kalor tabung sepusat dengan menggunakan variasi kapasitas fluida panas (air) yaitu 180 L/jam, 240 L/jam, 300 L/ jam dan 360 L/jam pada temperatur masuk fluida panas 40°C, 45°C, 50°C dan 55°C dengan kapasitas aliran fluida dingin (metanol) yaitu 180 L/jam, 240 L/jam dan 360 L/jam. Efektifitas tertinggi alat penukar kalor tabung sepusat untuk aliran berlawanan dari hasil perancangan yang dilakukan diperoleh 20,787 % dengan ketidakpastian pengukuran flowmeter sebesar ±2,99%. .
Baca lebih lanjut

2 Baca lebih lajut

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Untuk mengetahui temperatur fluida panas dan fluida dingin yang keluar dari alat penukar kalor tabung sepusat dengan aliran berlawanan, yakni yang terjadi di lapangan, perhitungan teori,[r]

4 Baca lebih lajut

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

Pemakaian alat penukar kalor sudah meluas sekarang ini dan dapat dikatakan sebagai salah satu cara untuk meningkatkan efektifitas dan kualitas produk dengan cara memanfaatkan panas buangan sebagai pemanas ataupun sebaliknya memanfaatkan sisa udara suhu rendah sebagai pendingin. Penelitian ini berpusat pada analisa dan simulasi dari alat penukar kalor tabung sepusat dengan aliran berlawanan dengan memvariasikan temperatur fluida panas yang masuk kedalam tabung dalam (tube) pada debit aliran yang konstan. Dari penelitian ini diperoleh efektifitas APK dengan perhitungan metode NTU, perhitungan data di lapangan, dan perhitungan secara simulasi software Ansys Fluent. Untuk perhitungan metode NTU diperoleh efektifitas APK minimum adalah 3,99747 % pada temperatur fluida panas masuk (T h,i ) 40 °C dan temperatur fluida dingin masuk (T c,i )
Baca lebih lanjut

2 Baca lebih lajut

Analisa Perfomansi Alat Penukar Kalor Tiga Saluran Satu Laluan Dengan Aliran yang Terbagi Dalam Konfigurasi Aliran Berlawanan Arah dan Searah

Analisa Perfomansi Alat Penukar Kalor Tiga Saluran Satu Laluan Dengan Aliran yang Terbagi Dalam Konfigurasi Aliran Berlawanan Arah dan Searah

Pemodelan secara teoritis untuk penukar panas tiga saluran ini telah dilakukan oleh C.L Ko dan Wedekind, yang sama telah diperoleh persamaan-persamaan untuk penentuan karateristik dari penukar panas ini. Skematik sederhana penukar panas ini dapat dilihat dalam Gambar 2.28. Kerangka fluida dipisah dalam saluran dua sisi (saluran nomor 2 dan 3) dan tabung fluida yang tidak dipisah pada saluran pusat (saluran nomor 1), yang mana disebut juga sebagai saluran refrensi. Jika aliran yang terpisah pada dua sisi saluran mempunyai arah aliran yang sama dengan aliran yang tidak terpisah pada saluran acua seperti yang ditunjukkan dalam Gambar 2.28. Konfigurasi ini disebut aliran paralel/searah. Jika aliran yang terbagi ini mempunyai arah aliran yang berlawanan dengan arah aliran pada saluran refrensi disebut sebagai aliran berlawanan. Geometri saluran dapat berupa anular, bulat, segiempat atau berbentuk lainnya, sepanjang batas yang umum ada antara dua saluran yang berdekatan.
Baca lebih lanjut

43 Baca lebih lajut

Analisa Perfomansi Alat Penukar Kalor Tiga Saluran Satu Laluan Dengan Aliran yang Terbagi Dalam Konfigurasi Aliran Berlawanan Arah dan Searah

Analisa Perfomansi Alat Penukar Kalor Tiga Saluran Satu Laluan Dengan Aliran yang Terbagi Dalam Konfigurasi Aliran Berlawanan Arah dan Searah

konfigurasi aliran berlawanan arah dan searah dengan alat penukar kalor yang digunakan sesuai ukuran yang digunakan C.L. Ko dan G.L. Wedekind. Hasil eksperimen bahwa efektifitas rata-rata ± 60% dengan efektifitas tertinggi ± 80,4 % dalam konfigurasi aliran berlawanan, dan efektitas rata-rata ± 43,4% dengan nilai tertinggi ± 55,1% dalam konfigurasi aliran searah. Efektifitas penukar kalor yang diperoleh dari prediksi secara teori, mempunyai perbedaan rata-rata terhadap pengujian ± 9,06% terhadap pengujian dalam aliran berlawanan dan 5,67% dalam aliran searah. Pada percobaan ini juga menunjukkan pergeseran desain optimum berdasarkan efektifitas maksimum yang dipengaruhi distribusi aliran terbagi dari prediksi C.L.Ko dan G.L. Wedekind.
Baca lebih lanjut

2 Baca lebih lajut

Analisa Perfomansi Alat Penukar Kalor Tiga Saluran Satu Laluan Dengan Aliran yang Terbagi Dalam Konfigurasi Aliran Berlawanan Arah dan Searah

Analisa Perfomansi Alat Penukar Kalor Tiga Saluran Satu Laluan Dengan Aliran yang Terbagi Dalam Konfigurasi Aliran Berlawanan Arah dan Searah

Skripsi ini berjudul “Analisa Perfomansi Alat Penukar Kalor Tiga Saluran Satu Laluan Dengan Aliran Yang Terbagi Dalam Konfigurasi Aliran Berlawanan Arah dan Searah”. Dalam menyelesaikan skripsi ini banyak hal yang dihadapi baik teknis dan non teknis.. Penulis telah berupaya dengan keras untuk menyelesaiakn skripsi ini dan penyajian, baik dengan disiplin ilmu yang diperoleh, serta bimbingan dan arahan dari Dosen Pembimbing.

16 Baca lebih lajut

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Pemanfaatan alat penukar kalor sekarang ini semakin luas dan dapat dilihat sebagai cara untuk meningkatkan efektifitas dan kualitas produk dengan cara memanfaatkan panas. Alat penukar kalor tabung sepusat merupakan salah satu jenis alat penukar kalor (APK) yang dimanfaatkan untuk memanaskan metanol sebagai salah satu bahan baku dalam industri pembuatan formaldehid yang nantinya akan diolah lagi menjadi berbagai macam produk seperti plastik, cat, peledak dan tekstil. Pemanfaatan alat penukar kalor tabung sepusat ini mendorong untuk dilakukannya berbagai perancangan dan penelitian alat penukar kalor yang lebih efektif. Tujuan penelitian ini adalah untuk mengetahui efektifitas tertinggi dan faktor yang mempengaruhi efektifitas alat penukar kalor tabung sepusat. Penelitian yang telah dilakukan dari hasil perancangan alat penukar kalor tabung sepusat dengan menggunakan variasi kapasitas fluida panas (air) yaitu 180 L/jam, 240 L/jam, 300 L/ jam dan 360 L/jam pada temperatur masuk fluida panas 40°C, 45°C, 50°C dan 55°C dengan kapasitas aliran fluida dingin (metanol) yaitu 180 L/jam, 240 L/jam dan 360 L/jam. Efektifitas tertinggi alat penukar kalor tabung sepusat untuk aliran berlawanan dari hasil perancangan yang dilakukan diperoleh 20,787 % dengan ketidakpastian pengukuran flowmeter sebesar ±2,99%. .
Baca lebih lanjut

150 Baca lebih lajut

PENGAMBILAN ZAT WARNA ALAMI DARI BIJI KESUMBA DENGAN PROSES EKSTRAKSI BATCH BERTAHAP 3 DENGAN ALIRAN BERLAWANAN ARAH.

PENGAMBILAN ZAT WARNA ALAMI DARI BIJI KESUMBA DENGAN PROSES EKSTRAKSI BATCH BERTAHAP 3 DENGAN ALIRAN BERLAWANAN ARAH.

Tujuan penelitian ini adalah mengetahui jumlah dan konsentrasi pada proses pengambilan zat warna alami dari biji kesumba, serta rasio yang menghasilkan hasil yang konstan (steady) dengan proses ekstraksi batch bertahap tiga dengan aliran berlawanan arah.

2 Baca lebih lajut

ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN BERLAWANAN TERHADAP EFEKTIVITAS HEAT EXCHANGER TIPE SHELL AND TUBE

ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN BERLAWANAN TERHADAP EFEKTIVITAS HEAT EXCHANGER TIPE SHELL AND TUBE

menyatakan dengan sesungguhnya bahwa skripsi yang berjudul: “ Analisis Pengaruh Kecepatan Fluida Panas Aliran Berlawanan Terhadap Efektivitas Heat Exchanger Tipe Shell And Tube ” adalah benar-benar hasil karya sendiri, kecuali jika dalam pengutipan substansi disebutkan sumbernya, dan belum pernah diajukan pada instansi manapun, serta bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

16 Baca lebih lajut

Analisa Perfomansi Alat Penukar Kalor Tiga Saluran Satu Laluan Dengan Aliran yang Terbagi Dalam Konfigurasi Aliran Berlawanan Arah dan Searah

Analisa Perfomansi Alat Penukar Kalor Tiga Saluran Satu Laluan Dengan Aliran yang Terbagi Dalam Konfigurasi Aliran Berlawanan Arah dan Searah

Pemodelan secara teoritis untuk penukar panas tiga saluran ini telah dilakukan oleh C.L Ko dan Wedekind, yang sama telah diperoleh persamaan-persamaan untuk penentuan karateristik dari penukar panas ini. Skematik sederhana penukar panas ini dapat dilihat dalam Gambar 2.28. Kerangka fluida dipisah dalam saluran dua sisi (saluran nomor 2 dan 3) dan tabung fluida yang tidak dipisah pada saluran pusat (saluran nomor 1), yang mana disebut juga sebagai saluran refrensi. Jika aliran yang terpisah pada dua sisi saluran mempunyai arah aliran yang sama dengan aliran yang tidak terpisah pada saluran acua seperti yang ditunjukkan dalam Gambar 2.28. Konfigurasi ini disebut aliran paralel/searah. Jika aliran yang terbagi ini mempunyai arah aliran yang berlawanan dengan arah aliran pada saluran refrensi disebut sebagai aliran berlawanan. Geometri saluran dapat berupa anular, bulat, segiempat atau berbentuk lainnya, sepanjang batas yang umum ada antara dua saluran yang berdekatan.
Baca lebih lanjut

144 Baca lebih lajut

Analisis dan simulasi efektifitas alat penukar kalor  tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang  mengalir dalam tabung dalam (tube)

Analisis dan simulasi efektifitas alat penukar kalor tabung sepusat aliran berlawanan dengan variasi temperaturairpanas yang mengalir dalam tabung dalam (tube)

Pemakaian alat penukar kalor sudah meluas sekarang ini dan dapat dikatakan sebagai salah satu cara untuk meningkatkan efektifitas dan kualitas produk dengan cara memanfaatkan panas buangan sebagai pemanas ataupun sebaliknya memanfaatkan sisa udara suhu rendah sebagai pendingin. Penelitian ini berpusat pada analisa dan simulasi dari alat penukar kalor tabung sepusat dengan aliran berlawanan dengan memvariasikan temperatur fluida panas yang masuk kedalam tabung dalam (tube) pada debit aliran yang konstan. Dari penelitian ini diperoleh efektifitas APK dengan perhitungan metode NTU, perhitungan data di lapangan, dan perhitungan secara simulasi software Ansys Fluent. Untuk perhitungan metode NTU diperoleh efektifitas APK minimum adalah 3,99747 % pada temperatur fluida panas masuk (T h,i ) 40 °C dan temperatur fluida dingin masuk (T c,i )
Baca lebih lanjut

132 Baca lebih lajut

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Dalam menganalisa suatu aliran fluida terdapat dua metode yang dapat digunakan, yang pertama adalah mencari pola aliran secara detail (x, y, z) pada setiap titik atau yang kedua, mencari pola aliran pada suatu daerah tertentu dengan keseimbangan antara aliran masuk dan keluar dan menentukan (secara kasar) efek-efek yang mempengaruhi aliran tersebut (seperti: gaya atau perubahan energi). Metode pertama adalah metode analisa diferensial sedangkan yang kedua adalah metode integral atau control volume. Boundary conditions adalah kondisi dari batasan sebuah kontrol volume tersebut. Dalam analisa menggunakan CFD seluruh titik dalam kontrol volume tersebut di cari nilainya secara detail, seperti yang telah di jelaskan di awal bab ini, dengan memanfaatkan nilai-nilai yang telah diketahui pada boundary conditions. Secara umum boundary conditions terdiri dari dua macam, inlet dan oulet. Inlet biasanya didefinisikan sebagai tempat dimana fluida memasuki domain (control volume) yang ditentukan. Berbagai macam kondisi didefinisikan pada inlet ini mulai dari kecepatan, komposisi, temperatur, tekanan, laju aliran. Sedangkan pada outlet biasanya didefinisikan sebagai kondisi dimana fluida tersebut keluar dari domain atau dalam suatu aplikasi CFD merupakan nilai yang didapat dari semua variabel yang didefinisikan dan diextrapolasi dari titik atau sel sebelumnya. Di bawah ini salah satu contoh penerapan boundary conditions.
Baca lebih lanjut

53 Baca lebih lajut

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Analisis Dan Simulasi Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan Dengan Variasi Temperatur, Kapasitas Aliran Pada Fluida Panas (Air) dan Fluida Dingin (Metanol)

Dari perhitungan diperoleh : Th,o= 39,86955 °C Tc,o = 34,20082 °C Setelah diperoleh Th,o dan Tc,o dari satu titik, maka untuk titik berikutnya dihitung dengan menggunakan Visual Basic[r]

13 Baca lebih lajut

Analisis dan Simulasi Keefektifan Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan dengan Variasi Temperatur Air Panas Masuk Pada Kapasitas Aliran yang Konstan

Analisis dan Simulasi Keefektifan Alat Penukar Kalor Tabung Sepusat Aliran Berlawanan dengan Variasi Temperatur Air Panas Masuk Pada Kapasitas Aliran yang Konstan

Cairan atau gas yang melewati pipa atau duct biasanya digunakan dalam proses pemanasan ataupun pendinginan. Fluida yang digunakan dalam banyak aplikasi tersebut dipaksa untuk mengalir dengan menggunakan kipas ataupun pompa melalui sebuah pipa yang panjang yang diharapkan terjadi perpindahan panas. Pada aliran dalam dibatasi oleh luas permukaan bagian dalam pipa, dan terdapat batasan seberapa besar lapisan batas dapat berkembang. Aliran dalam adalah bukan aliran yang bebas sehingga kita membutuhkan suatu alternatif. Kecepatan fluida didalam pipa berubah dari nol pada permukaan karena tidak ada slip yang terjadi, sampai kecepatan maksimum pada pusat pipa. Disisi lain, sangat nyaman untuk menghitung dengan menggunakan kecepatan rata-rata u dengan asumsi bahwa aliran adalah inkompresibel pada saat luas permukaan pipa konstan.
Baca lebih lanjut

102 Baca lebih lajut

Show all 6444 documents...