Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.
'lhe Development of a Chemical Analogue of Thermal Destruction of Bacterial Spores
A 'lhesia Presented in Fartial I!'ulfilment
ot the Requirements for the Degree of Dootor of ibilosoph7
at 1fasse7 Uni versi t7
Gordon John Ki toh Packer
1967
'·
MRSSEY UNIVERSITY
11111111111111111111111111111
1061258282·.:
; :·
I •
.�
uHd : • • ·, to J : evaluate the . total 'f." lethal.. . effeot of. heat on • the baoteri• al
.
F. ,pop,. , • • ·ulatioa in .a sealed
oon
taine.r
of�ood.
material. _The ohemi.oalr��·��
,
��que
has. &180�
led a atud,y to be made oftl;le,.,
ef�
eot .that,�
··"'·�.lll:OVement " '" • ·• • .or. the material. 1li • thin th; e container haiJ en. l( . the, ' ].etb8:J.1 ; o I • t;y . -.;.-� . _ • .,
the .. applied heat. ·-�
. _,:..
the 4egree ot deatruootian ot baotarial spores is shown to depend
�
on the aoti• vation energies and. deoimal reduotion times of ' "' . the :-·.:
ohemioal
"" t.'. · and bacterial qstema, and on the �heat penet�tion� J charaoter18t1Qa ot the material being prooeased •.Aaid �· ot IIUO�, iD'buf't'ere4 solution, waa ohotlell u-:
the model obeld.o� reaction eyateu. · It -.. used in the exper1.melltal
:·at� ot no twe• of. prooeaa, a with cans .tatic:mary, ... in.��
oCU�Hroial batch retorta, m4 the other with the oana -rota'*l "•5P�wa4"
aa in some commercial agitating batoh retort a and oontim10WI
��� ..
� etteat ot convection oil the extent of suoroee .bJ4rali'd• bae
·been imeatigated. By cambin1ng recorda of oan t•peratun · )11. th 4at& -.,,,:.
1:be
r
ate ot suoro• �·• the f'in.al canosntraticm ot acl"O.,. hae' "� �· -been oaloulatea. for a raage of proceaeea. 'fbeae caloulated�...:tuea·b&ve been oc:a.pared with those actuall;y obtaine4 in the oan.
!heoretioal oonld.derationa ahc)y. that the etreat of hot
ili'\�al
. Ana ohelllioal ' e1steu •• caioulated from . temperature a iAeaaUred at
'Pollti:-::
fiXe4 with re
sPec
t to the OCI1taiMr, i1 not Moessal'U7 the .... M�
aotual.l7 obtained in the container if OOilYMUGD: taaa: p1aoe · ·c111Z'iag LtM 'f!'3r
· proo•••• · Simple oOUYeoticm. aoclela han-been ue4 to relate th* utlllt .-,r ot!·IUOron �� o�oulatecl tram the te��paoat1ire 4&1:&:,> .to :tU.t '· ·
1Gtual.l.7 obtained iJl the OeDe · 'lhl80 OOD.Y80tiCI11101el8 mow that the � erature at the gecaetrioal centre ot t4e can could be oCDid.clered tpoal
ot the whole oan tar both statio and. a.gi tated can prooeaMs.
�
!be degreea ot destruot1CII1 at two mioro-orgam •• 1d. th 41t'h1111l\
"beataoreaiataDoea" hll9'8 al110 been oaloulated. trca the oen temperatuN c1Ata.
The .. haft enabled relationabipa between the auaro• �· aDil the apore 4estruaticn to be e.tabllab.e4. !be etteota ot -the Tarioua Pl'Oit...U.C taotora OD the .. relatiCIIlllld.pa, · an4 OD tt. rate ot beat tranaf'er to ti
oan ha're been lltl141ed. !he hotara 111Y8atigate4 wre pl'OMaliDg p:N�
Ul4 length ot prooeaa, tar statio oa aD4 agitate4 ea runs, Ul4 type.'IID4'.
apeecl ot I'Otation tor agitated. om ruu ODly. 'lhe prooeallbg pre.aura·ta tbe qUated oan runa, an4 ttaa· J.eDath ot the prooeaa in MtJl· agS. tate&.ua
atatia oa runa cSo DOt appea- to ban lligld.fioant etteota, but the ethota
ot all other taotora studi.e4 are aigDitioant.
•' ·
!he ocmaept ot equin.lent t1ae c!itterenoe, wbioh arises t'roll the relationllbip betwen the extent ot a ohemioal reaotian and the degree ot spore destruction haa been defined and examined. Jloclel temperature Ta
tiu ourna for a greater rauge at prooesaea and oan siaea than that uaecl in the experiments have been oaloulate4 uld.ng heat tranater rate data baae4 on the agitated oan runs, en4 the 4qen4enoe ot the eqalftl.elrl tiae 41tterenoe on the tn>e ot prooeaa an4 on the ld.se at oan ia aiaouaaecl.-. · ·
*ltiple reaction �tema in 11hiah llleatrurementa ot the matl ot
HTeral ohemloal reactions, eaoh with titt
erdf
aotintiOD aerglea, anUM4 to eatiaate the degree ot destruoticn ot QOrea haTe bee lDnftlgatecl.
!be moclel tn;perature n t1llle ournt�, deri� tar the �· ot the ecpt..
alat U. clitfer.moe ocmaept, were uee4 with data cm the atea ot the
OUOl'OM �a·roootiCXl, 'liliah hu c·llllti.,..tiai>. -- ftr 22.35
��
ID4 cm the rates ot two hypothetical reaotiou llith aoti.T&ticll eMI'Sl•• ot 30 an4 45 kaal/IIOle. latillatiCil ot th• degree ot .ore deatruotica wd.»,a reaotiona in pelra or in groups ot three ia daouan4.
It a pair ot reaotiona ia uaed, a kncnddge ot rates ot hea� trauter
to the oan ia required far aat1ataot017 eatilllaticm ot the lethal etteot ot heat. It three reaotiona are U88d, the lethality ot the prooeaa oen be
e8tiaate4 111 thottt heat transfer rate data.
iv
"
Errors arising in the estim:ition of the lethal effect of heat an
baoterial spores using chemical reactions singly 1 in pairs, or in groups of three are dieoussed. 'lhe maximum errors in the letha.ll ty of the process as estimated using the various chemical reaction techniques were fOWld to be leas than one qUArter of those arising from the same sources in traditional process calculation methods, in quite a number ot instances much less. It is also shown that unaertainties arising from the necessary experimental measurements can be evaluated much more readily 1'li th a ohem- ical reaction technique, especially the three reaction system, than they oan in other methods of prooess evaluation.
'lhe author 1t'iahes to reoord his gratitude to the following;
Professor R. L. Earle, his supervisor, for his guidance and con
tinual encouragement ;
Jlrs
s.
F. Rabc:me, and llise K. 'lard,'Who typed the draft and finaloopies respectively of this thesis, wQ.ioh, 1t'i th its numerous equations and formulae has been far frcm straightforward;
'lhe
Dairy
Production and Marketing Board for financial assistanoe during the early stages of the work; andJlr William H. Terry ot William H. Terry and Co. , Ltd. , WelliDgton, for assistanoe with the oosta of preparation of this thesis.
'!he author aleo wishes to thank his parents for their encouragement throughout, and their tinanoial help, espeoially during the l ater stages
ot the wark.
?i''f
orpcm;sqs
THE DmulJ?MENI OP CANND!G !QUIPWI$T AND P.ROOJit3SING METHOOO
MIOROBIOI.OO'ICAL IlEVELOiKKN't IlC CANNING PRACTICE
p1WRlqP!(PT OF QAIPULATICif KE'mODS OP PROCESS EVA.LUATICN
(a) Ballio Beoter1olog1oal Data
(1) Heat a .. iatanoe Determ.in&tion Kethoda (11) Haat Reai.tanae Data Interpretaticn (b) Basio Beat Penetration Data
(1) �tal Temperature lleuurement lLethocla
1 2
s s 5 9 1)
1lt.
(11) �tal Heating Ourna and Heating Cum Parameters 18
(ill) Appliaaticn ot Heat 'l'ranater 'lheory to Beating Ourna 20
(o) Proaeaa Caloulaticn
2S
(1) B&aea ot Prooeu
Calculation
25(U ) Teohniquea ot Proaeas caloulaticn 29
(ill) Ncn-m.a.thematioal l4etb.oda of .Prooeae EvalUAticn 35
D�
OP mB CHEKICAL ANALOOUE OF SPOREDBSTROO'l'I<Jf
J.8INmJDUCTION 39
DeTelOl!!!ent of th9 ;tn.vczptip;atiop 39
Develqpment
ot the Qhemioal. Anal.qgue Cone!l)t 39!x;eerimental .Plan l.o
D�
OF ,BASIQ gmgc.u, .Al(AWGUE THEORI ltONanenoJ.atun l.o
Detinitiog ot 'l'!lly and, Integral• 41
pPore Deat�Wticn JltiaatiC!l t;na cqemioal Reaction (I) lt2
(a) Integration ot lethal rate with respeat to time at a
single po1nt 42
(b) Integraticn nth reapeot to vol\llle 43
I?BJELOiKliiRT Of :BAffl'O grpqc.u, ANAitXiUE 'lHEORY- oant.
Spore Deatruetian letimation mn Ohemioal Reaction (II) (a) Integration at lethal rate with respeot to time at a
single point 44
(i) 'lhe 0 vs EA funotion for a general process 45 (11) 'lhe 0 vs BA f\motion for processes of knoWl. or
assumed fona 47
1.
!%he 0 vs BA funatian 472. Number or parameters for standard heat
penetraticn ourna 48
(lli) 'lb.e e bact vs ( 0 ahem (
1)'
0 ohem (2)) funotion 50(b) Integration at e nth re8})80t to volume 51 (i) General unknown ebact s v end· :_,·0Che : v
distributions. ! .. : -. · • • m 51
(ii) .Known 0baot s T and eohea : v dis1;ributicnas
development at canveotion models.
54
1.
Stationary oan54
2. Agitated oan 58
INTRODW!'I Cif 60
AiJa at the Project 60
Resume of the work 60
qrwqrw, waax 6o
Chemioal Sntem Developnent 6o
(a) 'lhe ideal system 60
(b) Selection of the ahemioa.l. system 61
(i) Iinetio oh.aracteristios of suo rose hydrolysis 61 (11) Anal.ytioal oharaoteristioa of sucrose hydrolysis 62
1. �· 62
2. Ett'eot of temperature 62
3. KutarotatiCil 62
(111) Stability of the system 63
Cbemioal
S:rstem Deyelopment cont.(
o) Measurement technique(d) Rate of hydrolysis determination (i) low temperatures
(11) High temperatures
vill
6S 67 67 67 (e) Oaloulation of the speoifio rate vs temperature tables 69 (1) Unbuffered suoroae 1
0.00101
NHCI, o. 750 )( sucrose 69 (U ) Buttered suo rose solution t pH 3. 5 70Temi?erature Me8.8Ur8Dlent 72
(a) Inatn11umta 72
(b) Calibration of thermooou;ple 11ire 74.
{o)
'lhermooouple oiroui ts 74.(i) Can thermocouple junctions 74.
(ii) Sta tic::Da.r7
oan
oiroui ts 76(ill) Rotating oan oiroui ts 80
(cl) Solmles of error in temperature measurement a, (i) Cond.uotion errors in thennooouplea a,
( U ) Electrolytic errors 86
Processing .Experiments 88
{a)
Equipment 88(1) Steam supply 88
(11) Experimental retort 88
1. Instrumentation 91
2. Steam supply 91
3. Canpressed air supply 91
4. Cold water supply 91
5. Revolving crate drive 91
(b) P.reparaticn of the retort for prooessing experiments 9'
(1) Instrunenta 93
(U) 'llring �md filling of oana 9'
(111) Arrangement or retort thermooouples 95
(iv) Closing 95
Processing !:J;?eriaenta ccat.
(o) Process o,ale
(i) HolcU.Dg period (ii} Cool 1 ng period
(Ui)
Sampling(d) hooessiug experillenta
(i) Suorose hydrol1sis rate determination 1. H,ydrolysis rate determination at
212�
2. Rate ot h1drol711is determinaticn at retort temperature
(ii) Statio oan runs
1.
Temperature distribution runs 2. Suorose h,yd.rolysia runs3. Suorose, milk, and water oompariscn (iii) Rotating oan runs
Calculation Data
(a) Chemical reaoticn ra.te data (b) Bacterial destruction rate data
ix
"
95 96 96 96 96 96 97
97 99 99 99 99
99
103 103 103 103 (1 ) Lethal rate vs temperature 1 B.stearothennopbilua 105
(11)
Lethal rate vs temperature 1 B. subtilis 105Tabulaticn 10S
Plotting and Integraticn 107
Calculation of EQuivalent Retort Times 109
(a) Equivalent retort time from temperature data 1�
(b) Equivalent retort time from suorose hydrolysis data 109 (o) Calculation of
Ha
from measurement of suorose hydrolysisin ag:l. tated tubes 110
RESULTS AND DISCUSSION
Statio Cans
(a) Temperature distri butiCD runs (i) Ccnveotion pattern
(ii) Heat transfer oaloulations
112 112 112 112 114
�
Statio Cans oc;mt.
(b) Sucrose hydrol.yaia runs 116
116 (1) EquiTalent point determination
(ii) Equivalent retort time correlation (®baot vs0ohe
.>
124(Ui) Equivalent time �fferenoes 126
(c) Yilk, water, and sucrose solution comparison 128 Agitated Oans
(a) Temperature distribution runs (b) Suoroae hydrolysis runs
130 133 1.33 (1) Heat transfer coefficient.
1. Calculation of OYere.l.l heat transfer coefficients 133
2. Caupariaon of agitated can and statio can
overall heat transfer coefficients 136 (ii) Comparison of calculated and measured sucrose
hydrol,yaia oqui valent retort times 137 (iii) Baoterlal equivalent retort times and equivalent
time ditterenoea 139
1 • Effect ot type of' organism (B) 145 2. Etf'ect of speed of' rotation (s) 147 3. Ef'tect of type of rotation (R) 148
4e Effect of length of process (T) 14S
Rgui valent Tl.me Difference Analysi a 151 (a) 'lhe specific rate differenoe f'lmotian 152 (b) Calculation of the model can temperature va time curves 157
(i) 'lhe model processes 157
(ii) Rates of heat transf'er to the model cans 157
(ill)
Method of calculation of the temperature vs time curves for the model cans 1.58 (c) Equivalent time differences for the model oans 16o(i) Effect of type of organism on equivalent time
difference 161
(ii) Effect of can size and type of process on eq_uiv-
alent time difference 164
1. lf'teot of total length of heating and cooling
periods 167
2. Et"feot of oan size : square process 167
.,
3.
Et
teot ot can size s non-square process 1 684. Etteot ot length ot prooeaa 169
(4) Appllcat1Cil of equivalent time di fference analysis
conolusiona to real processes 1 70
F\l!dfl M
DE\'IWlP!III!T
OPTHE OHEKICAL
AHAIOOUE 1 73IHTRODOOTICii 1 74
:KULTIPLB RBAOTI
CliSYSTEMS
1 741'!!11Perature Tl Time Curves of Beat Pit 1 74
llethod 1 76
(
a) Two
reaotioo systems 1 n(
i)
Temperature vs time curves of best fit 1n(11)
Equivalent time d.if'terenoe correlations 1 81(
b)
�ee reaction systems 1 82(
i)
Types ot best fit curves 1 821. T;ype I curve of beat f'i t 185
2. T;ype II cum ot best f'1 t 1 8"7
(U) Oanpariaon ot the
two
tn>ea of beat fit curve aamethods ot oaloulaticm ot spore d.estruotiCil 489
1 . 'lhe best tit ourvea 1 93
2. BquiTalent time differences and equivalent
retort times 1 95
(111) lloditication of' the analogue 196
(
iv)
:Error in equivalent retort time due to error inmeasurement of' retort temperature 1 99
(
v)
Integration with respect to volume 201CONCIDSIONS
ANll POT!Jf'l]IAL APfUCA1:I<DS
OPm 9!ffiCAL .AlfAU,)GUJ
205CONCUJSICBS 2o6
'lheoretioal Conaideratigns 206
'lhe Experiment• 207
(
a)
Statio oans 207(
b)
Agitated cans 208CONCWSIONS oont.
Analysis of the Equivalent Time Difference Conoept 209
Multiple Reaction Systems 21 0
General Conolusioll! 212
POTEN'l'llL .APPUCATIOOS OF mE CHEMICAL Al'lALOGUE 21 3 (a) Kethod for oheoking process oaloulation assumptions 21 3
(b) Evaluation of new or modified processes 21 3 (o) Trouble shooting and control techniques 21 3 (d) Evaluation of the effect of heat on vitamin losses eto. 21 4 (e) Evaluation of the effect of heat in continuous flow
systems 21 4
(f) low temperature applications 21 4
SDmOLS AND DEFINITICiffi I RXPERENCES I AND APPENDICES SDlBOLS AND DE.FINI TI CtiS
REFERENCES
APmmiCES
I Canpariaon ot Kass Average Surrival Ratios, Calculated
21.5 216 226
using .Fixed Pa1nt and Koving Element Temperature Data 236 II Calculation of Equivalent Retort Time for Linear
Prooesses 242
III A Calculation of pR vs A Table 244
III B Inversion of 0.750 K Sucrose : pR vs A Table 246 IV Caloulation of the .Aoetio acid - Sodium acetate Buffer 247 V Speoifio Sucrose Hydrolysis Rate vs Temperature Table 250 VI A Solution of the Equation tor Beating of the 1hermooouple
Junction by Cond\.Xltion along the Wire 2.51 VI B Calculation ot Heat Conduction Error in the 1hermooouple
fi" 2�
VII Lethal Rate vs Temperature Tables for B.stearothermo-
VIII
philua and B. subtilia 262
Sucrose Hydrolysis - EAz30 Reaction Speoifio Rate Difference vs Temperature Table
Suoroee Hydrolysis - EAt45 Reaction : Speoifio Rate Difference vs Temperature Table
.APPENDIC:r3 cont.
IX Calculation of Equivalent Retort Times for Linear Semi-
xiii
loga.ri thmio Prooeaaea 265
X Coe!'tioienta a, b, t.a and 6b for Calculation of
Parameters for Type I Curve of Beat Fit 269
XI Nomenolature of Can Sizea 270