Sharp Estimation Type Inequalities for Lipschitzian Mappings in Euclidean Sense on a Disk
This is the Published version of the following publication
Rostamian Delavar, M, Dragomir, Sever S and De La Sen, M (2021) Sharp Estimation Type Inequalities for Lipschitzian Mappings in Euclidean Sense on a Disk. Journal of Function Spaces, 2021. ISSN 2314-8896
The publisher’s official version can be found at https://www.hindawi.com/journals/jfs/2021/6615626/
Note that access to this version may require subscription.
Downloaded from VU Research Repository https://vuir.vu.edu.au/43285/
Research Article
Sharp Estimation Type Inequalities for Lipschitzian Mappings in Euclidean Sense on a Disk
M. Rostamian Delavar ,1S. S. Dragomir ,2and M. De La Sen 3
1Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, P. O. Box 1339, Bojnord 94531, Iran
2Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
3Institute of Research and Development of Processes, University of Basque Country, Campus of Leioa (Bizkaia)-Aptdo. 644-Bilbao, Bilbao 48080, Spain
Correspondence should be addressed to M. Rostamian Delavar; [email protected] Received 14 December 2020; Accepted 1 February 2021; Published 8 February 2021
Academic Editor: Ismat Beg
Copyright © 2021 M. Rostamian Delavar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Some sharp trapezoid and midpoint type inequalities for Lipschitzian bifunctions defined on a closed disk in Euclidean sense are obtained by the use of polar coordinates. Also, bifunctions whose partial derivative is Lipschitzian are considered. A new presentation of Hermite-Hadamard inequality for convex function defined on a closed disk and its reverse are given.
Furthermore, two mappingsHðtÞandhðtÞare considered to give some generalized Hermite-Hadamard type inequalities in the case that considered functions are Lipschitzian in Euclidean sense on a disk.
1. Introduction and Preliminaries
Consider thatDðC,RÞis a closed disk in the plane centered at the pointC=ða,bÞhaving the radiusR> 0. In [1] (see also [2]), the Hermite-Hadamard inequality for a convex function defined onDðC,RÞhas been obtained as follows:
Theorem 1. If the mappingF :DðC,RÞ→R is convex on DðC,RÞ, then one has the inequality
F Cð Þ≤ 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy≤ 1 2πR
ð
∂ðC,RÞFð Þdlψ ð Þ,ψ ð1Þ where∂ðC,RÞis the circle centered at the pointC=ða,bÞwith radiusR. The above inequalities are sharp.
First of all, we give the following result which is including a new presentation of (1) and its reverse as well:
Theorem 2.For a continuous functionFdefined on a convex subsetA⊂ℝ2,
(1) ifF is convex onA, then for anyDðC,RÞ⊂A, we have
ð ð
D C,Rð ÞFðx,yÞdA≤ 1 R ð
∂ðC,RÞFðx,yÞðy−bÞ2d∂, ð2Þ where∂ðC,RÞis the boundary ofDðC,RÞ
(2) if (2) holds for allDðC,RÞ⊂A, thenF is convex
Proof.
(1) Consider the change of coordinatesM:½a−R,a+ R×½0, 1→DðC,RÞdefined as
Mðx,sÞ= x−a, 2sð −1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi R2−ðx−aÞ2
q +b
: ð3Þ
Hindawi
Journal of Function Spaces
Volume 2021, Article ID 6615626, 10 pages https://doi.org/10.1155/2021/6615626
It follows that
ð ð ð
D C,Rð ÞFðx,yÞdA
= 2ða+R
a−R
ð1
0F s x, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi R2−ðx−aÞ2
q +b
+ 1ð −sÞ x,− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi R2−ðx−aÞ2
q +b
× ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi R2−ðx−aÞ2 q
dsdx≤2 ða+R
a−R
ð1
0sF x, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx−aÞ2
q +b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx−aÞ2 q
dsdx+ 2ða+R
a−R
ð1
0ð1−sÞF x,− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx−aÞ2 q
+b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx−aÞ2 q
dsdx= ða+R
a−RF x, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx−aÞ2 q
+b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx−aÞ2 q
dx+ ða+R
a−RF x,− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx−aÞ2 q
+b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx−aÞ2 q
dx:
ð4Þ Now consider y= ± ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx−aÞ2
q +b in above inte-
grals with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 +ð∂y/∂xÞ2
q =R/ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi R2−ðx−aÞ2
q Þ=R/ðy−
bÞto obtain the desired result
(2) Suppose that there exist X1,X2∈A and s∈ð0, 1Þ such that
FðsX1+ 1ð −sÞx2Þ>sFð ÞX1 + 1ð −sÞFð ÞX2 ð5Þ SinceFis continuous onA, then there existsR> 0and a pointC0=ða0,b0Þin convex combination ofX1andX2such that (5) holds on whole ofDðC0,RÞ⊂A. Now, if we follow the proof of part (1) forFby the use of (5) onDðC0,RÞand
∂ðC0,RÞ, then we have ð ð
D Cð 0,RÞFðx,yÞdA> 1 R
ð
∂ðC0,RÞFðx,yÞðy−bÞ2d∂: ð6Þ This contradiction proves the convexity ofF onA. We remind that the classic form of Hermite-Hadamard inequality (see [3–5]) for a real valued convex function f defined on½a,bis the following:
f a+b 2
b−a ð Þ≤ðb
a
f xð Þdx≤ðb−aÞf að Þ+f bð Þ
2 : ð7Þ
Generally, in the literature associated to any Hermite- Hadamard type inequality, there exist two inequalities which we call them trapezoid and mid-point type inequalities. The names“trapezoid”and “midpoint”comes from two classic inequalities (due to their geometric interpretation) related to the Hermite-Hadamard inequality obtained in [6, 7], respectively:
∣ðb
a
f xð Þdx−ðb−aÞf að Þ+f bð Þ 2 ∣ ≤1
8ðb−aÞ2∣f′ð Þ∣+∣fa ′ð Þb ∣ , ð8Þ
∣ðb
a
f xð Þdx−ðb−aÞf a+b 2
∣ ≤1
8ðb−aÞ2∣f′ð Þa∣+∣f′ð Þb ∣ , ð9Þ where f :I∘⊆ℝ→ℝ is a differentiable mapping on I∘,a,b
∈I∘witha<band∣f′∣ is convex on½a,b. For more results about convex functions, related inequalities, and generaliza- tions of (7)–(9), see [8–23] and references therein.
Recently, in [17], the authors obtained the trapezoid and midpoint type inequality related to (1) as follows, respectively:
Theorem 3. Consider a setI⊂ℝ2 with DðC,RÞ⊂I∘. Sup- pose that the mapping F :DðC,RÞ→ℝ has continuous partial derivatives in the diskDðC,RÞwith respect to the var- iablesρandφin polar coordinates. If for any constantφ∈½ 0,2π, the function∣∂F/∂ρ∣ is convex with respect to the var- iableρon½0,Rthen
∣ 1 2πR
ð
∂ðC,RÞFð Þdlγ ð Þγ − 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy∣
≤ 1 6π
ð
∂ðC,RÞ∣∂F
∂r ∣ð Þdlγ ð Þ,γ
ð10Þ
∣ 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy−f Cð Þ∣ ≤ 2 3π
ð
∂ðC,RÞ∣∂F
∂r ∣ð Þdlγ ð Þ:γ ð11Þ Note that inequality (10) is sharp.
As we can see in (8) and (9), the classic trapezoid and midpoint type inequalities have been obtained for the func- tions whose the first derivative absolute values are convex.
In [22, 24], the authors considered Lipschitzian mappings instead of those whose the first derivative absolute values are convex to obtain some midpoint and trapezoid type inequalities:
Theorem 4 [24].Let f :I∘⊆ℝ→ℝbe an M -Lipschitzian mapping on I and a,b∈I with a<b. Then, we have the inequalities
∣ðb
a
f xð Þdx−ðb−aÞf a+b 2
∣ ≤M 4 ðb−aÞ,
∣ðb
a
f xð Þdx−ðb−aÞf að Þ+f bð Þ 2 ∣ ≤M
3ðb−aÞ:
ð12Þ
Motivated by above works and results, we obtain some trapezoid and midpoint type inequalities related to (1) for Lipschitzian mappings (in Euclidean sense) defined on the disk DðC,RÞin a plane. Also we investigate trapezoid and mid-point type inequalities in the case that in polar coordi- nates ðρ,φÞ, the derivative of considered function with respect to the variable ρ is Lipschitzian. Furthermore, two mappings HðtÞ and hðtÞ are considered to give some
generalized Hermite-Hadamard type inequalities in the case that the functions are Lipschitzian on a diskDðC,RÞ.
Here, we should mention that in [25], we canfind some inequalities for the integral mean of Hölder continuous func- tions defined on disks in a plane which in a special case leads to trapezoid and midpoint type inequalities for a kind of Lipschitzian mappings as the following:
Theorem 5.Iff :DðC,RÞ→ℝsatisfies the condition
∣f a,ð bÞ−f x,ð yÞ∣ ≤M1∣x−a∣+M2jy−bj,ðx,yÞ∈D Cð ,RÞ, ð13Þ
whereM1,M2>0, then we have the inequalities
∣ 1 2πR
ð
∂ðC,RÞfð Þdlγ ð Þγ − 1 πR2
ð ð
D C,Rð Þf x,ð yÞdxdy∣ ≤2R
3πðM1+M2Þ, ð14Þ
∣ 1 πR2
ð ð
D C,Rð Þf x,ð yÞdxdy−f Cð Þ∣ ≤4R
3πðM1+M2Þ:
ð15Þ The main point is that the Euclidean Lipschitz condition used in this paper is a stronger condition than (13) in the case thatM1=M2 and so our results obtained in (20) and (29) will provide more accurate estimation compared to (14) and (15). Furthermore, we obtain new trapezoid and mid- point type inequalities of our function is Lipschitzian.
2. Main Results
In this section,first, we obtain some trapezoid and midpoint type inequalities related to (1) for the case that our consid- ered function is Lipschitzian (in Euclidean sense). Second, we obtain some trapezoid and mid-point type inequalities related to (1) for the case that the partial derivative of our function with respect to the variableρin polar coordinates ðρ,ϕÞis Lipschitzian (in Euclidean sense).
Definition 6[26]. A functionF :I⊂ℝ2→ℝis said to satisfy a Lipschitz condition (briefly K-Lipschitzian) on I with respect to a normk∙k, if there exists a constantK> 0such that
∣Fð ÞX1 −Fð ÞX2 ∣ ≤KkX1−X2k, ð16Þ for anyX1,X2∈I.
If F:DðC,RÞ→ℝ is Lipschitzian with respect to a constant K> 0and the Euclidean norm k∙k, then for any X1=ða+ρ1cosφ1,b+ρ1sinφ1Þand X2=ða+ρ2cosφ2,b
+ρ2sinφ2Þ, we have
∣Fð ÞX1 −Fð ÞX2 ∣=∣Fða+ρ1cosφ1,b+ρ1sinφ1Þ
−Fða+ρ2cosφ2,b+ρ2sinφ2Þ∣
≤Kkðρ1cosφ1−ρ2cosφ2,ρ1sinφ1−ρ2sinφ2Þk
=K ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ρ21+ρ22−2ρ1ρ2cosðφ1−φ2Þ
q ,
ð17Þ for anyρ1,ρ2∈½0,Randφ1,φ2∈½0, 2π. Also, it is obvious that ifF :I⊆ℝ2→ℝis Lipschitzian with respect to a con- stantK> 0onI, then, it is continuous and so integrable on I.
2.1. F Is Lipschitzian. Thefirst result of this section is the trapezoid type inequality related to (1) for the case that our considered function is Lipschitzian. We start with a lemma.
Lemma 7.Define a functionF :DðC,RÞ→ℝas
Fð ÞX =Fða+ρcosφ,b+ρsinφÞ=K Rð −ρÞ, ð18Þ forfixedK>0and all0≤ρ≤R,0≤φ≤2π. Then, the func- tionF isK-Lipschitzian.
Proof.ConsiderX1=ða+ρ1cosφ1,b+ρ1sinφ1ÞandX2= ða+ρ2cosφ2,b+ρ2sinφ2Þ, for ρ1,ρ2∈½0,R and φ1,φ2
∈½0, 2π. So
∣Fð ÞX1 −Fð Þ∣X2 =∣Fða+ρ1cosφ1,b+ρ1sinφ1Þ
−Fða+ρ2cosφ2,b+ρ2sinφ2Þ∣
=K∣ρ2−ρ1∣=K ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ρ21+ρ22−2ρ1ρ2 q
≤K ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ρ21+ρ22−2ρ1ρ2cosðφ1−φ2Þ q
=Kkða+ρ1cosφ1,b+ρ1sinφ1Þ
−ða+ρ2cosφ2,b+ρ2sinφ2Þk
=KkX1−X2k,
ð19Þ
for allX1,X2∈DðC,RÞ.
Theorem 8.Suppose that the mappingF :DðC,RÞ→ℝis Lipschitzian with respect to a constantK>0and the Euclid- ean normk∙k. Then,
∣ 1 2πR
ð
∂ðC,RÞFð Þdlψ ð Þψ − 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy∣ ≤KR 3 , ð20Þ where ∂ðC,RÞis the boundary ofDðC,RÞandψ:½0,2π
→ℝ2is its corresponding curve. Also, inequality (20) is sharp.
3 Journal of Function Spaces
Proof.SinceF is Lipschitzian with respect toK> 0and the Euclidean norm onDðC,RÞ, then, we have
∣ð2π
0
ðR
0Fða+ρcosφ,b+ρsinφÞρdρdφ
−ð2π
0
ðR
0 Fða+Rcosφ,b+RsinφÞρdρdφ∣
≤ð2π
0
ðR
0 ∣Fða+ρcosφ,b+ρsinφÞ
−Fða+Rcosφ,b+RsinφÞ∣ρdρdφ
≤Kð2π
0
ðR
0kððρ−RÞcosφ,ðρ−RÞsinφÞkρdρdφ
=Kð2π
0
ðR
0ρ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ρ2+R2−2ρR
q dρdφ
=Kð2π
0
ðR
0ρðR−ρÞdρdφ=KπR3
3 :
ð21Þ Now, consider the constantRand the curve ψ:½0, 2π
→ℝ2defined by
ψ φð Þ: xð Þφ =a+Rcosφ, yð Þφ =b+Rsinφ, (
φ∈½0, 2π: ð22Þ
It is clear thatψð½0, 2πÞ=∂ðC,RÞ, and then by integrat- ing, we obtain that
ð
∂ðC,RÞFð Þdlψ ð Þψ =ð2π
0 Fðxð Þ,φ yð Þφ Þ ∂xð Þφ
∂φ
2
+ ∂yð Þφ
∂φ 2!1/2
dφ
=Rð2π
0 Fða+Rcosφ,b+RsinφÞdφ,
ð23Þ where ½ð∂xðφÞÞ/∂φ2+½ð∂yðφÞÞ/∂φ2=ðR2sin2φ+R2 cos2φÞ1/2=R, and ð∂xðφÞÞ/∂φ,ð∂yðφÞÞ/∂φ are derivatives of“xðφÞ”and “yðφÞ”with respect toφ, respectively. So the fact that
ð2π
0
ðR
0 Fða+Rcosφ,b+RsinφÞρdρdφ
=R2 2
ð2π
0 Fða+Rcosφ,b+RsinφÞdφ,
ð24Þ
implies that ð2π
0
ðR
0Fða+Rcosφ,b+RsinφÞρdρdφ=R 2
ð
∂ðC,RÞFð Þdlψ ð Þ:ψ ð25Þ
Also, by the use of polar coordinates, we get to ð ð
D C,Rð ÞFðx,yÞdxdy=ð2π
0
ðR
0Fða+ρcosφ,b+ρsinφÞρdρdφ:
ð26Þ
Finally, by replacing (25) and (26) in (21) and then divid- ing the result with“πR2,”we deduce the desired result. To prove sharpness of (20), consider the function F :DðC,R Þ→ℝdefined by
Fða+ρcosφ,b+ρsinφÞ=K Rð −ρÞ, ð27Þ
forfixedK> 0and all0≤ρ≤R,0≤φ≤2π. The functionf isK-Lipschitzian by Lemma 7. It is not hard to see thatFð a+ρcosφ,b+ρsinφÞ≥0for all 0≤ρ≤Rand also for the case that ρ=R, we have Fða+Rcosφ,b+RsinφÞ= 0. Now applying these results in (21) implies that
∣ 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy− 1 2πR
ð
∂ðC,RÞFð Þdlψ ð Þ∣ψ
= 1
πR2 ð2π
0
ðR
0 Fða+ρcosφ,b+ρsinφÞρdρdφ
= 1
πR2 ð2π
0
ðR
0 K Rð −ρÞρdρdφ=KR 3 :
ð28Þ
The following result is the midpoint type inequality related to (1) for Lipschitzian functions defined on a closed disk.
Theorem 9.Suppose that the mappingF :DðC,RÞ→ℝis Lipschitzian with respect to a constantK>0and the Euclid- ean normk∙k. Then,
∣ 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy−F Cð Þ∣ ≤2KR
3 : ð29Þ
Furthermore, inequality (29) is sharp.
Proof. Since the mappingF satisfies a Lipschitz condition with respect to a constant K> 0 and the Euclidean norm onDðC,RÞ, we have
∣Fða+ρcosφ,b+ρsinφÞ−Fða,bÞ∣ ≤Kkðρcosφ,ρsinφÞk=Kρ,
ð30Þ
for allρ∈½0,Randφ∈½0, 2π. It follows that
∣ð2π
0
ðR
0Fða+ρcosφ,b+ρsinφÞρdρdφ−ð2π
0
ðR
0Fða,bÞρdρdφ∣
≤ð2π
0
ðR
0∣Fða+ρcosφ,b+ρsinφÞ−Fða,bÞ∣ρdρdφ
≤Kð2π
0
ðR
0ρ2dρdφ= 2KπR3
3 :
ð31Þ By the use of identity (26) in inequality (31), we obtain that
∣ð ð
D C,Rð ÞFðx,yÞdxdy−πR2fð Þ∣ ≤C 2KπR3
3 : ð32Þ Finally, it is enough to divide (32) with“πR2”to get the result. For the sharpness of (29), consider the function F :DðC,RÞ→ℝdefined by
Fða+ρcosφ,b+ρsinφÞ=Kρ, ð33Þ for K> 0, 0≤ρ≤R and 0≤φ≤2π. By a similar method used in the proof of Lemma 7, the function F is K -Lipschitzian. Also, it is obvious that Fða+ρcosφ,b+ρ
sinφÞ≥0andFða,bÞ= 0. So, we have
∣ 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy−fð Þ∣C
= 1
πR2 ð2π
0
ðR
0 f að +ρcosφ,b+ρsinφÞρdρdφ
= 1
πR2 ð2π
0
ðR
0 Kρ2dρdφ=2KR
3 ,
ð34Þ
showing that inequality (29) is sharp.
Corollary 10.Suppose thatU⊂ℝ2is an open set withDðC ,RÞ⊂U. IfF is a convex function defined onU, then Theo- rem D of Section 41 in [26] implies thatFsatisfies a Lipschitz condition onDðC,RÞwith respect to a constantK>0and so from inequalities (20) and (29) along with inequality (1), we have the following results:
0≤ 1 2πR
ð
∂ðC,RÞFð Þdlψ ð Þψ − 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy≤KR 3 , 0≤ 1
πR2 ð ð
D C,Rð ÞFðx,yÞdxdy−F Cð Þ≤2KR 3 :
ð35Þ In the following example, for a given function, it is illus- trated how we can obtain a Lipschitz constantK for a real valued bifunction defined on a disk.
Example 11. ConsiderFðx,yÞ=ðx−aÞn+ðy−bÞn,ðx,yÞ∈ DðC,RÞ, n∈ℕ. We find a Lipschitz constant for F as follows:
ForX1,X2∈DðC,RÞ, consider the pathη:½0, 1→Dð C,RÞfromX2toX1inDðC,RÞas
ηð Þs =sX1+ 1ð −sÞX2, ð36Þ for s∈½0, 1. The fundamental theorem of calculus implies that
∣Fð ÞX1 −Fð Þ∣X2 =∣Fðηð Þ1 Þ−Fðηð Þ0 Þ∣= ð1
0
dFðηð Þs Þ ds ds
: ð37Þ
Also, the chain rule for differentiation implies that dFðηð Þs Þ
ds =∇Fðηð Þs Þ:η′ð Þs =∇Fðηð Þs ÞðX1−X2Þ, ð38Þ where∇f is the gradient vector ofF. So,
∣ð1
0
dFðηð Þs Þ
ds ds∣=∣ð1
0∇Fðηð ÞsÞðX1−X2Þds∣
≤kX1−X2kð1
0k∇Fðηð Þs Þkds
≤kX1−X2k sup
w∈D C,Rð Þk∇Fð Þwk,
ð39Þ
which implies that
∣Fð ÞX1 −Fð Þ∣ ≤X2 kX1−X2k sup
w∈D C,Rð Þk∇Fð Þw k: ð40Þ Now, we conclude that K= supw∈DðC,RÞk∇FðwÞk (if exists) is a Lipschitz constant forF. Therefore, for anyðx,y Þ∈DðC,RÞ, we have
∇Fðx,yÞ=n xð −aÞn−1,n yð −bÞn−1
, ð41Þ and then by the use of polar transformation, we get
∇Fð Þw
k k= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi n xð −aÞn−1
2+n yð −bÞn−12
q
=n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ρ2cos2φ
ð Þn−1+ðρ2sin2φÞn−1 q
≤n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ρ2cos2φ+ρ2sin2φ
ð Þn−1
q =nρn−1≤nRn−1:
ð42Þ So, we can chooseK= supw∈DðC,RÞk∇FðwÞk=nRn−1as a Lipschitz constant forF onDðC,RÞ.
Remark 12. According to the above example, if we have a function F :DðC,RÞ→ℝ such that K= supw∈DðC,RÞk∇ FðwÞk<∞ with respect to the Euclidean norm k∙k, then 5 Journal of Function Spaces
we can considerK as a Lipschitz constant and then obtain inequalities (20) and (29).
2.2. ∂F/∂ρ Is Lipschitzian. In this part, we investigate the trapezoid and midpoint type inequalities in the case that in polar coordinatesðρ,φÞ, the partial derivative of considered function with respect to the variableρis Lipschitzian in the Euclidean normk∙k.
Theorem 13.Consider a setI⊂ℝ2withDðC,RÞ⊂I∘and a mappingF :DðC,RÞ→ℝsuch that∂F/∂ρ(partial deriva- tive ofFwith respect to the variableρin polar coordinates) is Lipschitzian with respect to a constantK>0and the Euclid- ean normk∙k. Then,
∣ 1 2πR
ð
∂ðC,RÞFð Þdlψ ð Þψ − 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy∣ ≤KR2 4 : ð43Þ
Proof.For anyfixedφ∈½0, 2π, if we set xð Þρ =a+ρcosφ, yð Þρ =b+ρsinφ, (
ð44Þ
then we obtain that ð½ð∂xðρÞÞ/∂ρ2+½ð∂xðρÞÞ/∂ρ2Þ1/2= ðsin2ðφÞ+ cos2ðφÞÞ1/2= 1, where ð∂xðρÞÞ/∂ρ, ð∂yðρÞÞ/∂ρ are the derivatives of xðρÞ,yðρÞ, respectively, with respect to the variableρin½0,R. By the above facts, using integra- tion by parts and identities (25) and (26) obtained in Theo- rem 8, we get
ð2π
0
ðR
0
∂F
∂ρða+ρcosφ,b+ρsinφÞρ2dρdφ
=R2ð2π
0 Fða+Rcosφ,b+RsinφÞdφ
−2ð2π
0
ðR
0 Fða+ρcosφ,b+ρsinφÞρdρdφ
=Rð
∂ðC,RÞFð Þdlψ ð Þψ −2ð ð
D C,Rð ÞFðx,yÞdxdy:
ð45Þ
On the other hand, we have ð2π
0
ðR
0
∂F
∂ρða+ρcosφ,b+ρsinφÞρ2dρdφ
=ðπ
0
ðR
0
∂F
∂ρða+ρcosφ,b+ρsinφÞρ2dρdφ +ð2π
π
ðR
0
∂F
∂ρða+ρcosφ,b+ρsinφÞρ2dρdφ
=ðπ
0
ðR
0
∂F
∂ρða+ρcosφ,b+ρsinφÞρ2dρdφ
−ðπ
0
ðR
0
∂F
∂ρða−ρcosφ,b−ρsinφÞρ2dρdφ:
ð46Þ
So from (45) and (46), we obtain that
∣Rð
∂ðC,RÞFð Þdlψ ð Þψ −2ð ð
D C,Rð ÞFðx,yÞdxdy∣
≤ðπ
0
ðR
0 ∣∂F
∂ρða+ρcosφ,b+ρsinφÞ
−∂F
∂ρða−ρcosφ,b−ρsinφÞ∣ρ2dρdφ
≤Kðπ
0
ðR
0 kð2ρcosφ, 2ρsinφÞkρ2dρdφ=πKR4
2 :
ð47Þ Finally, it is enough to divide (47) with“2πR2”to get the desired result.
The following is a trapezoid type inequality for the case that the partial derivative of considered function with respect to the variable“ρ”is Lipschitzian with respect to the Euclid- ean normk∙k.
Theorem 14.Consider a setI⊂ℝ2withDðC,RÞ⊂I∘and a mappingF :DðC,RÞ→ℝsuch that∂F/∂ρ(partial deriva- tive off with respect to the variableρin polar coordinates) is Lipschitzian with respect to a constantK>0and the Euclid- ean normk∙k. Then,
∣ 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy−F Cð Þ∣ ≤3KR2
4 : ð48Þ Proof. Using the description provided in the beginning of Theorem 13, it is not hard to see that
ð2π
0
ðR
0
∂F
∂ρða+ρcosφ,b+ρsinφÞdρdφ
=ð2π
0 Fða+Rcosφ,b+RsinφÞdφ−2πF Cð Þ:
ð49Þ
Also by the use of (23) in Theorem 8, we have ð2π
0 Fða+Rcosφ,b+RsinφÞdφ= 1 R
ð
∂ðC,RÞFð Þdlψ ð Þ:ψ ð50Þ
On the other hand, we have ð2π
0
ðR
0
∂F
∂ρða+ρcosφ,b+ρsinφÞdρdφ
=ðπ
0
ðR
0
∂F
∂ρða+ρcosφ,b+ρsinφÞdρdφ
−ðπ
0
ðR
0
∂F
∂ρða−ρcosφ,b−ρsinφÞdρdφ:
ð51Þ
Then, 1 R
ð
∂ðC,RÞFð Þdlψ ð Þψ −2πF Cð Þ
=ðπ
0
ðR
0
∂F
∂ρða+ρcosφ,b+ρsinφÞ
−∂F
∂ρða−ρcosφ,b−ρsinφÞ
dρdφ:
ð52Þ
Since∂F/∂ρisK-Lipschitzian, we have that
∣ 1 2πR
ð
∂ðC,RÞFð Þdlψ ð Þψ −F Cð Þ∣ ≤KR2
2 : ð53Þ
Now triangle inequality and inequality (43) imply that
∣ 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy−F Cð Þ∣
≤ ∣ 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy− 1 2πR
ð
∂ðC,RÞFð Þdlψ ð Þ∣ψ +∣ 1 2πR
ð
∂ðC,RÞFð Þdlψ ð Þψ −Fð Þ∣C
≤ KR2
4 +KR2
2 =3KR2 4 :
ð54Þ Here, we provide two examples in connection with results obtained in this subsection.
Example 15.Define a functionF:DðC,RÞ→ℝby Fða+ρcosφ,b+ρsinφÞ=Mρ2, ð55Þ for M> 0,0≤ρ≤R, and0≤φ≤2π. Since∂F/∂ρ= 2Mρ, then according to Remark 12, we can consider K= supw∈DðC,RÞk∇FðwÞk= 2M<∞ as a Lipschitz constant with respect to the Euclidean normk∙k. On the other hand,
Fð ÞC =F a,ð bÞ= 0, ð ð
D C,Rð ÞFðx,yÞdxdy=MπR4
2 ,
ð
∂ðC,RÞFð Þdlψ ð Þψ = 2MπR3:
ð56Þ
So, 1 2πR
ð
∂ðC,RÞFð Þdlψ ð Þψ − 1 πR2
ð ð
D C,Rð ÞFðx,yÞdxdy=MR2 2 ,
ð57Þ
which shows that (43) is sharp. Also, 1
2πR ð
∂ðC,RÞFð Þdlψ ð Þψ −F Cð Þ=MR2, ð58Þ which implies that (53) is sharp.
Example 16.Considera,b> 0,0 <R≤minfa,bgand0≤ρ
≤R. For n∈ℕ and polar function Fðρ,φÞ=ða−ρÞn+ ðb−ρÞnwhich is defined onDðða,bÞ,RÞ, by some calcula- tions we can conclude that
∇ ∂F
∂ρ
ρ,φ
ð Þ=n nð −1Þða−ρÞn−2+ðb−ρÞn−2, 0 , ð59Þ
and then K= sup
0≤ρ≤R,0≤φ≤2π ∇ ∂F
∂ρ
ρ,φ
ð Þ
=n nð −1Þan−2+bn−2 , ð60Þ is a Lipschitz constant forF. Then, from inequality (53), we have that
∣A aðð −RÞn,ðb−RÞnÞ−A að n,bnÞ∣ ≤n nð −1ÞA a n−2,bn−2 R2
2 ,
ð61Þ whereAða,bÞ=ða+bÞ/2is arithmetic mean ofaandb. Also for the functionF, by the use of (43) and (48), we can obtain other arithmetic mean type inequalities.
3. MappingsH andh
In this section, by the use of two mappingsHðtÞ: ½0, 1→ℝ andhðtÞ:½0, 1→ℝdefined in [1], we give some generalized Hermite-Hadamard type inequalities in the case that consid- ered functions are Lipschitzian with respect to Euclidean normk∙kon a diskDðC,RÞ:
H tð Þ= 1 πR2
ð ð
D C,Rð ÞFðtC+ 1ð −tÞðx,yÞÞdxdy, h tð Þ=
1 2πtR
ð
∂ðC,tRÞ, Fð Þdlγ ðγð Þt Þ,t∈ð0, 1, F Cð Þ, t= 0:
8>
<
>:
ð62Þ
By the use of some properties for the mappingshandH, we give some refinements for trapezoid and midpoint type inequalities obtained in previous sections for K-Lipschit- zian mappingsF :DðC,RÞ→ℝ.
Theorem 17.Suppose that the mappingF :DðC,RÞ→ℝis Lipschitzian with respect to a constantK>0and the Euclid- ean norm k∙k. Then, the mapping H is Lipschitzian with respect to“2KR/3”and the mappinghis Lipschitzian with respect to“KR.”The following inequalities also for allt∈ð 7 Journal of Function Spaces
0,1Þhold.
∣ 1 πR2
ð ð
D C,Rð ÞFðtC+ð1−tÞðx,yÞÞdxdy−tF Cð Þ
− 1−t πR2
ð ð
D C,Rð ÞFðx,yÞdxdy∣ ≤4KRt 1ð −tÞ
3 ,
ð63Þ
∣ 1 2πtR
ð
∂ðC,tRÞFð Þdlγ ðγð ÞtÞ− 1 πR2
ð ð
D C,Rð ÞFðtC+ð1−tÞðx,yÞÞdxdy∣
≤2KRt 3 ,
ð64Þ
∣ 1 2πtR
ð
∂ðC,tRÞFð Þγdlðγð Þt Þ− t 2πR
ð
∂ðC,RÞFð Þγdlð Þγ −ð1−tÞF Cð Þ∣
≤2KRt 1ð −tÞ:
ð65Þ Proof. Consider the following relations for t1,t2∈½0, 1, which prove thefirst part of this theorem:
∣H tð Þ1 −H tð Þ2 ∣ ≤ 1 πR2
ð ð
D C,Rð Þ∣Fðt1C+ 1ð −t1Þðx,yÞÞ
−Fðt2C+ 1ð −t2Þðx,yÞÞ∣dxdy
≤ K∣t1−t2∣ πR2
ð ð
D C,Rð Þkða−x,b−yÞkdxdy
= K∣t1−t2∣ πR2
ð2π
0
ðR
0 kðρcosφ,ρsinφÞkρdρdφ
= K∣t1−t2∣ πR2
ð2π
0
ðR
0 ρ2dρdφ= 2KR 3 jt1−t2j:
ð66Þ
Also,
∣h tð Þ1 −h tð Þ∣2 =∣ 1 2πt1R
ð
∂ðC,t1RÞFð Þdlγ ðγð Þt1 Þ− 1 2πt2R ð
∂ðC,t2RÞFð Þdlγ ðγð Þt2 Þ∣
= 1
πR2∣ ð2π
0
ðR
0Fða+t1Rcosφ,b+t1RsinφÞρdρdφ
−ð2π
0
ðR
0Fða+t2Rcosφ,b+t2RsinφÞρdρdφ∣
≤K∣t1−t2∣ πR2
ð2π
0
ðR
0kðRcosφ,RsinφÞkρdρdφ
=KRjt1−t2j:
ð67Þ For inequality (63), we use the definition of H and the fact thatF isK-Lipschitzian:
∣H tð Þ−tHð Þ1 −ð1−tÞHð Þ∣ ≤0 t∣H tð Þ−Hð Þ∣1 + 1ð −tÞ∣H tð Þ−Hð Þ∣0
≤ t πR2
ð ð
D C,Rð Þ∣FðtC+ 1ð −tÞðx,yÞÞ
−F Cð Þ∣dxdy+ 1−t πR2
ð ð
D C,Rð Þ
∣FðtC+ 1ð −tÞðx,yÞÞ−Fðx,yÞ∣dxdy
≤2Ktð1−tÞ πR2
ð ð
D C,Rð Þkðx−a,y−bÞkdxdy
=2Ktð1−tÞ πR2
ð2π 0
ðR
0ρ2dρdφ=4KRtð1−tÞ
3 :
ð68Þ To prove (64), ift∈ð0, 1, we consider the following iden- tity presented in [1],
H tð Þ= 1 πR2t2
ð ð
D C,tRð ÞFðx,yÞdxdy: ð69Þ
Now, consider transformation
xð Þρ =a+tρcosφ; ρ∈½0,R,φ∈½0, 2π,t∈ð0, 1, yð Þρ =b+tρsinφ:
(
ð70Þ This implies that
H tð Þ= 1 πR2
ð2π
0
ðR
0 Fða+tρcosφ,b+tρsinφÞρdρdφ:
ð71Þ Also, we have
h tð Þ= 1 2πtR
ð
∂ðC,tRÞFð Þdlγ ðγð Þt Þ
= 1 2π
ð2π
0 Fða+tRcosφ,b+tRsinφÞdφ
= 1
πR2 ð2π
0
ðR
0 Fða+tRcosφ,b+tRsinφÞρdρdφ:
ð72Þ
So, we conclude that
∣h tð Þ−H tð Þ∣ ≤ 1 πR2
ð2π
0
ðR
0∣Fða+tRcosφ,b+tRsinφÞ
−Fða+tρcosφ,b+tρsinφÞ∣ρdρdφ
≤ K
πR2 ð2π
0
ðR
0kðtðR−ρÞcosφ,tðR−ρÞsinφÞkρdρdφ
= Kt πR2
ð2π
0
ðR
0ðR−ρÞρdρdφ=KtR 3 :
ð73Þ