• Tidak ada hasil yang ditemukan

A New Generalization of Ostrowski's Integral Inequality for Mappings Whose Derivatives are Bounded and Applications in Numerical Integration and for Special Means

N/A
N/A
Protected

Academic year: 2024

Membagikan "A New Generalization of Ostrowski's Integral Inequality for Mappings Whose Derivatives are Bounded and Applications in Numerical Integration and for Special Means"

Copied!
8
0
0

Teks penuh

(1)

A New Generalization of Ostrowski's Integral Inequality for Mappings Whose Derivatives are

Bounded and Applications in Numerical Integration and for Special Means

This is the Published version of the following publication

Dragomir, Sever S, Cerone, Pietro and Roumeliotis, John (1999) A New Generalization of Ostrowski's Integral Inequality for Mappings Whose Derivatives are Bounded and Applications in Numerical Integration and for Special Means. RGMIA research report collection, 2 (1).

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17139/

(2)

!

!

! Ê

¼

!"# Ê "#

¼

½

!$

¾

¼

"#

"#

"#

%

"#

"#

¼

½

"#

"#

& '( ) ' *+,- -./

0123101&1

14 556'57 1' !

'1 '1 1' 8 9'1 :

- ''

') "#' ' 1'

9'1 - ' ' ''

)'5' ; '

8 ) ; !

! Ê "#

¼

!"# Ê "#

¼

½

!$

¾

¼

"#

"#

"#"#%

"#% "#

4

"#

"4#

"#

%"#

%

%

4

¼

½

< %  

 

"#$$$

%&'(#)&'($)* +#!))

(3)

= >'!

Ê-

"#!$

%  

 

"

- !

"#

¼

"#

"44#

$

%

4

¼

"# %

4

¼

"#

$ "#

" "#% "##

4

%"#"# "#

"#

"#

¼

"#

"#

¼

"#

¼

½

"#

$

¼

½

%

4

%

4

$

¼

½

9 -

$

"# %

"#

$

4

"#

%"#

$

"#

%

%

4

1

?

%

4

$

"#

%

%

4

%

4

4

$

"#

%

4

%

4

8

$

4

"#

%"#

4

%

4

4

%

4

4

$

"#

%"#

%

%

4

'

"4#$< !" "#

"4#$$

#

"#

"#% "#

4

"#

"#

¼

½

"4#

(4)

$

"#

4

"#%

"#% "#

4

"#

"4#

"#

%

%

4

¼

½

% # &

"#

4

%

4

%

"#% "#

4

"#

"#

¼

½

"4@#

& ) 5' ; !

$ $

"#

"#% "#% "# "#

"4#

@

"#

%

%

4

¼

½

&'"

"#

"#%

%

4

% "# "#

"4A#

@

"#

¼

½

' -"4# -$

$

8

"4@#1' 1'-'/)

' -5' ; "4A#

8 ('

"#

! Ê "#

"# ! $

 

$

!$

$<

"# $

" Æ #%

" Æ #

"#

" Æ #$"Æ#

 

"

#%Æ  

"#% "#

4

"4#

Æ < %Æ

Æ

$<B(

" Æ #

"#

¼

½

Æ

%"Æ#

 

%  

%

4

(5)

:8'4

$<

"Æ# "

#%

"#% "#

4

Æ

·½

"#

Æ

%"Æ#

%

%

4

¼

½

Æ<

"$<# -

5'''< '"4#

) Æ$<

"# $" #%" #

"#

" #*"

" #!$

 

"

#

$<B

(+,-.)

" #

¼

½  

%

%

4

"@#

) Æ$#

"# $

" #%

" #

"#

" ##

" #$  

"#% "#

4

(

" #

¼

½

 

"A#

$

"# $" #%" #

"#

" # $

4

 

"

#

%  

"

#% "

#

4

%

%

(

" #

¼

½

 

%  

%

4

"#

"# $" #%" #

"<#

(6)

" #$

4

 

%

4

%  

"

#% "

#

4

" #(

" #

¼

½

 

"#

&)5' ; '' /

'- >

$

"# $" #%" #

"4#

" # $ 4

 

"

#

%

 

"

#% "

#

%@

%@

" #(

" #

¼

½

@

 

%  

%

4

"#

'"

"# $" #%" #

"#

" #$ 4

 

%

4

%

 

"

#% "

#

(

" #

@

¼

½  

"@#

= 1 ' !

"#

$"#!$

"%#

4

<B

"-#

$"#!$

B <B

"1#

$"#!$

4

B<B

(7)

"#

$"#!$

$

 

 

$

<B

"#

$"#!$

$

½

$ B

"# /

$

"#!$

$

·½

 

·½

 

½

$

Ê <

8 /!

/ '11 ' $  $

9 1 "4#'!

"# "#%

"#% "#

4

"#

"#

"#

%"#

%

"#

¼

½

< 1

%

4

4

"# * ' !"<# "<# "#$

Ê<8 <

"#% "#

4

$"

#

"# $

"#

¼

½

$

 

 

" <

-"#1!

"#

%"

#

"#

"4#

"#

%"#

%

"#

"#

Æ

"#

Æ

"#!$

 

 

" <

<

%  

 

(8)

"4# * ' !"<# "<# "#$

<7!

"#% "#

4

$  

"#

"# $  

"#

¼

½

$

-"#1 < %  

 

!

"#%

"#

%"#

%

"#

"#

"#

"# * ' !"<# Ê "#$<7!

"#% "#

4

$

"# $

¼

½

$

-"#1

 

"#

%"#

%

"#

"#

"#

<

%  

 

6 5 .8C9, 0

* D E 2E 3

*:C 0

* : . &9F /

F:1'12- 61/G /=

4 5 5 6C:H.C 5 7:9H :1 ; '

- ' 1' ''1 0 1

½½+2334) 256&253

!"#$%%&'

(

('))$

(

%.

/0

Referensi

Dokumen terkait