• Tidak ada hasil yang ditemukan

Harmonic Numbers and Cubed Binominal Coefficients | VU Research Repository | Victoria University | Melbourne Australia

N/A
N/A
Protected

Academic year: 2025

Membagikan "Harmonic Numbers and Cubed Binominal Coefficients | VU Research Repository | Victoria University | Melbourne Australia"

Copied!
16
0
0

Teks penuh

(1)

Harmonic Numbers and Cubed Binominal Coefficients

This is the Published version of the following publication

Sofo, Anthony (2011) Harmonic Numbers and Cubed Binominal Coefficients.

International Journal of Combinatorics. ISSN 1678-9163 (print), 1687-9171 (online)

The publisher’s official version can be found at http://www.hindawi.com/journals/ijct/2011/208260/

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/9229/

(2)

Volume 2011, Article ID 208260,14pages doi:10.1155/2011/208260

Research Article

Harmonic Numbers and Cubed Binomial Coefficients

Anthony Sofo

Victoria University College, Victoria University, P.O. Box 14428, Melbourne City, VIC 8001, Australia

Correspondence should be addressed to Anthony Sofo,[email protected] Received 18 January 2011; Accepted 3 April 2011

Academic Editor: Toufik Mansour

Copyrightq2011 Anthony Sofo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Euler related results on the sum of the ratio of harmonic numbers and cubed binomial coefficients are investigated in this paper. Integral and closed-form representation of sums are developed in terms of zeta and polygamma functions. The given representations are new.

1. Introduction

The well-known Riemann zeta function is defined as

ζz

r1

1

rz, Rez>1. 1.1

The generalized harmonic numbers of orderαare given by

Hnαn

r1

1

rα forα, nÆ×Æ, Æ :{1,2,3, . . .}, 1.2

and forα1,

Hn1Hn 1

0

1−tn

1−t dtn

r1

1

r γψn1, 1.3

(3)

whereγdenotes the Euler-Mascheroni constant defined by

γ lim

n→ ∞

n

r1

1

r −logn

ψ1≈0.5772156649. . ., 1.4

and whereψzdenotes the Psi, or digamma function defined by

ψz d

dzlogΓz Γz Γz

n0

1

n1− 1 nz

γ, 1.5

and the Gamma functionΓz

0 uz−1eudu, forÊz>0.

Variant Euler sums of the form

n1

H2n1−1/2Hn1

x2n

np forp1 andp2 1.6

have been considered by Chen1 , and recently Boyadzhiev2 evaluated various binomial identities involving power sums with harmonic numbersHn1. Other remarkable harmonic number identities known to Euler are

n1

Hn1

n12 ζ3,

n1

Hn1

n3 5

4ζ4, 1.7

there is also a recurrence formula

2n1ζ2n 2 n−1 r1

ζ22n−2r, 1.8

which shows that in particular, forn2, 5ζ4 2ζ22and more generally thatζ2nis a rational multiple ofζn2.Another elegant recursion known to Euler3 is

2 n1

Hn1

nq q2

ζ q1

q−2

r1

ζr1ζ qr

. 1.9

Further work in the summation of harmonic numbers and binomial coefficients has also been done by Flajolet and Salvy 4 and Basu 5 . In this paper it is intended to add, in a small way, some results related to 1.7 and to extend the result of Cloitre, as reported in 6 ,

n1Hn1/nk

k

k/k−12 for k > 1. Specifically, we investigate integral representations and closed form representations for sums of harmonic numbers and cubed binomial coefficients. The works of7–13 also investigate various representations of binomial sums and zeta functions in simpler form by the use of the Beta function and other techniques. Some of the material in this paper was inspired by the work of Mansour, 8 , where he used, in part, the Beta function to obtain very general results for finite binomial sums.

(4)

2. Integral Representations and Identities

The following Lemma, given by Sofo 11 , is stated without proof and deals with the derivative of a reciprocal binomial coefficient.

Lemma 2.1. Letabe a positive real number,z≥0,nis a positive integer and letQan, z anzz −1 be an analytic function ofz. Then,

Qan, z dQ dz

⎧⎨

Qan, z

ψz1anψz1

forz >0,

Hn1, forz0 anda1. 2.1

Theorem 2.2. Leta, b, c, d ≥0 be real positive numbers,|t| ≤1, p≥ 0 and letj, k, l, m ≥0 be real positive numbers. Then

n≥1

tn np−1n−1 ψ

j1an

ψ j1 n anjj bnk

k

cnl

l

dnm

m

aklmt 1

0

1−xj

1−yk−1

1−zl−11−wm−1 1−txaybzcwdp1

×ln1−x·xa−1ybzcwddx dy dz dw.

2.2

Proof. Expand

n≥1

tn np−1n−1 n anjj bnk

k

cnl

l

dnm

m

n≥1

tn

np−1 n−1

anΓanΓ j1

Γbn1k·Γk nΓ

anj1

Γbnk1

×Γcn1l·ΓlΓdn1m·Γm Γcnldnm1

aklm 1

0

1−xj x

n≥1

xantn

np−1 n−1

×Bbn1, kBcn1, lBdn1, mdx, 2.3

where

B α, β

ΓαΓ β Γ

αβ 1

0

1−yα−1 yβ−1dy

1

0

1−yβ−1

yα−1dy, forα >0 andβ >0

2.4

(5)

is the classical Beta function. Differentiating with respect to the parameterj, and utilizing Lemma 2.1implies the resulting equation is as follows:

n≥1

tn np−1n−1 ψ

j1an

ψ j1 n anjj bnk

k

cnl

l

dnm

m

aklm

1

0

1−xj

x ln1−x

n≥1

xantn

np−1 n−1

×Bbn1, kBcn1, lBdn1, mdx,

aklm 1

0

1−xjln1−x x

1−yk−1

1−zl−11−wm−1

×

n≥1

np−1

n−1 txaybzcwdn

dx dy dz dw

aklmt 1

0

1−xjln1−x

1−yk−1

1−zl−11−wm−1 1−txaybzcwdp1

×xa−1ybzcwddx dy dz dw

2.5

for|txaybzcwd|<1.

In the following three corollaries we encounter harmonic numbers at possible rational values of the argument, of the formHr/b−1α wherer1,2,3, . . . , k, α1,2,3, . . ., andkÆ. The polygamma functionψαzis defined as

ψαz dα1 dzα1

logΓz dα

dzα ψz

, z /{0,−1,−2,−3, . . .}. 2.6

To evaluateHr/b−1α we have available a relation in terms of the polygamma functionψαz, for rational argumentsz,

Hr/b−1α1 ζα1 −1α α! ψα r

b

, 2.7

whereζzis the Riemann zeta function. We also define

Hr/b−11 γψ r b

, H0α0. 2.8

(6)

The evaluation of the polygamma functionψαr/bat rational values of the argument can be explicitly done via a formula as given by K ¨olbig14 see also15 or Choi and Cvijovi´c16 in terms of the polylogarithmic or other special functions. Some specific values are given as

ψn 1

2

−1nn! 2n1−1

ζn1

H−2/35 ζ5− 1 24ψ4

1 3

−2π5√ 3

9 −120ζ5, H1/42 16−8G−5ζ2,

2.9

and can be confirmed on a mathematical computer package, such as Mathematica17 . Corollary 2.3. Leta1, dcb >0, t1, p0, j 0 and letl mk≥ 1 be a positive integer. Then

n≥1

Hn1

nbnk

k

3

k3 1

0

1−y

1−z1−wk−1 1−x

yzwb ln1−x· yzwb

dx dy dz dw

2.10

k

r1

−1r1 k

r 3

×

r2 4b2ζ4−

r2

b2Hr/b−11 r b r2

bXRk

ζ3

1−r

bHr/b−11r2

b2Hr/b−12 r 1− r

bHr/b−11

XRk r2Y Rk

ζ2 1

2 Hr/b−11 2

Hr/b−12

r b

Hr/b−11 Hr/b−12 Hr/b−13

r2

2b2 Hr/b−12 2

2Hr/b−11 Hr/b−13 3Hr/b−14

r

2 Hr/b−11 2

Hr/b−12

r2 b

Hr/b−11 Hr/b−12 Hr/b−13 XRk

r2

2 Hr/b−11 2

Hr/b−12

Y Rk

,

2.11

(7)

where

XRk:−3 Hkr1Hr−11

, 2.12

Y Rk: 3 2

XR2k

3 Hkr2 Hr−12

. 2.13

Proof. Let

n≥1

Hn1

nbnk

k

3

n≥1

Hn1k!3 nk

r1bnr3

n≥1

Hn1k!3 n

k r1

Ar

bnr Br

bnr2 Cr

bnr3

,

2.14

where

Cr lim

nr/b

bnr3 k

r1bnr3

−1r1 r

k!

k r

3

,

Br lim

nr/b

d dn

bnr3 k

r1bnr3

3−1r r

k!

k r

3

Hkr1Hr−11 ,

Ar 1 2 lim

nr/b

d2 dn2

bnr3 k

r1bnr3

3 2−1r1

r k!

k r

3

3 Hkr1Hr−112

Hkr2 Hr−12

.

2.15

Now, by interchanging sums, we have

n≥1

Hn1

nbnk

k

3 k

r1

Ark!3

n≥1

Hn1

nbnrBrk!3

n≥1

Hn1

nbnr2 Crk!3

n≥1

Hn1

nbnr3

. 2.16

(8)

We can evaluate

n≥1

Hn1

nbnr

n≥1

ψn 1/n

nbnr γ

nbnr

n≥1

ψn

nbnr 1

n2bnr γ nbnr

n≥1

ψn nbnr 1

rn2

γb/r r

n≥0

1

n1 − 1 n r/b

1

n r/b− 1 n1 r/b

r2γ2

2r 3ζ2

2r

ψr/b2

2rψr/b

2r γ

r ψ r b

γb ,

2.17

here we have used the result from18

n≥1

ψn nbnr 1

2r ψ r b1

2

γ2ζ2−ψ r b1

. 2.18

Now using2.7and2.8, we may write

n≥1

Hn1

nbnr ζ2 r 1

2r Hr/b−11 2

Hr/b−12

. 2.19

Similarly

n≥1

Hn1

nbnr2 1 r

n≥1

Hn1

nbnrb r

n≥1

Hn1

bnr2

ζ3 br ζ2

r2ζ2Hr/b−11

br 1

2r2 Hr/b−11 2

Hr/b−12

1 br

Hr/b−11 Hr/b−12 Hr/b−13 ,

(9)

n≥1

Hn1

nbnr3

n≥1

Hn1

1

r2nbnrb

r2bnr2b rbnr3

ζ4 4b2rζ3

br2ζ3Hr/b−11 b2r ζ2

r3ζ2Hr/b−11 br2

ζ2Hr/b−12 b2r 1

2r3 Hr/b−11 2

Hr/b−12

1 br2

Hr/b−11 Hr/b−12 Hr/b−13 1

2b2r Hr/b−12 2

2Hr/b−11 Hr/b−13 3Hr/b−14

.

2.20

Substituting2.19,2.20into2.16whereXRkandY Rkare given by2.12and2.13, respectively, on simplifying the identity2.11is realized.

Fork1 andb1 the following identity is valid:

n≥1

Hn1

nn13 ζ2−ζ3−ζ4

4 . 2.21

Theorem 2.4.

n≥1

tn np−1n−1 ψ

j1an

ψ j1 n2 anjj bnk

k

cnl

l

dnm

m

ablmt 1

0

1−xj 1−yk

1−zl−11−wm−1 1−txaybzcwdp1

×ln1−x·xa−1yb−1zcwddx dy dz dw.

2.22

Proof. The proof of this theorem is very similar to that ofTheorem 2.2and will not be given here.

(10)

Corollary 2.5. Leta1, dc b >0, t 1, p0, j 0, and letlm k≥ 1 be a positive integer. Then

n≥1

Hn1

n2 bnkk 3

bk2 1

0

1−yk

1−z1−w k−1 1−x

yzwb ln1−x·yb−1zwbdx dy dz dw

2.23

k

r1

−1r1 k

r 3

× r

44 4r

bHr/b−11 3rXRk 2r2Y Rk ζ3

−3b

r 2Hr/b−11 r

bHr/b−12

rHr/b−11 −2b

XRkbrY Rk

ζ2

− 3b

2r Hr/b−11 2

Hr/b−12

−2

Hr/b−11 Hr/b−12 Hr/b−13

r

2b Hr/b−12 2

2Hr/b−11 Hr/b−13 3Hr/b−14

b Hr/b−11 2

Hr/b−12

r

Hr/b−11 Hr/b−12 Hr/b−13 XRk

br

2 Hr/b−11 2

Hr/b−12

Y Rk

,

2.24

whereXRkis given by2.12andY Rkis given by2.13.

Proof. Following similar steps toCorollary 2.3, we may write

n≥1

Hn1

n2bnk

k

3

k

r1

Ark!3

n≥1

Hn1

n2bnrBrk!3

n≥1

Hn1

n2bnr2 Crk!3

n≥1

Hn1

n2bnr3

,

2.25

(11)

and evaluate

n≥1

Hn1

n2bnr

n≥1

Hn1

1

rn2b rnbnr

2ζ3

r2 r2b

2r2 Hr/b−11 2

Hr/b−12

,

n≥1

Hn1

n2bnr2 3ζ3

r2 −22

r3 ζ2Hr/b−11 r2

b

r3 Hr/b−11 2

Hr/b−12

− 1 r2

Hr/b−11 Hr/b−12 Hr/b−13 ,

n≥1

Hn1

n2bnr3 ζ4

4br2 − 32

r4 2ζ2Hr/b−11

r3 ζ2Hr/b−12

br2 4ζ3

r3 ζ3Hr/b−11 br2

− 3b

2r4 Hr/b−11 2

Hr/b−12

− 2 r3

Hr/b−11 Hr/b−12 Hr/b−13

− 1

2br2 Hr/b−12 2

2Hr/b−11 Hr/b−13 3Hr/b−14

.

2.26

By substituting2.26into2.25and collecting zeta functions, the identity2.24is obtained.

Fork1 andb1 the following identity is valid:

n≥1

Hn1

n2n13 ζ4

4 4ζ3−3ζ2. 2.27

Theorem 2.6.

n≥1

tn np−1n−1 ψ

j1an

ψ j1 n3 anjj bnk

k

cnl

l

dnm

m

abcmt 1

0

1−xj 1−yk

1−zl1−wm−1 1−txaybzcwdp1

×ln1−x·xa−1yb−1zc−1wddx dy dz dw.

2.28

Proof. The proof of this theorem is very similar to that ofTheorem 2.2and will not be given here.

(12)

Corollary 2.7. Leta1, dcb > 0, t1, j 0, and letl mk≥1 be a positive integer.

Then

n≥1

Hn1

n3bnk

k

3b2k

1 0

1−y

1−zk

1−wk−1 1−x

yzwb ln1−x· yzb−1

wbdx dy dz dw

2.29

k

r1

−1r1 k

r 3

× 15

4XRk 5

4r2Y Rk

ζ4

− 9b

r Hr/b−11 5bXRk 2brY Rk

ζ3

⎝6b2

r2 − 3bHr/b−11

rHr/b−12 − 3b2

r bHr/b−11

XRk b2Y Rk

ζ2

3b2

r2 Hr/b−11 2

Hr/b−12

3b r

Hr/b−11 Hr/b−12 Hr/b−13 1

2 Hr/b−12 2

2Hr/b−11 Hr/b−13 3Hr/b−14

3b2

2r Hr/b−11 2

Hr/b−12

b Hr/b−11 Hr/b−12 Hr/b−13 XRk

b2

2 Hr/b−11 2

Hr/b−12

Y Rk

,

2.30

whereXRkis given by2.12andY Rkis given by2.13.

Proof. We follow similar steps as the previous corollary so that

n≥1

Hn1

n3 bnkk 3

k

r1

Ark!3

n≥1

Hn1

n3bnrBrk!3

n≥1

Hn1

n3bnr2 Crk!3

n≥1

Hn1

n3bnr3

.

2.31

(13)

After much algebraic simplification, the following identity is obtained:

n≥1

Hn1

n3bnr3

n≥1

Hn1

1

r3n3 − 3b

r4n2b3

r3bnr3 − 3b3

r4bnr2 6b2 r4nbnr

ζ4

r3 − 93

r4ζ3Hr/b−11

r3 6b2ζ2

r5 −32Hr/b−11

r4ζ2Hr/b−12

r3

3b2

r5 Hr/b−11 2

Hr/b−12

3b r4

Hr/b−11 Hr/b−12 Hr/b−13 1

2r3 Hr/b−12 2

2Hr/b−11 Hr/b−13 3Hr/b−14

,

n≥1

Hn1

n3bnr2 5ζ4

4r2 − 53

r3 3b2ζ2

r42Hr/b−11 r3

3b2

2r4 Hr/b−11 2

Hr/b−12

b r3

Hr/b−11 Hr/b−12 Hr/b−13 ,

n≥1

Hn1

n3bnr 5ζ4

4r b2ζ2

r3 −23 r2 b2

2r3 Hr/b−11 2

Hr/b−12

.

2.32 Now we can substitute2.32into2.31, collecting zeta functions and using2.12and2.13 forXRkandY Rk, respectively, the identity2.30is obtained.

Some specific examples ofCorollary 2.7are as follows.

Fork1 andb1 the following identity is valid,

n≥1

Hn1

n3n13 ζ4−9ζ3 1 6ζ2,

n≥1

Hn1

n34n8

8

3 12729073000

27 − 2641017400832

11025 ln 2440380018688 3675 ln 22

−16604790784

315 G11272192G21576747008 35 Gln 2

−1390679293952π

33075 −172233728π3

105 − 203992775989

2450 ζ2

−4069970159

210 ζ3 28974848 ln 2ζ3−62246737

2 ζ4,

2.33

(14)

whereGis Catalan’s constant, defined by

G 1 2

1

0

Ksds

r1

−1r

2r12 ≈0.915965. . . , 2.34

andKsis the complete elliptic integral of the first kind. The degenerate casek 0, gives the well-known result

n≥1

Hn1

n3 5

4ζ4. 2.35

Remark 2.8. Corollaries2.3,2.5, and2.7are important and can be evaluated as demonstrated independently of their integral representations. Similarly the proofs of Corollaries 2.3,2.5, and2.7are not obvious therefore their explicit representations is desired.

Remark 2.9. Theoretically it should be possible to obtain an integral representation for the general sum

n≥1

tn np−1n−1 ψ

j1an

ψ j1 nq anjj bnk

k

cnl

l

dnm

m

, forq1,2,3, . . . , 2.36

with its associated corollaries. This work will be investigated in a forthcoming paper.

References

1 H. Chen, “Evaluations of some Variant Euler Sums,” Journal of Integer Sequences, vol. 9, no. 2, article 06.2.3, p. 9, 2006.

2 K. N. Boyadzhiev, “Harmonic number identities via Euler’s transform,” Journal of Integer Sequences, vol. 12, no. 6, article 09.6.1, p. 8, 2009.

3 L. Euler, Opera Omnia, Series 1, vol. 15, Teubner, Berlin, Germany, 1917.

4 P. Flajolet and B. Salvy, “Euler sums and contour integral representations,” Experimental Mathematics, vol. 7, no. 1, pp. 15–35, 1998.

5 A. Basu, “A new method in the study of Euler sums,” Ramanujan Journal, vol. 16, no. 1, pp. 7–24, 2008.

6 J. Sondow and E. W. Weisstein, Harmonic number. From MathWorld-A Wolfram Web Rescources, http://mathworld.wolfram.com/HarmonicNumber.html.

7 H. Alzer, D. Karayannakis, and H. M. Srivastava, “Series representations for some mathematical constants,” Journal of Mathematical Analysis and Applications, vol. 320, no. 1, pp. 145–162, 2006.

8 T. Mansour, “Combinatorial identities and inverse binomial coefficients,” Advances in Applied Mathematics, vol. 28, no. 2, pp. 196–202, 2002.

9 A. Sofo, “Integral forms of sums associated with harmonic numbers,” Applied Mathematics and Computation, vol. 207, no. 2, pp. 365–372, 2009.

10 A. Sofo, Computational techniques for the summation of series, Kluwer Academic Publishers/Plenum Publishers, New York, NY, USA, 2003.

11 A. Sofo, “Sums of derivatives of binomial coefficients,” Advances in Applied Mathematics, vol. 42, no. 1, pp. 123–134, 2009.

12 A. Sofo, “Harmonic numbers and double binomial coefficients,” Integral Transforms and Special Functions, vol. 20, no. 11-12, pp. 847–857, 2009.

13 A. Sofo, “Harmonic sums and integral representations,” Journal of Applied Analysis, vol. 16, no. 2, pp.

265–277, 2010.

(15)

14 K. S. K ¨olbig, “The polygamma function and the derivatives of the cotangent function for rational arguments,” CERN-IT-Reports CERN-CN 96-005, 1996.

15 K. S. K ¨olbig, “The polygamma functionψxforx1/4 andx3/4,” Journal of Computational and Applied Mathematics, vol. 75, no. 1, pp. 43–46, 1996.

16 J. Choi and D. Cvijovi´c, “Values of the polygamma functions at rational arguments,” Journal of Physics.

A, vol. 40, no. 50, pp. 15019–15028, 2007.

17 Wolfram Research Inc., Mathematica, Wolfram Research Inc., Champaign, Ill, USA.

18 Y. A. Brychkov, Handbook of Special Functions, CRC Press, Boca Raton, Fla, USA, 2008.

(16)

Submit your manuscripts at http://www.hindawi.com

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporation http://www.hindawi.com

Differential Equations

International Journal of

Volume 2014 Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex Analysis

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Optimization

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Combinatorics

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied Analysis

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

The Scientific World Journal

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Stochastic Analysis

International Journal of

Referensi

Dokumen terkait

Submit your manuscripts at http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Anatomy Research International Peptides Hindawi Publishing

Submit your manuscripts at http://www.hindawi.com Stem Cells International Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation

Submit your manuscripts at http://www.hindawi.com Scientifica Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation

Submit your manuscripts at http://www.hindawi.com VLSI Design Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Machinery Hindawi Publishing Corporation

Submit your manuscripts at http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 MathematicsJournal of Hindawi Publishing Corporation

Submit your manuscripts at http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 MathematicsJournal of Hindawi Publishing Corporation

Submit your manuscripts at http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 MathematicsJournal of Hindawi Publishing Corporation

Submit your manuscripts at http://www.hindawi.com Stem Cells International Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation