Harmonic Numbers and Cubed Binominal Coefficients
This is the Published version of the following publication
Sofo, Anthony (2011) Harmonic Numbers and Cubed Binominal Coefficients.
International Journal of Combinatorics. ISSN 1678-9163 (print), 1687-9171 (online)
The publisher’s official version can be found at http://www.hindawi.com/journals/ijct/2011/208260/
Note that access to this version may require subscription.
Downloaded from VU Research Repository https://vuir.vu.edu.au/9229/
Volume 2011, Article ID 208260,14pages doi:10.1155/2011/208260
Research Article
Harmonic Numbers and Cubed Binomial Coefficients
Anthony Sofo
Victoria University College, Victoria University, P.O. Box 14428, Melbourne City, VIC 8001, Australia
Correspondence should be addressed to Anthony Sofo,[email protected] Received 18 January 2011; Accepted 3 April 2011
Academic Editor: Toufik Mansour
Copyrightq2011 Anthony Sofo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Euler related results on the sum of the ratio of harmonic numbers and cubed binomial coefficients are investigated in this paper. Integral and closed-form representation of sums are developed in terms of zeta and polygamma functions. The given representations are new.
1. Introduction
The well-known Riemann zeta function is defined as
ζz ∞
r1
1
rz, Rez>1. 1.1
The generalized harmonic numbers of orderαare given by
Hnαn
r1
1
rα forα, n∈Æ×Æ, Æ :{1,2,3, . . .}, 1.2
and forα1,
Hn1Hn 1
0
1−tn
1−t dtn
r1
1
r γψn1, 1.3
whereγdenotes the Euler-Mascheroni constant defined by
γ lim
n→ ∞
n
r1
1
r −logn
−ψ1≈0.5772156649. . ., 1.4
and whereψzdenotes the Psi, or digamma function defined by
ψz d
dzlogΓz Γz Γz ∞
n0
1
n1− 1 nz
−γ, 1.5
and the Gamma functionΓz ∞
0 uz−1e−udu, forÊz>0.
Variant Euler sums of the form ∞
n1
H2n1−1/2Hn1
x2n
np forp1 andp2 1.6
have been considered by Chen1 , and recently Boyadzhiev2 evaluated various binomial identities involving power sums with harmonic numbersHn1. Other remarkable harmonic number identities known to Euler are
∞ n1
Hn1
n12 ζ3, ∞
n1
Hn1
n3 5
4ζ4, 1.7
there is also a recurrence formula
2n1ζ2n 2 n−1 r1
ζ2rζ2n−2r, 1.8
which shows that in particular, forn2, 5ζ4 2ζ22and more generally thatζ2nis a rational multiple ofζn2.Another elegant recursion known to Euler3 is
2 ∞ n1
Hn1
nq q2
ζ q1
−q−2
r1
ζr1ζ q−r
. 1.9
Further work in the summation of harmonic numbers and binomial coefficients has also been done by Flajolet and Salvy 4 and Basu 5 . In this paper it is intended to add, in a small way, some results related to 1.7 and to extend the result of Cloitre, as reported in 6 , ∞
n1Hn1/nk
k
k/k−12 for k > 1. Specifically, we investigate integral representations and closed form representations for sums of harmonic numbers and cubed binomial coefficients. The works of7–13 also investigate various representations of binomial sums and zeta functions in simpler form by the use of the Beta function and other techniques. Some of the material in this paper was inspired by the work of Mansour, 8 , where he used, in part, the Beta function to obtain very general results for finite binomial sums.
2. Integral Representations and Identities
The following Lemma, given by Sofo 11 , is stated without proof and deals with the derivative of a reciprocal binomial coefficient.
Lemma 2.1. Letabe a positive real number,z≥0,nis a positive integer and letQan, z anzz −1 be an analytic function ofz. Then,
Qan, z dQ dz
⎧⎨
⎩
−Qan, z
ψz1an−ψz1
forz >0,
−Hn1, forz0 anda1. 2.1
Theorem 2.2. Leta, b, c, d ≥0 be real positive numbers,|t| ≤1, p≥ 0 and letj, k, l, m ≥0 be real positive numbers. Then
n≥1
tn np−1n−1 ψ
j1an
−ψ j1 n anjj bnk
k
cnl
l
dnm
m
−aklmt 1
0
1−xj
1−yk−1
1−zl−11−wm−1 1−txaybzcwdp1
×ln1−x·xa−1ybzcwddx dy dz dw.
2.2
Proof. Expand
n≥1
tn np−1n−1 n anjj bnk
k
cnl
l
dnm
m
n≥1
tn
np−1 n−1
anΓanΓ j1
Γbn1k·Γk nΓ
anj1
Γbnk1
×Γcn1l·ΓlΓdn1m·Γm Γcnl1Γdnm1
aklm 1
0
1−xj x
n≥1
xantn
np−1 n−1
×Bbn1, kBcn1, lBdn1, mdx, 2.3
where
B α, β
ΓαΓ β Γ
αβ 1
0
1−yα−1 yβ−1dy
1
0
1−yβ−1
yα−1dy, forα >0 andβ >0
2.4
is the classical Beta function. Differentiating with respect to the parameterj, and utilizing Lemma 2.1implies the resulting equation is as follows:
n≥1
tn np−1n−1 ψ
j1an
−ψ j1 n anjj bnk
k
cnl
l
dnm
m
−aklm
1
0
1−xj
x ln1−x
n≥1
xantn
np−1 n−1
×Bbn1, kBcn1, lBdn1, mdx,
−aklm 1
0
1−xjln1−x x
1−yk−1
1−zl−11−wm−1
×
n≥1
np−1
n−1 txaybzcwdn
dx dy dz dw
−aklmt 1
0
1−xjln1−x
1−yk−1
1−zl−11−wm−1 1−txaybzcwdp1
×xa−1ybzcwddx dy dz dw
2.5
for|txaybzcwd|<1.
In the following three corollaries we encounter harmonic numbers at possible rational values of the argument, of the formHr/b−1α wherer1,2,3, . . . , k, α1,2,3, . . ., andk∈Æ. The polygamma functionψαzis defined as
ψαz dα1 dzα1
logΓz dα
dzα ψz
, z /{0,−1,−2,−3, . . .}. 2.6
To evaluateHr/b−1α we have available a relation in terms of the polygamma functionψαz, for rational argumentsz,
Hr/b−1α1 ζα1 −1α α! ψα r
b
, 2.7
whereζzis the Riemann zeta function. We also define
Hr/b−11 γψ r b
, H0α0. 2.8
The evaluation of the polygamma functionψαr/bat rational values of the argument can be explicitly done via a formula as given by K ¨olbig14 see also15 or Choi and Cvijovi´c16 in terms of the polylogarithmic or other special functions. Some specific values are given as
ψn 1
2
−1nn! 2n1−1
ζn1
H−2/35 ζ5− 1 24ψ4
1 3
−2π5√ 3
9 −120ζ5, H1/42 16−8G−5ζ2,
2.9
and can be confirmed on a mathematical computer package, such as Mathematica17 . Corollary 2.3. Leta1, dcb >0, t1, p0, j 0 and letl mk≥ 1 be a positive integer. Then
n≥1
Hn1
nbnk
k
3
−k3 1
0
1−y
1−z1−wk−1 1−x
yzwb ln1−x· yzwb
dx dy dz dw
2.10
k
r1
−1r1 k
r 3
×
− r2 4b2ζ4−
r2
b2Hr/b−11 r b r2
bXRk
ζ3
1−r
bHr/b−11 −r2
b2Hr/b−12 r 1− r
bHr/b−11
XRk r2Y Rk
ζ2 1
2 Hr/b−11 2
Hr/b−12
r b
Hr/b−11 Hr/b−12 Hr/b−13
r2
2b2 Hr/b−12 2
2Hr/b−11 Hr/b−13 3Hr/b−14
r
2 Hr/b−11 2
Hr/b−12
r2 b
Hr/b−11 Hr/b−12 Hr/b−13 XRk
r2
2 Hr/b−11 2
Hr/b−12
Y Rk
,
2.11
where
XRk:−3 Hk−r1 −Hr−11
, 2.12
Y Rk: 3 2
XR2k
3 Hk−r2 Hr−12
. 2.13
Proof. Let
n≥1
Hn1
nbnk
k
3
n≥1
Hn1k!3 nk
r1bnr3
n≥1
Hn1k!3 n
k r1
Ar
bnr Br
bnr2 Cr
bnr3
,
2.14
where
Cr lim
n→−r/b
bnr3 k
r1bnr3
−1r1 r
k!
k r
3
,
Br lim
n→−r/b
d dn
bnr3 k
r1bnr3
3−1r r
k!
k r
3
Hk−r1 −Hr−11 ,
Ar 1 2 lim
n→−r/b
d2 dn2
bnr3 k
r1bnr3
3 2−1r1
r k!
k r
3
3 Hk−r1 −Hr−112
Hk−r2 Hr−12
.
2.15
Now, by interchanging sums, we have
n≥1
Hn1
nbnk
k
3 k
r1
Ark!3
n≥1
Hn1
nbnrBrk!3
n≥1
Hn1
nbnr2 Crk!3
n≥1
Hn1
nbnr3
. 2.16
We can evaluate
n≥1
Hn1
nbnr
n≥1
ψn 1/n
nbnr γ
nbnr
n≥1
ψn
nbnr 1
n2bnr γ nbnr
n≥1
ψn nbnr 1
rn2
γ−b/r r
n≥0
1
n1 − 1 n r/b
1
n r/b− 1 n1 r/b
−bγ r2 −γ2
2r 3ζ2
2r
ψr/b2
2r −ψr/b
2r γ
r ψ r b
γb ,
2.17
here we have used the result from18
n≥1
ψn nbnr 1
2r ψ r b1
2
−γ2ζ2−ψ r b1
. 2.18
Now using2.7and2.8, we may write
n≥1
Hn1
nbnr ζ2 r 1
2r Hr/b−11 2
Hr/b−12
. 2.19
Similarly
n≥1
Hn1
nbnr2 1 r
n≥1
Hn1
nbnr−b r
n≥1
Hn1
bnr2
−ζ3 br ζ2
r2 −ζ2Hr/b−11
br 1
2r2 Hr/b−11 2
Hr/b−12
1 br
Hr/b−11 Hr/b−12 Hr/b−13 ,
n≥1
Hn1
nbnr3
n≥1
Hn1
1
r2nbnr− b
r2bnr2 − b rbnr3
−ζ4 4b2r −ζ3
br2 − ζ3Hr/b−11 b2r ζ2
r3 −ζ2Hr/b−11 br2
−ζ2Hr/b−12 b2r 1
2r3 Hr/b−11 2
Hr/b−12
1 br2
Hr/b−11 Hr/b−12 Hr/b−13 1
2b2r Hr/b−12 2
2Hr/b−11 Hr/b−13 3Hr/b−14
.
2.20
Substituting2.19,2.20into2.16whereXRkandY Rkare given by2.12and2.13, respectively, on simplifying the identity2.11is realized.
Fork1 andb1 the following identity is valid:
n≥1
Hn1
nn13 ζ2−ζ3−ζ4
4 . 2.21
Theorem 2.4.
n≥1
tn np−1n−1 ψ
j1an
−ψ j1 n2 anjj bnk
k
cnl
l
dnm
m
−ablmt 1
0
1−xj 1−yk
1−zl−11−wm−1 1−txaybzcwdp1
×ln1−x·xa−1yb−1zcwddx dy dz dw.
2.22
Proof. The proof of this theorem is very similar to that ofTheorem 2.2and will not be given here.
Corollary 2.5. Leta1, dc b >0, t 1, p0, j 0, and letlm k≥ 1 be a positive integer. Then
n≥1
Hn1
n2 bnkk 3
−bk2 1
0
1−yk
1−z1−w k−1 1−x
yzwb ln1−x·yb−1zwbdx dy dz dw
2.23
k
r1
−1r1 k
r 3
× r
4bζ4 4r
bHr/b−11 3rXRk 2r2Y Rk ζ3
−3b
r 2Hr/b−11 r
bHr/b−12
rHr/b−11 −2b
XRk−brY Rk
ζ2
− 3b
2r Hr/b−11 2
Hr/b−12
−2
Hr/b−11 Hr/b−12 Hr/b−13
− r
2b Hr/b−12 2
2Hr/b−11 Hr/b−13 3Hr/b−14
−
b Hr/b−11 2
Hr/b−12
r
Hr/b−11 Hr/b−12 Hr/b−13 XRk
−br
2 Hr/b−11 2
Hr/b−12
Y Rk
,
2.24
whereXRkis given by2.12andY Rkis given by2.13.
Proof. Following similar steps toCorollary 2.3, we may write
n≥1
Hn1
n2bnk
k
3
k
r1
Ark!3
n≥1
Hn1
n2bnrBrk!3
n≥1
Hn1
n2bnr2 Crk!3
n≥1
Hn1
n2bnr3
,
2.25
and evaluate
n≥1
Hn1
n2bnr
n≥1
Hn1
1
rn2 − b rnbnr
2ζ3
r −bζ2 r2 − b
2r2 Hr/b−11 2
Hr/b−12
,
n≥1
Hn1
n2bnr2 3ζ3
r2 −2bζ2
r3 ζ2Hr/b−11 r2
− b
r3 Hr/b−11 2
Hr/b−12
− 1 r2
Hr/b−11 Hr/b−12 Hr/b−13 ,
n≥1
Hn1
n2bnr3 ζ4
4br2 − 3bζ2
r4 2ζ2Hr/b−11
r3 ζ2Hr/b−12
br2 4ζ3
r3 ζ3Hr/b−11 br2
− 3b
2r4 Hr/b−11 2
Hr/b−12
− 2 r3
Hr/b−11 Hr/b−12 Hr/b−13
− 1
2br2 Hr/b−12 2
2Hr/b−11 Hr/b−13 3Hr/b−14
.
2.26
By substituting2.26into2.25and collecting zeta functions, the identity2.24is obtained.
Fork1 andb1 the following identity is valid:
n≥1
Hn1
n2n13 ζ4
4 4ζ3−3ζ2. 2.27
Theorem 2.6.
n≥1
tn np−1n−1 ψ
j1an
−ψ j1 n3 anjj bnk
k
cnl
l
dnm
m
−abcmt 1
0
1−xj 1−yk
1−zl1−wm−1 1−txaybzcwdp1
×ln1−x·xa−1yb−1zc−1wddx dy dz dw.
2.28
Proof. The proof of this theorem is very similar to that ofTheorem 2.2and will not be given here.
Corollary 2.7. Leta1, dcb > 0, t1, j 0, and letl mk≥1 be a positive integer.
Then
n≥1
Hn1
n3bnk
k
3 −b2k
1 0
1−y
1−zk
1−wk−1 1−x
yzwb ln1−x· yzb−1
wbdx dy dz dw
2.29
k
r1
−1r1 k
r 3
× 15
4XRk 5
4r2Y Rk
ζ4
− 9b
r Hr/b−11 5bXRk 2brY Rk
ζ3
⎛
⎝6b2
r2 − 3bHr/b−11
r −Hr/b−12 − 3b2
r bHr/b−11
XRk b2Y Rk
⎞
⎠ζ2
3b2
r2 Hr/b−11 2
Hr/b−12
3b r
Hr/b−11 Hr/b−12 Hr/b−13 1
2 Hr/b−12 2
2Hr/b−11 Hr/b−13 3Hr/b−14
3b2
2r Hr/b−11 2
Hr/b−12
b Hr/b−11 Hr/b−12 Hr/b−13 XRk
b2
2 Hr/b−11 2
Hr/b−12
Y Rk
,
2.30
whereXRkis given by2.12andY Rkis given by2.13.
Proof. We follow similar steps as the previous corollary so that
n≥1
Hn1
n3 bnkk 3
k
r1
Ark!3
n≥1
Hn1
n3bnrBrk!3
n≥1
Hn1
n3bnr2 Crk!3
n≥1
Hn1
n3bnr3
.
2.31
After much algebraic simplification, the following identity is obtained:
n≥1
Hn1
n3bnr3
n≥1
Hn1
1
r3n3 − 3b
r4n2− b3
r3bnr3 − 3b3
r4bnr2 6b2 r4nbnr
ζ4
r3 − 9bζ3
r4 −ζ3Hr/b−11
r3 6b2ζ2
r5 −3bζ2Hr/b−11
r4 −ζ2Hr/b−12
r3
3b2
r5 Hr/b−11 2
Hr/b−12
3b r4
Hr/b−11 Hr/b−12 Hr/b−13 1
2r3 Hr/b−12 2
2Hr/b−11 Hr/b−13 3Hr/b−14
,
n≥1
Hn1
n3bnr2 5ζ4
4r2 − 5bζ3
r3 3b2ζ2
r4 −bζ2Hr/b−11 r3
3b2
2r4 Hr/b−11 2
Hr/b−12
b r3
Hr/b−11 Hr/b−12 Hr/b−13 ,
n≥1
Hn1
n3bnr 5ζ4
4r b2ζ2
r3 −2bζ3 r2 b2
2r3 Hr/b−11 2
Hr/b−12
.
2.32 Now we can substitute2.32into2.31, collecting zeta functions and using2.12and2.13 forXRkandY Rk, respectively, the identity2.30is obtained.
Some specific examples ofCorollary 2.7are as follows.
Fork1 andb1 the following identity is valid,
n≥1
Hn1
n3n13 ζ4−9ζ3 1 6ζ2,
n≥1
Hn1
n34n8
8
3 12729073000
27 − 2641017400832
11025 ln 2440380018688 3675 ln 22
−16604790784
315 G11272192G21576747008 35 Gln 2
−1390679293952π
33075 −172233728π3
105 − 203992775989
2450 ζ2
−4069970159
210 ζ3 28974848 ln 2ζ3−62246737
2 ζ4,
2.33
whereGis Catalan’s constant, defined by
G 1 2
1
0
Ksds∞
r1
−1r
2r12 ≈0.915965. . . , 2.34
andKsis the complete elliptic integral of the first kind. The degenerate casek 0, gives the well-known result
n≥1
Hn1
n3 5
4ζ4. 2.35
Remark 2.8. Corollaries2.3,2.5, and2.7are important and can be evaluated as demonstrated independently of their integral representations. Similarly the proofs of Corollaries 2.3,2.5, and2.7are not obvious therefore their explicit representations is desired.
Remark 2.9. Theoretically it should be possible to obtain an integral representation for the general sum
n≥1
tn np−1n−1 ψ
j1an
−ψ j1 nq anjj bnk
k
cnl
l
dnm
m
, forq1,2,3, . . . , 2.36
with its associated corollaries. This work will be investigated in a forthcoming paper.
References
1 H. Chen, “Evaluations of some Variant Euler Sums,” Journal of Integer Sequences, vol. 9, no. 2, article 06.2.3, p. 9, 2006.
2 K. N. Boyadzhiev, “Harmonic number identities via Euler’s transform,” Journal of Integer Sequences, vol. 12, no. 6, article 09.6.1, p. 8, 2009.
3 L. Euler, Opera Omnia, Series 1, vol. 15, Teubner, Berlin, Germany, 1917.
4 P. Flajolet and B. Salvy, “Euler sums and contour integral representations,” Experimental Mathematics, vol. 7, no. 1, pp. 15–35, 1998.
5 A. Basu, “A new method in the study of Euler sums,” Ramanujan Journal, vol. 16, no. 1, pp. 7–24, 2008.
6 J. Sondow and E. W. Weisstein, Harmonic number. From MathWorld-A Wolfram Web Rescources, http://mathworld.wolfram.com/HarmonicNumber.html.
7 H. Alzer, D. Karayannakis, and H. M. Srivastava, “Series representations for some mathematical constants,” Journal of Mathematical Analysis and Applications, vol. 320, no. 1, pp. 145–162, 2006.
8 T. Mansour, “Combinatorial identities and inverse binomial coefficients,” Advances in Applied Mathematics, vol. 28, no. 2, pp. 196–202, 2002.
9 A. Sofo, “Integral forms of sums associated with harmonic numbers,” Applied Mathematics and Computation, vol. 207, no. 2, pp. 365–372, 2009.
10 A. Sofo, Computational techniques for the summation of series, Kluwer Academic Publishers/Plenum Publishers, New York, NY, USA, 2003.
11 A. Sofo, “Sums of derivatives of binomial coefficients,” Advances in Applied Mathematics, vol. 42, no. 1, pp. 123–134, 2009.
12 A. Sofo, “Harmonic numbers and double binomial coefficients,” Integral Transforms and Special Functions, vol. 20, no. 11-12, pp. 847–857, 2009.
13 A. Sofo, “Harmonic sums and integral representations,” Journal of Applied Analysis, vol. 16, no. 2, pp.
265–277, 2010.
14 K. S. K ¨olbig, “The polygamma function and the derivatives of the cotangent function for rational arguments,” CERN-IT-Reports CERN-CN 96-005, 1996.
15 K. S. K ¨olbig, “The polygamma functionψxforx1/4 andx3/4,” Journal of Computational and Applied Mathematics, vol. 75, no. 1, pp. 43–46, 1996.
16 J. Choi and D. Cvijovi´c, “Values of the polygamma functions at rational arguments,” Journal of Physics.
A, vol. 40, no. 50, pp. 15019–15028, 2007.
17 Wolfram Research Inc., Mathematica, Wolfram Research Inc., Champaign, Ill, USA.
18 Y. A. Brychkov, Handbook of Special Functions, CRC Press, Boca Raton, Fla, USA, 2008.
Submit your manuscripts at http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Mathematics
Journal ofHindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Mathematical Problems in Engineering
Hindawi Publishing Corporation http://www.hindawi.com
Differential Equations
International Journal of
Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Mathematical PhysicsAdvances in
Complex Analysis
Journal ofHindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Optimization
Journal ofHindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
International Journal of
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Journal of
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Function Spaces
Abstract and Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
International Journal of Mathematics and Mathematical Sciences
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
The Scientific World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Discrete Dynamics in Nature and Society
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Discrete Mathematics
Journal ofHindawi Publishing Corporation
http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014
Stochastic Analysis
International Journal of