transform of convex functions
This is the Published version of the following publication
Dragomir, Sever S (2020) Jensen’s type inequalities for the finite Hilbert transform of convex functions. Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics, 13 (2). pp. 509-520. ISSN 2065- 2151
The publisher’s official version can be found at
http://webbut.unitbv.ro/Bulletin/cautare/10.%20Dragomir.pdf
Note that access to this version may require subscription.
Downloaded from VU Research Repository https://vuir.vu.edu.au/42409/
https://doi.org/10.31926/but.mif.2020.13.62.2.10
JENSEN’S TYPE INEQUALITIES FOR THE FINITE HILBERT TRANSFORM OF CONVEX FUNCTIONS
Silvestru Sever DRAGOMIR∗,1
Abstract
In this paper we obtain some new inequalities for the finite Hilbert trans- form of convex functions by the use of Jensen’s integral inequality. Applica- tions for exponential function are provided as well.
2000Mathematics Subject Classification: 26D15; 26D10.
Key words: Finite Hilbert Transform, Convex functions, Inequalities.
1 Introduction
Allover this paper, we consider thefinite Hilbert transformon the open interval (a, b) defined by
(T f) (a, b;t) := 1 πP V
Z b a
f(τ)
τ−tdτ := lim
ε→0+
Z t−ε a
+ Z b
t+ε
f(τ) π(τ −t)dτ for t ∈ (a, b) and for various classes of functions f for which the above Cauchy Principal Value integral exists, see [13, Section 3.2] or [17, Lemma II.1.1].
For several recent papers devoted to inequalities for the finite Hilbert transform (T f), see [2]-[10], [14]-[16] and [18]-[19].
Now, if we assume that the mapping f : (a, b) → R is convex on (a, b), then it is locally Lipschitzian on (a, b) and then the finite Hilbert transform off exists in every pointt∈(a, b).
The following result concerning upper and lower bounds for the finite Hilbert transform of a convex function holds.
1∗Corresponding author, Mathematics, College of Engineering & Science,Victoria University Melbourne, Australia, e-mail: [email protected]
Theorem 1 (Dragomir et al., 2001 [1]). Let f : (a, b)→ R be a convex function on(a, b) and t∈(a, b).Then we have
1 π
f(t) ln
b−t t−a
+f(t)−f(a) +ϕ(t) (b−t)
(1)
≤(T f) (a, b;t)
≤ 1 π
f(t) ln
b−t t−a
+f(b)−f(t) +ϕ(t) (t−a)
,
where ϕ(t)∈
f−0 (t), f+0 (t)
, t∈(a, b).
Corollary 1. Let f : (a, b)→R be a differentiable convex function on (a, b) and t∈(a, b). Then we have
1 π
f(t) ln
b−t t−a
+f(t)−f(a) +f0(t) (b−t)
(2)
≤(T f) (a, b;t)
≤ 1 π
f(t) ln
b−t t−a
+f(b)−f(t) +f0(t) (t−a)
.
We observe that if we take t= a+b2 ,then we get from (2) that 1
π
f
a+b 2
−f(a) +1 2f0
a+b 2
(b−a)
(3)
≤(T f)
a, b;a+b 2
≤ 1 π
f(b)−f
a+b 2
+1
2f0
a+b 2
(b−a)
.
More recently, we have established the following result as well:
Theorem 2 (Dragomir, 2018 [12]). Let f : (a, b) → R be a convex function on (a, b) with finite lateral derivativesf+0 (a) andf−(b). Then fort∈(a, b) we have
1
π(b−a)f+0 (a)≤ 1
π(b−a)f(t)−f(a)
t−a (4)
≤(T f) (a, b;t)−f(t) π ln
b−t t−a
≤ 1
π(b−a)f(b)−f(t) b−t ≤ 1
π (b−a)f−(b). In particular,
1
π(b−a)f+0 (a)≤ 2
π(b−a)f a+b2
−f(a)
b−a (5)
≤(T f)
a, b;a+b 2
≤ 2
π(b−a)f(b)−f a+b2
b−a ≤ 1
π (b−a)f−(b).
In this paper, by the use of Jensen’s celebrated inequality, we obtain some new inequalities for the finite Hilbert transform of convex functions. Applications for exponential function are provided as well.
2 Main Results
We have:
Theorem 3. Letf : (a, b)→Rbe a convex function on(a, b)andx: (a, b)→Ra locally absolutely continuos function on (a, b) with x0(s)∈(a, b) for almost every s∈(a, b). Then we have
f 1
b−a
π(T x) (a, b;t)−x(t) ln
b−t t−a
(6)
≤ 1 b−a
πT
Z
a
f ◦x0(s)ds
(a, b;t)− Z t
a
f◦x0(s)ds
ln b−t
t−a
,
for any t∈(a, b). In particular, f
π
b−a(T x)
a, b;a+b 2
≤ π b−aT
Z
a
f◦x0(s)ds a, b;a+b 2
. (7) Proof. Using Jensen’s integral inequality for the convex functionf we have
f
x(τ)−x(t) τ −t
=f Rτ
t x0(s)ds τ−t
≤ Rτ
t f◦x0(s)ds
τ−t (8)
for any τ, t∈(a, b) withτ 6=t.
Lett∈(a, b) and t−a > ε >0, then by integrating (8) over τ ∈[a, t−ε] we get
Z t−ε a
f
x(τ)−x(t) τ −t
dτ ≤
Z t−ε a
Rτ
t f ◦x0(s)ds τ−t
dτ. (9)
Using Jensen’s integral inequality for the convex function f we get f
1 t−ε−a
Z t−ε a
x(τ)−x(t) τ−t dτ
≤ 1 t−ε−a
Z t−ε a
f
x(τ)−x(t) τ −t
dτ. (10) By using (9) and (10) we get
(t−ε−a)f
1 t−ε−a
Z t−ε a
x(τ)−x(t) τ −t dτ
≤ Z t−ε
a
Rτ
t f◦x0(s)ds τ −t
dτ (11) fort∈(a, b) andt−a > ε >0.
Let t∈(a, b) and b−t > ε >0, then by integrating (8) over τ ∈[t+ε, b] we obtain
Z b t+ε
f
x(τ)−x(t) τ −t
dτ ≤
Z b t+ε
Rτ
t f◦x0(s)ds τ −t
dτ. (12)
Using Jensen’s integral inequality for the convex function f we get f
1 b−t−ε
Z b t+ε
x(τ)−x(t) τ −t
dτ ≤ 1
b−t−ε Z b
t+ε
f
x(τ)−x(t) τ−t
dτ. (13) On utilising (12) and (13) we deduce
(b−t−ε)f
1 b−t−ε
Z b
t+ε
x(τ)−x(t) τ−t
dτ ≤
Z b
t+ε
Rτ
t f◦x0(s)ds τ−t
dτ (14) fort∈(a, b) and b−t > ε >0.
If we add the inequalities (11) and (14) we get (t−ε−a)f
1 t−ε−a
Z t−ε a
x(τ)−x(t) τ−t dτ
(15) + (b−t−ε)f
1 b−t−ε
Z b t+ε
x(τ)−x(t) τ−t
dτ
≤ Z t−ε
a
Rτ
t f◦x0(s)ds τ −t
dτ+
Z b
t+ε
Rτ
t f◦x0(s)ds τ −t
dτ
fort∈(a, b) and min{b−t, t−a}> ε >0.
By the convexity of f we also have (t−ε−a)f
1 t−ε−a
Z t−ε a
x(τ)−x(t) τ −t dτ
+ (b−t−ε)f
1 b−t−ε
Z b t+ε
x(τ)−x(t) τ−t
dτ
≥(b−a−2ε)f
1 b−a−2ε
Z t−ε a
x(τ)−x(t) τ−t dτ+
Z b t+ε
x(τ)−x(t) τ −t
(16) fort∈(a, b) and min{b−t, t−a}> ε >0.
Therefore, by (15) and (16) we get (b−a−2ε)f
1 b−a−2ε
Z t−ε a
x(τ)−x(t) τ −t dτ +
Z b t+ε
x(τ)−x(t) τ −t
(17)
≤ Z t−ε
a
Rτ
t f◦x0(s)ds τ −t
dτ+
Z b t+ε
Rτ
t f◦x0(s)ds τ −t
dτ
= Z t−ε
a
Rτ
a f◦x0(s)ds−Rt
af ◦x0(s)ds τ−t
! dτ
+ Z b
t+ε
Rτ
a f◦x0(s)ds−Rτ
a f◦x0(s)ds τ −t
dτ
fort∈(a, b) and min{b−t, t−a}> ε >0.
Taking the limit over ε→0+ in (17) we get f
1 b−aP V
Z b a
x(τ)−x(t) τ−t dτ
(18)
≤ 1 b−aP V
Z b a
Rτ
a f ◦x0(s)ds−Rt
af ◦x0(s)ds τ−t
! dτ,
fort∈(a, b),which is an inequality of interest in itself.
As for the mapping ,1(t) = 1,t∈(a, b), we have (T1) (a, b;t) = 1
πP V Z b
a
1 τ −tdτ
= 1 π lim
ε→0+
Z t−ε a
1 τ −tdτ+
Z b t+ε
1 τ −tdτ
= 1 π lim
ε→0+
h
ln|τ −t||t−εa + ln (τ−t)|bt+εi
= 1 π lim
ε→0+[lnε−ln (t−a) + ln (b−t)−lnε]
= 1 πln
b−t t−a
, t∈(a, b). Then, obviously, for g: (a, b)→R we have
(T g) (a, b;t) = 1 πP V
Z b a
g(τ)−g(t) +g(t)
τ −t dτ
= 1 πP V
Z b a
g(τ)−g(t)
τ−t dτ+g(t) π P V
Z b a
1 τ−tdτ from where we get the equality
(T g) (a, b;t)−g(t) π ln
b−t t−a
= 1 πP V
Z b a
g(τ)−g(t)
τ−t dτ (19)
for all t∈(a, b).
Using the equality (19) we have P V
Z b a
x(τ)−x(t) τ −t dτ
=π(T x) (a, b;t)−x(t) ln b−t
t−a
and
P V Z b
a
Rτ
a f◦x0(s)ds−Rt
af◦x0(s)ds τ −t
! dτ
=π
T Z
a
f ◦x0(s)ds
(a, b;t)− Z t
a
f◦x0(s)dsln b−t
t−a
and by (18) we get the desired result (6).
We also have the reverse inequality:
Theorem 4. Let f : [a, b]→ R be a convex function on [a, b] and x : [a, b]→R an absolutely continuos function on [a, b] with x0(s)∈ [a, b] for almost every s∈ (a, b). Then we have
1 b−a
πT
Z
a
f◦x0(s)ds
(a, b;t)− Z t
a
f◦x0(s)ds
ln
b−t t−a
(20)
≤ f(a) b−a
b− 1 b−a
π(T x) (a, b;t)−x(t) ln b−t
t−a
+ f(b) b−a
1 b−a
π(T x) (a, b;t)−x(t) ln b−t
t−a
−a
for any t∈(a, b). In particular,
π b−aT
Z
a
f◦x0(s)ds a, b;a+b 2
(21)
≤ f(a) b−a
b− π
b−a(T x)
a, b;a+b 2
+ f(b) b−a
π
b−a(T x)
a, b;a+b 2
−a
.
Proof. By the convexity of f we have f x0(s)
= f
(b−x0(s))a+ (x0(s)−a)b b−a
(22)
≤ b−x0(s)
b−a f(a) +x0(s)−a b−a f(b) for almost everys∈[a, b].
Let t, τ ∈[a, b] witht6=τ.Taking the integral mean τ−t1 Rτ
t ,which is a linear and isotonic functional, in the inequality (22), we get
1 τ−t
Z τ t
f x0(s)
ds (23)
≤ 1 τ−t
Z τ t
b−x0(s)
b−a f(a) + x0(s)−a b−a f(b)
ds
= b−τ−t1 Rτ
t x0(s)ds
b−a f(a) +
1 τ−t
Rτ
t x0(s)ds−a b−a f(b)
= b−x(τ)−x(t)τ−t
b−a f(a) +
x(τ)−x(t)
τ−t −a
b−a f(b)
= f(a) b−a
b−x(τ)−x(t) τ −t
+ f(b) b−a
x(τ)−x(t) τ −t −a
for any t, τ ∈[a, b] with t6=τ.
Lett∈(a, b) andt−a > ε >0, then by integrating (23) overτ ∈[a, t−ε] we get
Z t−ε a
Rτ
t (f◦x0) (s)ds τ−t
dτ (24)
≤ Z t−ε
a
f(a) b−a
b− x(τ)−x(t) τ −t
+ f(b) b−a
x(τ)−x(t) τ−t −a
dτ
= f(a) b−a
b(t−ε−a)− Z t−ε
a
x(τ)−x(t) τ −t dτ
+ f(b) b−a
Z t−ε a
x(τ)−x(t)
τ −t dτ−a(t−ε−a)
.
Let t ∈ (a, b) and b−t > ε > 0, then by integrating (23) over τ ∈ [t+ε, b] we obtain
Z b t+ε
Rτ
t (f◦x0) (s)ds τ −t
dτ (25)
≤ Z b
t+ε
f(a) b−a
b−x(τ)−x(t) τ−t
+ f(b) b−a
x(τ)−x(t) τ −t −a
dτ
= f(a) b−a
b(b−t−ε)− Z b
t+ε
x(τ)−x(t) τ−t dτ
+ f(b) b−a
Z b t+ε
x(τ)−x(t)
τ −t dτ −a(b−t−ε)
.
Fort∈(a, b) and min{b−t, t−a}> ε >0,we have by adding the inequalities (24) and (25) that
Z t−ε a
Rτ
t (f ◦x0) (s)ds τ −t
dτ+
Z b t+ε
Rτ
t (f◦x0) (s)ds τ −t
dτ (26)
≤ f(a) b−a
b(t−ε−a)− Z t−ε
a
x(τ)−x(t) τ−t dτ
+b(b−t−ε)− Z b
t+ε
x(τ)−x(t) τ −t dτ
+ f(b) b−a
Z t−ε a
x(τ)−x(t)
τ −t dτ−a(t−ε−a) +
Z b t+ε
x(τ)−x(t)
τ −t dτ−a(b−t−ε)
.
If we take ε→0+ in (26), then we obtain P V
Z b a
Rτ
t (f ◦x0) (s)ds τ−t
dτ
≤ f(a) b−a
b(t−a) +b(b−t)−P V Z b
a
x(τ)−x(t) τ −t dτ
+ f(b) b−a
P V
Z b a
x(τ)−x(t)
τ −t dτ−a(t−a)−a(b−t)
= f(a) b−a
b(b−a)−P V Z b
a
x(τ)−x(t) τ −t dτ
+ f(b) b−a
P V
Z b a
x(τ)−x(t)
τ −t dτ−a(b−a)
,
which produces the following inequality of interest P V
Z b a
Rτ
t (f◦x0) (s)ds τ −t
dτ ≤f(a)
b− 1 b−aP V
Z b a
x(τ)−x(t) τ −t dτ
(27) +f(b)
1 b−aP V
Z b a
x(τ)−x(t) τ−t dτ−a
,
for any t∈(a, b).Now, since P V
Z b a
x(τ)−x(t) τ −t dτ
=π(T x) (a, b;t)−x(t) ln b−t
t−a
and
P V Z b
a
Rτ
a f◦x0(s)ds−Rt
af◦x0(s)ds τ −t
! dτ
=π
T Z
a
f ◦x0(s)ds
(a, b;t)− Z t
a
f ◦x0(s)dsln b−t
t−a
,
hence by (27) we get π
T
Z
a
f◦x0(s)ds
(a, b;t)− Z t
a
f◦x0(s)dsln b−t
t−a
≤f(a)
b− 1 b−a
π(T x) (a, b;t)−x(t) ln b−t
t−a
+f(b) 1
b−a
π(T x) (a, b;t)−x(t) ln
b−t t−a
−a
,
which proves (20).
3 Examples
If we consider the function expt=et,t∈(a, b) a real interval, then (Texp) (a, b;t) = exp (t)
π [Ei(b−t)−Ei(a−t)], (28) where Ei is defined by
Ei(x) :=P V Z x
−∞
exp (s)
s ds, x∈R.
Indeed, we have
Ei(b−t)−Ei(a−t) =P V Z b−t
a−t
exp (s)
s ds=P V Z b
a
exp (τ −t) τ −t ds
= exp (−t)π(Texp) (a, b;t) and the equality (28) is proved.
Let f : (a, b) → R be a convex function on (a, b). Then we have by (6) and (20) for x(t) = expt, that
f
exp (t) b−a
Ei(b−t)−Ei(a−t)−ln b−t
t−a
(29)
≤ 1 b−a
πT
Z
a
f ◦exp (s)ds
(a, b;t)− Z t
a
f◦exp (s)ds
ln b−t
t−a
≤ f(a) b−a
b−exp (t) b−a
Ei(b−t)−Ei(a−t)−ln b−t
t−a
+ f(b) b−a
exp (t) b−a
Ei(b−t)−Ei(a−t)−ln b−t
t−a
−a
fort∈(a, b).
In particular, we have f exp a+b2
b−a
Ei
b−a 2
−Ei
−b−a 2
!
(30)
≤ 1 b−a
πT
Z
a
f ◦exp (s)ds a, b;a+b 2
≤ f(a) b−a
"
b−exp a+b2 b−a
Ei
b−a 2
−Ei
−b−a 2
#
+ f(b) b−a
"
exp a+b2 b−a
Ei
b−a 2
−Ei
−b−a 2
−a
# .
If we take f :R→ R,f(x) = exp (αx), α6= 0,then for an absolutely contin- uous functionx: [a, b]⊂R→R we have from (6) and (20) that
exp α
b−a
π(T x) (a, b;t)−x(t) ln b−t
t−a
≤ 1 b−a
πT
Z
a
exp αx0(s) ds
(a, b;t)− Z t
a
exp αx0(s) ds
ln
b−t t−a
≤ expa b−a
b− 1
b−a
π(T x) (a, b;t)−x(t) ln b−t
t−a
+expb b−a
1 b−a
π(T x) (a, b;t)−x(t) ln b−t
t−a
−a
(31) for any t∈(a, b).
In particular, exp
α b−a
π(T x)
a, b;a+b 2
≤ 1 b−a
πT
Z
a
exp αx0(s)
ds a, b;a+b 2
≤ expa b−a
b− π
b−a(T x)
a, b;a+b 2
+expb b−a
π
b−a(T x)
a, b;a+b 2
−a
.
(32)
References
[1] Dragomir, N. M., Dragomir, S. S. and Farrell, P. M.,Some inequalities for the finite Hilbert transform. Inequality Theory and Applications. Vol. I, 113–122, Nova Sci. Publ., Huntington, NY, 2001.
[2] Dragomir, N. M., Dragomir, S. S. and Farrell, P. M., Approximating the finite Hilbert transform via trapezoid type inequalities. Comput. Math. Appl.
43(2002), no. 10-11, 1359–1369.
[3] Dragomir, N. M., Dragomir, S. S., Farrell, P. M. and Baxter, G. W.,On some new estimates of the finite Hilbert transform. Libertas Math.22(2002), 65–
75.
[4] Dragomir, N. M., Dragomir, S. S., Farrell, P. M. and Baxter, G. W., A quadrature rule for the finite Hilbert transform via trapezoid type inequalities.
J. Appl. Math. Comput.13(2003),no. 1-2, 67–84.
[5] Dragomir, N. M., Dragomir, S. S., Farrell, P. M. and Baxter, G. W., A quadrature rule for the finite Hilbert transform via midpoint type inequali- ties. Fixed point theory and applications. Vol. 5, 11–22, Nova Sci. Publ., Hauppauge, NY, 2004.
[6] Dragomir, S. S., Inequalities for the Hilbert transform of functions whose derivatives are convex. J. Korean Math. Soc. 39(2002), no. 5, 709–729.
[7] Dragomir, S. S.,Approximating the finite Hilbert transform via an Ostrowski type inequality for functions of bounded variation. J. Inequal. Pure Appl.
Math. 3(2002), no. 4, Article 51, 19 pp.
[8] Dragomir, S. S.,Approximating the finite Hilbert transform via Ostrowski type inequalities for absolutely continuous functions. Bull. Korean Math. Soc. 39 (2002), no. 4, 543–559.
[9] Dragomir, S. S.,Some inequalities for the finite Hilbert transform of a prod- uct. Commun. Korean Math. Soc. 18(2003), no. 1, 39–57.
[10] Dragomir, S. S., Sharp error bounds of a quadrature rule with one multiple node for the finite Hilbert transform in some classes of continuous differen- tiable functions. Taiwanese J. Math.9 (2005), no. 1, 95–109.
[11] Dragomir, S. S., Inequalities and approximations for the Finite Hilbert transform: a survey of recent results, T. M. Rassias, P. M. Pardalos (eds.), Mathematical Analysis and Applications, Springer Optimization and Its Applications 154, 53-164. https://doi.org/10.1007/978-3-030-31339-5 4.
Preprint RGMIA Res. Rep. Coll. 21 (2018), Art. 30, 90 pp. [Online http://rgmia.org/papers/v21/v21a30.pdf].
[12] Dragomir, S. S., Inequalities for the finite Hilbert transform of convex func- tions, Preprint RGMIA Res. Rep. Coll. 21(2018), Art. 31.
[13] Gakhov, F. D., Boundary Value Problems (English translation), Pergamon Press, Oxford, 1966.
[14] Liu, W. and Gao, X., Approximating the finite Hilbert transform via a com- panion of Ostrowski’s inequality for function of bounded variation and appli- cations. Appl. Math. Comput. 247 (2014), 373–385.
[15] Liu, W., Gao, X. and Wen, Y.,Approximating the finite Hilbert transform via some companions of Ostrowski’s inequalities. Bull. Malays. Math. Sci. Soc.
39(2016),no. 4, 1499–1513.
[16] Liu, W. and Lu, N., Approximating the finite Hilbert transform via Simpson type inequalities and applications. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77(2015),no. 3, 107–122.
[17] S. G. Mikhlin and S. Pr¨ossdorf, Singular Integral Operators (English trans- lation), Springer Verlag, Berlin, 1986.
[18] Wang, S., Gao, X. and Lu, N., A quadrature formula in approximating the finite Hilbert transform via perturbed trapezoid type inequalities. J. Comput.
Anal. Appl.22(2017), no. 2, 239–246.
[19] Wang, S., Lu, N. and Gao, X., A quadrature rule for the finite Hilberttrans- form via Simpson type inequalities and applications. J. Comput. Anal. Appl.
22(2017), no. 2, 229–238.