• Tidak ada hasil yang ditemukan

Mathematical Methods marking guide

N/A
N/A
Protected

Academic year: 2023

Membagikan "Mathematical Methods marking guide"

Copied!
25
0
0

Teks penuh

(1)

Mathematical Methods marking guide

External assessment 2022

Paper 1: Technology-free (55 marks) Paper 2: Technology-active (55 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1.

select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4

2.

comprehend mathematical concepts and techniques drawn from Units 3 and 4

3.

communicate using mathematical, statistical and everyday language and conventions

4. evaluate the reasonableness of solutions

5.

justify procedures and decisions by explaining mathematical reasoning

6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4

(2)

Purpose

This marking guide:

β€’ provides a tool for calibrating external assessment markers to ensure reliability of results

β€’ indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range

β€’ informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of β€˜0’

will be recorded.

Where no response to a question has been made, a mark of β€˜N’ will be recorded.

Allow FT mark/s β€” refers to β€˜follow through’, where an error in the prior section of working is used later in the response, a mark (or marks) for the rest of the response can still be awarded so long as it still demonstrates the correct conceptual understanding or skill in the rest of the response.

This mark may be implied by subsequent working β€” the full mathematical reasoning and/or working, as outlined in the sample response and associated mark, is not explicitly stated in the student response, but by virtue of subsequent working there is sufficient evidence to award the mark/s.

(3)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Marking guide

Multiple choice

Paper 1: Technology-free (55 marks)

Question Response

1 A

2 D

3 C

4 C

5 D

6 B

7 B

8 A

9 A

10 D

(4)

Short response

Q Sample response The response:

11a) Change from log to index form and rearrange 2π‘₯π‘₯=𝑒𝑒5

π‘₯π‘₯=𝑒𝑒5 2

β€’ correctly rearranges equation to remove ln [1 mark]

β€’ correctly determines π‘₯π‘₯ [1 mark]

11b) Using log laws log4οΏ½4π‘₯π‘₯+ 16

π‘₯π‘₯2βˆ’2οΏ½= 1 (4π‘₯π‘₯+ 16) = 4(π‘₯π‘₯2βˆ’2) π‘₯π‘₯2βˆ’ π‘₯π‘₯ βˆ’6 = 0

(π‘₯π‘₯ βˆ’3)(π‘₯π‘₯+ 2) = 0 π‘₯π‘₯=3,βˆ’2

β€’ correctly applies the log law [1 mark]

β€’ correctly determines quadratic equation to solve [1 mark]

β€’ determines possible values for π‘₯π‘₯ [1 mark]

(5)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Q Sample response The response:

12a)

𝐸𝐸(𝑋𝑋) =οΏ½ 𝑝𝑝𝑖𝑖π‘₯π‘₯𝑖𝑖

=

15 Γ— 0 + 45 Γ— 1

=

45 β€’ correctly determines the mean [1 mark]

12b) 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) =οΏ½ 𝑝𝑝𝑖𝑖(π‘₯π‘₯π‘–π‘–βˆ’ πœ‡πœ‡)2

=

15 Γ—

οΏ½

βˆ’45

οΏ½

2

+

45 Γ—

οΏ½

15

οΏ½

2

=

254 β€’ correctly determines the variance [1 mark]

12c) 𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉𝑉𝑉𝑆𝑆 𝑆𝑆𝑒𝑒𝑑𝑑𝑑𝑑𝑉𝑉𝑆𝑆𝑑𝑑𝑑𝑑𝑆𝑆 = βˆšπ‘‰π‘‰π‘‰π‘‰π‘‰π‘‰π‘‘π‘‘π‘‰π‘‰π‘†π‘†π‘‰π‘‰π‘’π‘’ = 2

5 β€’ determines the standard deviation [1 mark]

(6)

Q Sample response The response:

13a) 𝑓𝑓′(π‘₯π‘₯)=6𝑒𝑒2π‘₯π‘₯+1 β€’ correctly determines the derivative [1 mark]

13b)

g(π‘₯π‘₯) =ln (π‘₯π‘₯)

Let 𝑒𝑒= ln(π‘₯π‘₯) and 𝑑𝑑π‘₯π‘₯ =π‘₯π‘₯

βˆ΄π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘₯π‘₯=1π‘₯π‘₯ and𝑑𝑑𝑑𝑑𝑑𝑑π‘₯π‘₯= 1 gβ€²(π‘₯π‘₯) =𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑π‘₯π‘₯ βˆ’ 𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑π‘₯π‘₯

𝑑𝑑2

=

π‘₯π‘₯Γ—1π‘₯π‘₯ βˆ’ln(π‘₯π‘₯)Γ—1π‘₯π‘₯2

=

1βˆ’ln(π‘₯π‘₯)π‘₯π‘₯2

gβ€²(𝑒𝑒) =1βˆ’ln(𝑒𝑒) (𝑒𝑒)2 = 0

β€’ correctly identifies the use of the product or quotient rule [1 mark]

β€’ correctly determines the derivative [1 mark]

β€’ determines the derivative at the given value [1 mark]

13c) β„Ž(π‘₯π‘₯) =π‘₯π‘₯sin(π‘₯π‘₯)

Let 𝑒𝑒=π‘₯π‘₯ and 𝑑𝑑= sin(π‘₯π‘₯) βˆ΄π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘₯π‘₯= 1 and 𝑑𝑑𝑑𝑑𝑑𝑑π‘₯π‘₯= cos(π‘₯π‘₯) β„Žβ€²(π‘₯π‘₯) =𝑒𝑒𝑆𝑆𝑑𝑑

𝑆𝑆π‘₯π‘₯+𝑑𝑑𝑆𝑆𝑒𝑒

=π‘₯π‘₯Γ— cos(π‘₯π‘₯) + sin(π‘₯π‘₯) Γ— 1 𝑆𝑆π‘₯π‘₯

= π‘₯π‘₯cos(π‘₯π‘₯) + sin(π‘₯π‘₯) Let 𝑒𝑒=π‘₯π‘₯ and 𝑑𝑑= cos(π‘₯π‘₯) βˆ΄π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘π‘₯π‘₯= 1 and 𝑑𝑑𝑑𝑑𝑑𝑑π‘₯π‘₯=βˆ’sin(π‘₯π‘₯) β„Žβ€²β€²(π‘₯π‘₯) =𝑒𝑒𝑆𝑆𝑑𝑑

𝑆𝑆π‘₯π‘₯+𝑑𝑑𝑆𝑆𝑒𝑒

𝑆𝑆π‘₯π‘₯+ cos(π‘₯π‘₯)

=π‘₯π‘₯Γ—βˆ’sin(π‘₯π‘₯) + cos(π‘₯π‘₯) Γ— 1 + cos(π‘₯π‘₯)

= 2 cos(π‘₯π‘₯)βˆ’ π‘₯π‘₯sin(π‘₯π‘₯)

β€’ correctly identifies the use of the product rule [1 mark]

β€’ correctly determines the derivative [1 mark]

β€’ correctly identifies the use of the product rule and that

𝑑𝑑

𝑑𝑑π‘₯π‘₯οΏ½β„Ž(π‘₯π‘₯) +𝑔𝑔(π‘₯π‘₯)οΏ½=𝑑𝑑π‘₯π‘₯𝑑𝑑 β„Ž(π‘₯π‘₯) +𝑑𝑑π‘₯π‘₯𝑑𝑑 𝑔𝑔(π‘₯π‘₯) [1 mark]

β€’ determines the second derivative [1 mark]

β€’ simplifies the second derivative [1 mark]

(7)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Q Sample response The response:

14a) V =οΏ½0.25𝑒𝑒0.25𝑑𝑑 𝑆𝑆𝑆𝑆 =𝑒𝑒0.25𝑑𝑑+𝑉𝑉 when 𝑆𝑆= 0,𝑉𝑉= 0

∴0 =𝑒𝑒0.25Γ—0+𝑉𝑉

βˆ΄π‘‰π‘‰=βˆ’1

∴ 𝑉𝑉=𝑒𝑒0.25π‘‘π‘‘βˆ’1

β€’ correctly determines the integral of the function 𝑉𝑉(𝑆𝑆) [1 mark]

β€’ determines the value of c [1 mark]

14b) 𝑉𝑉(8 ln(6))=𝑒𝑒0.25Γ—8 ln(6)βˆ’1 = 36βˆ’1

= 35 litres

β€’ determines the simplified exponential term [1 mark]

β€’ determines number of litres [1 mark]

14c) Using trapezoidal rule

Volume after 3 hours = 12οΏ½0.25+0.53+2(0.32+0.41)οΏ½

Volume after 3 hours =1.12 litres

β€’ establishes expression for approximate number of litres of water in vessel after 3 hours [1 mark]

β€’ determines approximate number of litres [1 mark]

(8)

Q Sample response The response:

15 The function is decreasing when 𝑓𝑓′(π‘₯π‘₯) < 0 and concave up when 𝑓𝑓′′(π‘₯π‘₯) > 0

𝑓𝑓′(π‘₯π‘₯)= (π‘₯π‘₯ βˆ’4)𝑒𝑒π‘₯π‘₯ < 0 when π‘₯π‘₯< 4

𝑓𝑓′′(π‘₯π‘₯) =(π‘₯π‘₯ βˆ’4)𝑒𝑒π‘₯π‘₯+𝑒𝑒π‘₯π‘₯=𝑒𝑒π‘₯π‘₯(π‘₯π‘₯ βˆ’3)> 0 when π‘₯π‘₯> 3 Therefore, the function is decreasing and concave up when 3 <π‘₯π‘₯< 4

β€’ correctly describes conditions when the function is decreasing and concave up [1 mark]

β€’ correctly determines the interval where 𝑓𝑓(π‘₯π‘₯) is decreasing [1 mark]

β€’ correctly determines the interval where 𝑓𝑓(π‘₯π‘₯) is concave up [1 mark]

β€’ determines interval when function is decreasing and concave up [1 mark]

(9)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Q Sample response The response:

16 The provided functions are a sine and a cosine function, both with negative amplitudes and the same period.

Therefore, the smooth line is 𝑦𝑦′=βˆ’π‘‰π‘‰sin(𝑏𝑏π‘₯π‘₯) , and the dotted line is

𝑦𝑦′′= βˆ’π΄π΄cos(𝑏𝑏π‘₯π‘₯), with 𝑉𝑉= 3 and 𝐴𝐴= 4.5.

Therefore, the primary function must be a cosine function with the same period i.e. 𝑦𝑦= 2 cosοΏ½32π‘₯π‘₯οΏ½

β€’ correctly identifies the smooth curve as the first derivative [1 mark]

β€’ provides mathematical reasoning for sketch [1 mark]

β€’ sketches the function [1 mark]

(10)

Q Sample response The response:

17 Using first integral 𝐹𝐹(𝑏𝑏)βˆ’ 𝐹𝐹(𝑉𝑉) = 117

𝑏𝑏3βˆ’ 𝑉𝑉3= 117 … Equation I

Using second integral

(𝑏𝑏 βˆ’1)3βˆ’ 𝑉𝑉3= 56 … Equation II Equation I – Equation II

𝑏𝑏3βˆ’(𝑏𝑏 βˆ’1)3= 61

𝑏𝑏3βˆ’(𝑏𝑏3βˆ’3𝑏𝑏2+ 3𝑏𝑏 βˆ’1) = 61 3𝑏𝑏2βˆ’3𝑏𝑏 βˆ’60 = 0

𝑏𝑏2βˆ’ 𝑏𝑏 βˆ’20 = 0 (𝑏𝑏 βˆ’5)(𝑏𝑏+ 4) = 0 𝑏𝑏=βˆ’4, 5

Given 𝑏𝑏> 1

∴ 𝑏𝑏= 5

β€’ correctly establishes a formula for one of the integrals [1 mark]

β€’ determines equation in 𝑏𝑏 [1 mark]

β€’ determines values of 𝑏𝑏 [1 mark]

β€’ evaluates the reasonableness of solutions [1 mark]

(11)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Q Sample response The response:

18 οΏ½π‘Žπ‘Ž2π‘₯π‘₯ βˆ’2 𝑆𝑆π‘₯π‘₯= 0.36

1

π‘₯π‘₯2βˆ’2π‘₯π‘₯ �𝑉𝑉1 = 0.36 (𝑉𝑉2βˆ’2𝑉𝑉)βˆ’(1βˆ’2) = 0.36 𝑉𝑉2βˆ’2𝑉𝑉+ 1 = 0.36 𝑉𝑉2βˆ’2𝑉𝑉+ 0.64 = 0

∴ 𝑉𝑉=2±√4βˆ’4Γ—1Γ—0.64

2

∴ 𝑉𝑉=2 ±√1.44 2

∴ 𝑉𝑉=2 Β± 1.2

∴ 𝑉𝑉= 1.6 or 0.4 2 Given 1≀ π‘₯π‘₯ ≀2

∴ 𝑉𝑉= 1.6

β€’ correctly determines the definite integral [1 mark]

β€’ determines the quadratic equation [1 mark]

β€’ determines values of 𝑉𝑉 [1 mark]

β€’ evaluates the reasonableness of solutions [1 mark]

(12)

Q Sample response The response:

19

Total area 𝑂𝑂𝑂𝑂𝐴𝐴 and 𝑂𝑂𝑂𝑂𝑂𝑂 (𝐴𝐴𝑇𝑇)(using area rule)

=12 Γ— 20 Γ— π‘₯π‘₯ Γ— sin 30Β° +12 Γ— (10βˆ’ π‘₯π‘₯) Γ— 𝑂𝑂𝑂𝑂 Γ— sin 30Β°

Given 𝐢𝐢𝐢𝐢𝐴𝐴𝐴𝐴=𝑂𝑂𝐢𝐢𝑂𝑂𝐴𝐴 ∴𝐢𝐢𝐢𝐢20=10βˆ’π‘₯π‘₯π‘₯π‘₯

βˆ΄π‘‚π‘‚π‘‚π‘‚=20(10βˆ’π‘₯π‘₯)π‘₯π‘₯

𝐴𝐴𝑇𝑇=12Γ— 20 Γ—π‘₯π‘₯Γ— sin 30Β° +12Γ— (10βˆ’ π‘₯π‘₯) Γ—20(10βˆ’π‘₯π‘₯)π‘₯π‘₯ Γ— sin 30Β°

= 5π‘₯π‘₯+π‘₯π‘₯5(10βˆ’ π‘₯π‘₯)2

𝐴𝐴𝑇𝑇=10π‘₯π‘₯2βˆ’100π‘₯π‘₯+ 500 π‘₯π‘₯

β€’ correctly uses all of the given information to draw a labelled diagram [1 mark]

β€’ correctly establishes a formula for the total area [1 mark]

β€’ correctly determines an expression for CP in terms of π‘₯π‘₯ [1 mark]

β€’ determines simplified version of the formula for total area [1 mark]

(13)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Q Sample response The response:

Differentiate 𝐴𝐴𝑇𝑇

𝐴𝐴𝑇𝑇= 10π‘₯π‘₯+ 500π‘₯π‘₯βˆ’1βˆ’100 𝐴𝐴′𝑇𝑇= 10βˆ’500π‘₯π‘₯βˆ’2 Let 𝐴𝐴′𝑇𝑇= 0

∴0 = 10βˆ’500π‘₯π‘₯βˆ’2

∴500 π‘₯π‘₯2 = 10

∴ π‘₯π‘₯= ±√50 π‘₯π‘₯ is a positive length

∴ π‘₯π‘₯=√50 Verifying using 𝑓𝑓′′(π‘₯π‘₯) 𝑓𝑓′(π‘₯π‘₯) = 10βˆ’500π‘₯π‘₯βˆ’2 𝑓𝑓′′(π‘₯π‘₯) =1000

π‘₯π‘₯3

π‘“π‘“β€²β€²οΏ½βˆš50οΏ½> 0∴minimum

Therefore when π‘₯π‘₯=√50 the total area is minimised.

β€’ determines an equation to solve for stationary points [1 mark]

β€’ evaluates the reasonableness of solutions [1 mark]

β€’ verifies solution [1 mark]

(14)

Marking guide

Multiple choice

Paper 2: Technology-active (55 marks)

Question Response

1 D

2 B

3 C

4 C

5 B

6 B

7 D

8 C

9 B

10 C

Note that question 3 has been updated to indicate option C as the correct answer.

(15)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Short response

Q Sample response The response:

11a) Mean number of sales

=𝑛𝑛𝑛𝑛

= 25 Γ— 0.2

= 5

β€’ correctly substitutes into formula for mean [1 mark]

β€’ correctly determines the mean [1 mark]

11b) Standard deviation of number of sales

=�𝑛𝑛𝑛𝑛(1βˆ’ 𝑛𝑛)

=οΏ½25 Γ— 0.2 Γ— (1βˆ’0.2)

= 2

β€’ correctly substitutes into formula for standard deviation [1 mark]

β€’ correctly determines the standard deviation [1 mark]

11c) 1βˆ’ �𝑛𝑛0οΏ½0.200.8𝑛𝑛β‰₯0.88 ∴1βˆ’0.8𝑛𝑛β‰₯0.88

∴0.8𝑛𝑛 ≀0.12

∴ 𝑛𝑛 β‰₯log0.8(0.12)

∴ 𝑛𝑛 β‰₯9.50179

∴ minimum number of customers would be 10.

β€’ correctly determines the required inequation [1 mark]

β€’ correctly determines the unknown in the inequation [1 mark]

β€’ determines the minimum number of customers [1 mark]

(16)

Q Sample response The response:

12a)

𝑃𝑃(π‘₯π‘₯< 12000) =0.3085

β€’ correctly uses an appropriate mathematical representation [1 mark]

β€’ correctly determines the probability [1 mark]

12b)

π‘₯π‘₯=14 561.38 kilometres

β€’ correctly uses an appropriate mathematical representation [1 mark]

β€’ correctly determines the value of π‘₯π‘₯ [1 mark]

(17)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Q Sample response The response:

13a) 𝑀𝑀(2) = 8

∴ π‘Žπ‘Ž+𝑏𝑏sin(0) = 8

∴ π‘Žπ‘Ž= 8 𝑀𝑀(11) = 3

∴8 +𝑏𝑏sinοΏ½3πœ‹πœ‹ 2οΏ½= 3

∴ 𝑏𝑏 Γ— βˆ’1 =βˆ’5

∴ 𝑏𝑏= 5

β€’ correctly determines π‘Žπ‘Ž [1 mark]

β€’ correctly determines 𝑏𝑏 [1 mark]

13b)

The rate of change at 8am is 5πœ‹πœ‹6. Using sketch 𝑑𝑑= 14

At 8 pm the rate is the same (for the first time).

β€’ determines rate when 𝑑𝑑= 2 [1 mark]

β€’ determines first time when rate is the same as 𝑑𝑑= 2 [1 mark]

(18)

Q Sample response The response:

14a) Using GDC to determine confidence interval associated with 𝑛𝑛= 200,𝑛𝑛̂= 0.25,𝑧𝑧= 1.96 (0.19, 0.31)

β€’ correctly identifies all of the information required to establish the confidence interval [1 mark]

β€’ correctly determines the confidence interval [1 mark]

14b) Combining results 𝑛𝑛= 450,𝑛𝑛̂=11

45 Using GDC (0.2047, 0.2842)

β€’ correctly determines 𝑛𝑛 and 𝑛𝑛̂ for the combined sample [1 mark]

β€’ determines confidence interval [1 mark]

14c) By combining the results, the sample size is increased and the confidence interval width is reduced.

The new sample statistic provides a better estimate for the population parameter.

β€’ identifies changed width of confidence interval [1 mark]

β€’ evaluates the reasonableness of Khadija’s suggestion [1 mark]

14d) Using approximation to the normal distribution Mean = 0.24

Standard deviation= οΏ½0.24 Γ— 0.76

200 = 0.0302 Using GDC

𝑃𝑃(𝑛𝑛̂> 0.30) =0.0235

β€’ correctly determines the mean and standard deviation of the normal distribution [1 mark]

β€’ determines the probability [1 mark]

(19)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Q Sample response The response:

15

𝐻𝐻= β„Ž= 5.2 𝐿𝐿= 22Β° 𝑙𝑙=π‘₯π‘₯ 𝐢𝐢= 𝑐𝑐= 8 Using cosine rule

π‘₯π‘₯2= 82+ 5.22βˆ’2 Γ— 8 Γ— 5.2 Γ— cos 22Β°

π‘₯π‘₯= 3.7280 km

Using sine rule 3.7280

sin 22° = 8 sin𝐢𝐢 𝐢𝐢= 53.5019°

or 𝐢𝐢= 126.4981°

Bearing = 360 –126.4981Β°+ 30

∴ walk back at a bearing of 263Β°30β€² T

β€’ correctly establishes the diagram using bearing and distance information [1 mark]

β€’ correctly determines angle L [1 mark]

β€’ determines unknown distance [1 mark]

β€’ substitutes into appropriate rule [1 mark]

β€’ determine obtuse angle at 𝐢𝐢 [1 mark]

β€’ determines direction needed to return to youth hostel using the obtuse angle for 𝐢𝐢 [1 mark]

(20)

Q Sample response The response:

β€’ shows logical organisation communicating key steps [1 mark]

(21)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Q Sample response The response:

16 οΏ½ π‘Žπ‘Ž(4βˆ’ π‘₯π‘₯2) 32 𝑑𝑑π‘₯π‘₯= 1

2

βˆ’2Using GDC (solving for equation) π‘Žπ‘Ž= 3

𝑃𝑃(βˆ’1≀ 𝑋𝑋 ≀1)

=βˆ«βˆ’11 π‘Žπ‘Ž(4βˆ’π‘₯π‘₯32 2)

𝑑𝑑π‘₯π‘₯

= 0.6875

β€’ correctly identifies required integral equation to solve [1 mark]

β€’ correctly determines the value of π‘Žπ‘Ž [1 mark]

β€’ correctly identifies interval [1 mark]

β€’ determines probability [1 mark]

(22)

Q Sample response The response:

17 Total displacement of the snail

∫ 𝟏𝟏.𝟎𝟎𝟏𝟏𝟏𝟏 πŸ’πŸ’ π₯π₯π₯π₯(𝟏𝟏+π’•π’•πŸπŸ)𝒅𝒅𝒕𝒕=πŸ•πŸ•πŸ•πŸ•.πŸŽπŸŽπŸ’πŸ’πŸŽπŸŽπŸπŸ 𝐜𝐜𝐜𝐜 Velocity of the ant =∫ 𝟐𝟐 𝒅𝒅𝒕𝒕

=πŸπŸπ’•π’•+𝒄𝒄 𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃π₯π₯πƒπƒπœπœπƒπƒπœπœπƒπƒπ₯π₯𝐃𝐃𝐃𝐃π₯π₯𝐃𝐃 𝐟𝐟𝐟𝐟𝐟𝐟𝐜𝐜 𝟏𝟏𝟐𝟐 πƒπƒπŸπŸ πŸπŸπŸπŸπœπœπƒπƒπ₯π₯= 𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃π₯π₯πƒπƒπœπœπƒπƒπœπœπƒπƒπ₯π₯𝐃𝐃𝐃𝐃π₯π₯𝐃𝐃𝐃𝐃π₯π₯ 𝐟𝐟𝐟𝐟𝐟𝐟𝐜𝐜 𝟎𝟎 πƒπƒπŸπŸ πŸπŸπŸπŸπœπœπƒπƒπ₯π₯

∴ ∫ πŸπŸπ’•π’•πŸπŸπŸπŸπŸπŸπŸπŸ +𝒄𝒄=πŸ•πŸ•πŸ•πŸ•.πŸŽπŸŽπŸ’πŸ’πŸŽπŸŽπŸπŸ

Solving numerically on GDC 𝒄𝒄=βˆ’πŸπŸ.πŸ•πŸ•πŸπŸπŸπŸπŸŽπŸŽ

Therefore, velocity of ant at 𝒕𝒕=𝟏𝟏𝟐𝟐

=πŸπŸΓ—πŸπŸπŸπŸ βˆ’ 𝟏𝟏.πŸ•πŸ•πŸπŸπŸπŸπŸŽπŸŽ

= 22.3477 cm minβˆ’1 along the ant’s path.

β€’ correctly determines the total displacement of the snail [1 mark]

β€’ establishes an equation linking the ant and the snail [1 mark]

β€’ determines constant [1 mark]

β€’ determines velocity of ant [1 mark]

(23)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Q Sample response The response:

18

𝑃𝑃(𝐼𝐼𝐼𝐼 β‰₯120) =0.1057 Using binomial distribution 𝑛𝑛= 9,𝑛𝑛= 0.1057

Using GDC 𝑃𝑃(π‘₯π‘₯ ≀2) =0.9391

β€’ correctly determines the probability of IQ β‰₯120 [1 mark]

β€’ correctly recognises context is suitable for modelling as a binomial [1 mark]

β€’ determines the required probability [1 mark]

(24)

Q Sample response The response:

19 Number of flying foxes entering the region

=οΏ½42 sinοΏ½0.03𝑑𝑑 βˆ’πœ‹πœ‹ 3οΏ½+ 71

=βˆ’1400 cosοΏ½0.03𝑑𝑑 βˆ’πœ‹πœ‹

3οΏ½+ 71𝑑𝑑+𝑐𝑐1

Number of flying foxes leaving the region 𝐿𝐿(𝑑𝑑)

=οΏ½42 sinοΏ½0.04𝑑𝑑 βˆ’πœ‹πœ‹ 3οΏ½+ 42

=βˆ’ 42

0.04cosοΏ½0.04𝑑𝑑 βˆ’πœ‹πœ‹

3οΏ½+ 42𝑑𝑑+𝑐𝑐2 Number of flying foxes in region 𝑁𝑁(𝑑𝑑)

=βˆ’1400 cosοΏ½0.03𝑑𝑑 βˆ’πœ‹πœ‹3οΏ½+ 71𝑑𝑑+𝑐𝑐1

βˆ’ οΏ½βˆ’1050 cosοΏ½0.04𝑑𝑑 βˆ’πœ‹πœ‹3οΏ½+ 42𝑑𝑑+𝑐𝑐2οΏ½

Given number of flying foxes in the region at time 𝑑𝑑= 0 is 100

𝑁𝑁(𝑑𝑑) =βˆ’1400 cosοΏ½0.03𝑑𝑑 βˆ’πœ‹πœ‹3οΏ½+ 1050 cosοΏ½0.04𝑑𝑑 βˆ’

πœ‹πœ‹

3οΏ½+ 29𝑑𝑑+ 275

Using GDC to sketch 𝑁𝑁(𝑑𝑑)

Using a GDC, the maximum point is identified (177.729, 7034.264).

Maximum of 7034 flying foxes in the region at 9: 58 pm.

β€’ correctly determines the function to model the total number of flying foxes in the region [1 mark]

β€’ uses an appropriate mathematical method to identify the maximum values [1 mark]

β€’ determines the maximum number of flying foxes and time, i.e. the coordinates of the turning point [1 mark]

β€’ states the number of flying foxes as a whole number and the time after 7 pm it occurs [1 mark]

(25)

Mathematical Methods marking guide

External assessment 2022 Queensland Curriculum & Assessment Authority

Β© State of Queensland (QCAA) 2022

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright β€” lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution: Β© State of Queensland (QCAA) 2022

Referensi

Dokumen terkait

Ancient History marking guide and response External assessment 2021 Queensland Curriculum & Assessment Authority Criterion: Comprehending Q The response: M 2 ο‚· aptly uses