Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow
This is the Accepted version of the following publication
Yu, Hui, Yang, Xing, Wang, Rong and Fane, Anthony G (2011) Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow. Journal of Membrane Science, 384 (1-2). pp.
107-116. ISSN 0376-7388
The publisher’s official version can be found at
http://www.sciencedirect.com/science/article/pii/S037673881100682X
Note that access to this version may require subscription.
Downloaded from VU Research Repository https://vuir.vu.edu.au/25291/
Material Density kg/m3
Specific heat J/(kg·K)
Thermal conductivity W/(m·K)
PVDF[23] 1775 1325 0.2622
Vapor* 0.554 2014 0.0261
Membrane 302.2 1896.9 0.0662
Table 1. Properties of the PVDF membrane
Material Density kg/m3
Specific heat J/(kg·K)
Thermal conductivity w/(m·K)
Viscosity
×10-4 Pa·s 3.5% synthetic
seawater(~323K) [24]
1013.2 4064.8 0.642 5.86
Pure water(~303K)
[25] 995.2 4182.1 0.613 8.38
Table 2. Properties of the fluids
Table 3. PVDF membrane characterization and module specifications
Membrane properties Material Dimension Contact angle
(°)
Porosity ε (%)
LEPw (Bar)
Tensile modulus Et ,MPa
Strain at break δb, % PVDF Rmo: 1.45 mm
δm: 275 μm 105±1 85 1.38 44.60 98.60
Module specifications
Housing diameter, ds, mm No. of fibers, n Effective fiber length L, m
9.5 1 0.25~1.02
L (m) Tfi (K) Tfo (K) Error (%) Tpi (K) Tpo (K) Error (%)
0.25 Exp. 327.2 325.7 - 294.0 301.4 -
Sim. - 325.9 0.0614 300.9 -0.166
0.34 Exp. 327.2 325.2 - 293.5 302.8 -
Sim. - 325.4 0.0615 302.5 -0.0991
0.54 Exp. 327.2 324.8 - 294.0 306.0 -
Sim. 324.6 -0.0616 306.6 0.196
0.64 Exp. 327.2 324.2 - 294.0 306.3 -
Sim. - 324.1 -0.0308 308.6 0.848
0.74 Exp. 327.2 323.7 - 294.7 307.8 -
Sim. - 323.7 0.00 310.6 0.910
0.84 Exp. 327.2 322.7 - 293.7 310.0 -
Sim. 323.3 0.185 311.4 0.452
1.02 Exp. 327.2 322.0 - 294.0 312.1 -
Sim. - 322.6 0.186 313.9 0.577
Table. 4. The temperature comparison of experimental data and simulation results (Ref=836, Rep= 460)
x
r 0
T
fmT
fT
pmT
pFeed Membrane
Permeate
N
mq
MDShell wall
R
miR
moFig. 1. Schematic diagram of heat & mass transfers
Fig. 2 CFD domain & meshes of the single-fiber module in a 2D model
Fig. 3. Temperature distribution inside the module (Ref=836, Tfi = 327.2 K, Rep= 460, Tpi = 294.0 K)
Fig. 4. qf & ΔTf distributions along the dimensionless module length x/L (Ref=836, Tfi = 327.2 K, Rep= 460, Tpi = 294.0 K )
0.0 0.2 0.4 0.6 0.8 1.0
3500 4000 4500 5000 5500 6000 6500 7000 7500
q f (W·m-2 )
x / L
qf
L = 0.25m L = 0.34m L = 0.84m L = 1.02m
2 4 6 8 10
T f =T f -T fm (K)
T
f
Fig. 5. qp & ΔTp distributions on the membrane surface along the dimensionless module length x/L (Ref=836, Tfi = 327.2 K, Rep= 460, Tpi = 294.0 K)
0.0 0.2 0.4 0.6 0.8 1.0
6000 7000 8000 9000 10000 11000 12000
q p / W·m-2
x / L qp
L = 0.25m L = 0.34m L = 0.84m L = 1.02m
2 4 6 8 10
T
p
T p = T pm-T p / K
0.0 0.2 0.4 0.6 0.8 1.0 4
6 8 10 12 14 16 18 20 22 24 26 28 30
Nu
x / L
Nuf Nu
p
L = 0.25m L = 0.34m L = 0.84m L = 1.02m
Fig. 6. Distribution of Nu along the dimensionless x distance (Ref=836, Tfi = 327.2 K, Rep= 460, Tpi = 294.0 K)
Fig. 7. Nuf & Nup distributions along the module length at different Rep (L=0.25m, Ref=836, Tfi = 327.2 K, Rep= 200~2000, Tpi = 294.0 K)
0.0 0.2 0.4 0.6 0.8 1.0
4 6 8 10 12 14 16 18 20 22 24 26 28 30
Nu
x / L Nuf , Nu
p , Re
f=836, Re
p=200
Nuf , Nu
p , Re
f=836, Re
p=460
Nuf , Nu
p , Re
f=836, Re
p=1000 Nuf , Nu
p , Re
f=836, Re
p=2000
Fig. 8. Nuf & Nup distributions along the module length at different Ref (L=0.25m, Ref=500~2000, Tfi = 327.2 K, Rep= 460, Tpi = 294.0 K)
0.0 0.2 0.4 0.6 0.8 1.0
0 10 20 30 40
Nuf , Nup , Ref=500, Rep=460 Nuf , Nup , Ref=836, Rep=460 Nuf , Nup , Ref=1000, Rep=460 Nuf , Nu
p , Ref=2000, Rep=460
Nu
x / L
0.0 0.2 0.4 0.6 0.8 1.0 1000
2000 3000 4000 5000 6000
h (W·m-2 ·K-1 )
x / L hf
hp
Fig. 9. hf & hp distributions along the module length at constant flow conditions (L=0.25m, Ref= 836, Tfi = 327.2 K, Rep=460, Tpi = 294.0 K)
0.0 0.2 0.4 0.6 0.8 1.0 0.60
0.65 0.70 0.75 0.80
TPC
x / L TPC
L = 0.25m L = 0.34m L = 0.84m L = 1.02m
Fig. 10. TPC distributions along the dimensionless module length x/L (Ref= 836, Tfi = 327.2 K, Rep=460, Tpi = 294.0 K)
0.0 0.2 0.4 0.6 0.8 1.0 0.0011
0.0012 0.0013 0.0014 0.0015 0.0016 0.0017 0.0018 0.0019
N m / kg·m-2 ·s-1
x / L
L = 0.25m L = 0.34m L = 0.84m L = 1.02m
Fig. 11. Distributions of local mass fluxes along the dimensionless x/L distance (Ref= 836, Tfi = 327.2 K, Rep=460, Tpi = 294.0 K)
0.0 0.2 0.4 0.6 0.8 1.0 0.0015
0.0016 0.0017 0.0018 0.0019 0.0020 0.0021 0.0022 0.0023
Ref=836, Rep=200 Ref=836, Rep=460 Ref=836, Rep=1000 Ref=836, Rep=2000 Ref=500, Rep=460 Ref=1000, Rep=460 Ref=2000, Re
p=460
Ref=2000, Re
p=200
Ref=2000, Rep=2000
N m (kg.m-2 .s-1 )
x / L
Fig. 12. Distributions of local Nm along the dimensionless module length x/L (L=0.25m, Ref=500~2000, Tfi = 327.2 K, Rep= 200~2000, Tpi = 294.0 K)
0.0 0.2 0.4 0.6 0.8 1.0 0.40
0.42 0.44 0.46 0.48 0.50 0.52
0.54 Re
f=836, Re
p=200
Ref=836, Re
p=460
Ref=836, Rep=1000 Ref=836, Rep=2000 Ref=500, Rep=460 Ref=1000, Rep=460 Ref=2000, Rep=460 Ref=2000, Rep=200 Ref=2000, Rep=2000
 h
x / L
Fig. 13. Distributions of ηh along the dimensionless x/L distance (L=0.25m, Ref=500~2000, Tfi = 327.2 K, Rep= 200~2000, Tpi = 294.0 K)