On Inequalities in Normed Linear Spaces and Applications
This is the Published version of the following publication
Dragomir, Sever S, Koliha, Jerry J and Cho, Yeol Je (2000) On Inequalities in Normed Linear Spaces and Applications. RGMIA research report collection, 3 (1).
The publisher’s official version can be found at
Note that access to this version may require subscription.
Downloaded from VU Research Repository https://vuir.vu.edu.au/17290/
LINEAR SPACES AND APPLICATIONS
S. S. Dragomir, J. J. Koliha and Y. J. Cho
Abstract. In this paper we obtain inequalities involving the norms of finite se- quences of vectors in normed linear spaces, which are new even for complex num- bers.
I. Introduction
Let (X,k · k) be a normed linear space. The following inequality is well known in the literature as the polygonal inequality, which is a generalization of the triangle inequality:
(P) X
i∈I
xi
≤X
i∈I
kxik;
I is a finite set of indices and xi (i ∈I) are vectors in X.
In papers [1–3], authors explored relations between the following refinements and generalizations of (P):
Theorem A. Let (X,k · k) be a normed linear space and I be a finite set of indices,xi∈X, i∈I and p∈R, p≥1. Then we have the following inequalities:
(1)
X
i∈I
xi
p ≤[card(I)]p−k−1 X
i1,...,ik+1∈I
xi1 +· · ·+xik+1
k+ 1
p
≤[card(I)]p−k X
i1,...,ik∈I
xi1 +· · ·+xik k
p
≤ · · ·
≤[card(I)]p−2 X
i1,i2∈I
xi1 +xi2 2
p
≤[card(I)]p−1X
i∈I
kxikp,
Typeset byAMS-TEX 1
2 S. S. DRAGOMIR, J. J. KOLIHA AND Y. J. CHO
where k ∈N, k ≥1.
The following result is a refinement of (P) for weighted mean:
Theorem B. With the above assumptions, if gj (j = 1,2,3, . . . , k) are nonneg- ative weights such that Pk
j=1gj >0, then we have the following inequality:
(2)
X
i∈I
xip ≤[card(I)]p−k X
i1,...,ik∈I
xi1+· · ·+xik k
p
≤[card(I)]p−k X
i1,...,ik∈I
g1xi1 +· · ·+gkxik
g1+· · ·+gk
p
≤[card(I)]p−1X
i∈I
kxikp.
Note that both the above inequalities were obtained from more general results for convex mappings defined on convex subsets in normed linear spaces.
In this paper, using only techniques from normed linear spaces, we obtain new inequalities for the norms of finite sequences.
II. The Results
We start with the following theorem:
Theorem 2.1. Let (X,k · k) be a normed linear space, xi ∈ X with i ∈ I (I is finite) and x=P
i∈Ixi. Then we have the following inequalities:
(3) k xkx−X
i∈I
kx±xikxi≤X
i∈I
kxik2 ≤ 12
kxk+X
i∈I
kxik X
i∈I
kxik.
Proof. For a fixed i∈I, we have kxik=x− X
j∈I,j6=i
xj≤ kxk+ X
j∈I,j6=i
xj
≤ kxk+ X
j∈I,j6=i
kxjk=kxk+X
j∈I
kxjk − kxik,
which implies that, for all i ∈I, kxik ≤ 12
kxk+X
j∈I
kxjk .
Multiplying by kxik ≥0 and summing over i∈I, we deduce X
i∈I
kxik2 ≤ 12
kxk+X
j∈I
kxjk X
i∈I
kxik,
and so the second inequality in (1) is proved. Also, for a fixed i∈I, we have kxik=k −xik=kx±xi−xk ≥kx±xik − kxk.
Multiplying by kxik ≥0, we have
kxik2 ≥kx±xik − kxkkxik=(kx±xik − kxk)xi for all i∈I. Summing over i∈I, we have
X
i∈I
kxik2 ≥X
i∈I
kx±xikxi− kxkxi
≥X
i∈I
kx±xikxi− kxkxi
,
and so the theorem is proved.
Corollary 2.2. With the above assumptions, if P
i∈Ixi = 0, then
(4) X
i∈I
kxik2 ≤ 12 X
i∈I
kxik2
.
The following result generalizes Theorem 2.1. In its proof we need the formula
(5) X
i1,...,ik∈I
(xi1 +· · ·+xik) =k[card(I)]k−1X
i∈I
xi,
which can be proved by induction on k.
Theorem 2.3. With the above assumptions, we have the following inequalities:
(6)
k X
i1,...,ik∈I
kx±(xi1 +· · ·+xik)kxi1 −nk−1kxkx
≤ X
i1,...,ik∈I
kxi1+· · ·+xikk2
≤ 12 X
i1,...,ik∈I
kxi1 +· · ·+xikk2+k X
i1,...,ik∈I
kxi1k kxi1 +· · ·+xikk
≤ 12
kxk+X
i∈I
kxik X
i1,...,ik∈I
kxi1+· · ·+xikk,
4 S. S. DRAGOMIR, J. J. KOLIHA AND Y. J. CHO
where k ≥1 and card(I) =n.
Proof. For fixed i1, . . . , ik ∈I, we have kxi1 +· · ·+xikk=x− X
j /∈{i1,...,ik}
xj
≤ kxk+ X
j /∈{i1,...,ik}
xj
≤ kxk+ X
j /∈{i1,...,ik}
kxjk
=kxk+X
i∈I
kxik − kxi1k − · · · − kxikk,
from which it follows
kxi1 +· · ·+xikk+kxi1k+· · ·+kxikk ≤ kxk+X
i∈I
kxik.
Multiplying by kxi1 +· · ·+xikk ≥0 and summing over i1, . . . , ik in I, we have X
i1,...,ik∈I
kxi1+· · ·+xikk2+k X
i1,...,ik∈I
kxi1k kxi1 +· · ·+xikk
≤
kxk+X
i∈I
kxik X
i1,...,ik∈I
kxi1 +· · ·+xikk,
and so the third inequality in (6) follows. By the triangle inequality kxi1 +· · ·+xikk ≤ 12(kxi1 +· · ·+xikk+kxi1k+· · ·+kxikk).
Multiplying by kxi1 +· · ·+xikk and summing over i1, . . . , ik in the index set I, we derive
X
i1,...,ik∈I
kxi1 +· · ·+xikk2
≤ 12 X
i1,...,ik∈I
kxi1 +· · ·+xikk2+k X
i1,...,ik∈I
kxi1kkxi1 +· · ·+xikk
and so the second inequality in (6) is also proved.
Finally, we prove the first inequality in (6). Since kxi1 +· · ·+xikk=k −(xi1 +· · ·+xik)k
=kx±(xi1 +· · ·+xik)−xk
≥kx±(xi1 +· · ·+xik)k − kxk,
then
kxi1 +· · ·+xikk2 ≥(kx±(xi1 +· · ·+xik)k − kxk)(xi1 +· · ·+xik)
=kx±(xi1 +· · ·+xik)k(xi1 +· · ·+xik)− kxk(xi1 +· · ·+xik). Summing over i1, . . . , ik in the index set I, we use (5) to obtain
X
i1,...,ik∈I
kxi1 +· · ·+xikk2
≥ X
i1,...,ik∈I
kx±(xi1 +· · ·+xik)k(xi1 +· · ·+xik)− kxk(xi1 +· · ·+xik)
≥k X
i1,...,ik∈I
kx±(xi1 +· · ·+xik)kxi1 −knk−1kxkX
i∈I
xi
=k X
i1,...,ik∈I
kx±(xi1 +· · ·+xik)kxi1 −nk−1)kxkx
and thus the theorem is proved.
Corollary 2.4. With the above assumptions, if P
i∈Ixi = 0, then
(7)
k X
i1,...,ik∈I
kxi1 +· · ·+xikkxi1
≤ X
i1,...,ik∈I
kxi1 +· · ·+xikk2
≤ 12 X
i1,...,ik∈I
kxi1 +· · ·+xikk2+k X
i1,...,ik∈I
kxi1k kxi1 +· · ·+xikk
≤ 12X
i∈I
kxi1k X
i1,...,ik∈I
kxi1 +· · ·+xikk.
III. Applications to Complex Numbers
6 S. S. DRAGOMIR, J. J. KOLIHA AND Y. J. CHO
The inequalities obtained in Section II can be restated to obtain new inequal- ities for complex numbers:
1. Let zi ∈C, i∈I (I is finite) and let z =P
i∈Izi. Then
|z|z −X
i∈I
|z ±zi|zi≤X
i∈I
|zi|2 ≤ 12
|z|+X
i∈I
|zi| X
i∈I
|zi|.
In particular, if z = 0, then X
i∈I
|zi|2 ≤ 12 X
i∈I
|zi|2
.
2. With the above assumptions, we have k X
i1,...,ik∈I
|z±(zi1 +· · ·+zik)|zi1 −nk−1|z|z
≤ X
i1,...,ik∈I
(zi1 +· · ·+zik)2
≤ 12 X
i1,...,ik∈I
|zi1 +· · ·+xik|2+k X
i1,...,ik∈I
|zi1| |zi1 +· · ·+zik|
≤ 21
|z|+X
i∈I
|zi| X
i1,...,ik∈I
|zi1 +· · ·+zik|,
where k ∈N, k ≥1 and card(I) =n.
In particular, ifz = 0, we have k X
i1,...,ik∈I
|zi1 +· · ·+zik|zi1≤ X
i1,...,ik∈I
|zi1 +· · ·+zik|2
≤ 12 X
i1,...,ik∈I
|zi1 +· · ·+xik|2 +k X
i1,...,ik∈I
|zi1(zi1 +· · ·+zik)|
≤ 12X
i∈I
|zi| X
i1,...,ik∈I
|zi1 +· · ·+zik|.
References
1. S. S. Dragomir,Some refinements of Ky Fan’s inequality, J. Math. Anal. Appl.163(1992), 317–321.
2. S. S. Dragomir,On some refinements of Jensen’s inequality and applications, Utilitas Math.
43(1993), 235–243.
3. J. E. Pecaric and S. S. Dragomir, A refinement of Jensen’s inequality and applications, Studia Univ. Babes-Bolyai Math. 34(1989), 15–19.
School of Communications and Informatics, Victoria University of Technol- ogy, Melbourne, VIC 8001, Australia
Department of Mathematics and Statistics, University of Melbourne, VIC 3010 Australia
Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea