• Tidak ada hasil yang ditemukan

On Inequalities in Normed Linear Spaces and Applications

N/A
N/A
Protected

Academic year: 2024

Membagikan "On Inequalities in Normed Linear Spaces and Applications"

Copied!
8
0
0

Teks penuh

(1)

On Inequalities in Normed Linear Spaces and Applications

This is the Published version of the following publication

Dragomir, Sever S, Koliha, Jerry J and Cho, Yeol Je (2000) On Inequalities in Normed Linear Spaces and Applications. RGMIA research report collection, 3 (1).

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17290/

(2)

LINEAR SPACES AND APPLICATIONS

S. S. Dragomir, J. J. Koliha and Y. J. Cho

Abstract. In this paper we obtain inequalities involving the norms of finite se- quences of vectors in normed linear spaces, which are new even for complex num- bers.

I. Introduction

Let (X,k · k) be a normed linear space. The following inequality is well known in the literature as the polygonal inequality, which is a generalization of the triangle inequality:

(P) X

i∈I

xi



X

i∈I

kxik;

I is a finite set of indices and xi (i ∈I) are vectors in X.

In papers [1–3], authors explored relations between the following refinements and generalizations of (P):

Theorem A. Let (X,k · k) be a normed linear space and I be a finite set of indices,xi∈X, i∈I and p∈R, p≥1. Then we have the following inequalities:

(1)



X

i∈I

xi



p [card(I)]p−k−1 X

i1,...,ik+1∈I





xi1 +· · ·+xik+1

k+ 1





p

[card(I)]p−k X

i1,...,ik∈I





xi1 +· · ·+xik k





p

≤ · · ·

[card(I)]p−2 X

i1,i2∈I



xi1 +xi2 2





p

[card(I)]p−1X

i∈I

kxikp,

Typeset byAMS-TEX 1

(3)

2 S. S. DRAGOMIR, J. J. KOLIHA AND Y. J. CHO

where k ∈N, k 1.

The following result is a refinement of (P) for weighted mean:

Theorem B. With the above assumptions, if gj (j = 1,2,3, . . . , k) are nonneg- ative weights such that Pk

j=1gj >0, then we have the following inequality:

(2)



X

i∈I

xip [card(I)]p−k X

i1,...,ik∈I



xi1+· · ·+xik k





p

[card(I)]p−k X

i1,...,ik∈I



g1xi1 +· · ·+gkxik

g1+· · ·+gk





p

[card(I)]p−1X

i∈I

kxikp.

Note that both the above inequalities were obtained from more general results for convex mappings defined on convex subsets in normed linear spaces.

In this paper, using only techniques from normed linear spaces, we obtain new inequalities for the norms of finite sequences.

II. The Results

We start with the following theorem:

Theorem 2.1. Let (X,k · k) be a normed linear space, xi X with i I (I is finite) and x=P

i∈Ixi. Then we have the following inequalities:

(3) k xkx−X

i∈I

kx±xikxiX

i∈I

kxik2 12

kxk+X

i∈I

kxik‘ X

i∈I

kxik.

Proof. For a fixed i∈I, we have kxik=x− X

j∈I,j6=i

xj≤ kxk+ X

j∈I,j6=i

xj

≤ kxk+ X

j∈I,j6=i

kxjk=kxk+X

j∈I

kxjk − kxik,

which implies that, for all i ∈I, kxik ≤ 12

kxk+X

j∈I

kxjk‘ .

(4)

Multiplying by kxik ≥0 and summing over i∈I, we deduce X

i∈I

kxik2 12

kxk+X

j∈I

kxjk‘ X

i∈I

kxik,

and so the second inequality in (1) is proved. Also, for a fixed i∈I, we have kxik=k −xik=kx±xi−xk ≥ŒŒŒkx±xik − kxkŒŒŒ.

Multiplying by kxik ≥0, we have

kxik2 ŒŒŒkx±xik − kxkŒŒŒkxik=(kx±xik − kxk)xi for all i∈I. Summing over i∈I, we have

X

i∈I

kxik2 X

i∈I



kx±xikxi− kxkxi



X

i∈I

kx±xikxi− kxkxi



,

and so the theorem is proved.

Corollary 2.2. With the above assumptions, if P

i∈Ixi = 0, then

(4) X

i∈I

kxik2 12 X

i∈I

kxik‘2

.

The following result generalizes Theorem 2.1. In its proof we need the formula

(5) X

i1,...,ik∈I

(xi1 +· · ·+xik) =k[card(I)]k−1X

i∈I

xi,

which can be proved by induction on k.

Theorem 2.3. With the above assumptions, we have the following inequalities:

(6)

k X

i1,...,ik∈I

kx±(xi1 +· · ·+xik)kxi1 −nk−1kxkx

X

i1,...,ik∈I

kxi1+· · ·+xikk2

12 X

i1,...,ik∈I

kxi1 +· · ·+xikk2+k X

i1,...,ik∈I

kxi1k kxi1 +· · ·+xikk‘

12

kxk+X

i∈I

kxik‘ X

i1,...,ik∈I

kxi1+· · ·+xikk,

(5)

4 S. S. DRAGOMIR, J. J. KOLIHA AND Y. J. CHO

where k 1 and card(I) =n.

Proof. For fixed i1, . . . , ik ∈I, we have kxi1 +· · ·+xikk=x− X

j /∈{i1,...,ik}

xj

≤ kxk+ X

j /∈{i1,...,ik}

xj

≤ kxk+ X

j /∈{i1,...,ik}

kxjk

=kxk+X

i∈I

kxik − kxi1k − · · · − kxikk,

from which it follows

kxi1 +· · ·+xikk+kxi1k+· · ·+kxikk ≤ kxk+X

i∈I

kxik.

Multiplying by kxi1 +· · ·+xikk ≥0 and summing over i1, . . . , ik in I, we have X

i1,...,ik∈I

kxi1+· · ·+xikk2+k X

i1,...,ik∈I

kxi1k kxi1 +· · ·+xikk



kxk+X

i∈I

kxik‘ X

i1,...,ik∈I

kxi1 +· · ·+xikk,

and so the third inequality in (6) follows. By the triangle inequality kxi1 +· · ·+xikk ≤ 12(kxi1 +· · ·+xikk+kxi1k+· · ·+kxikk).

Multiplying by kxi1 +· · ·+xikk and summing over i1, . . . , ik in the index set I, we derive

X

i1,...,ik∈I

kxi1 +· · ·+xikk2

12 X

i1,...,ik∈I

kxi1 +· · ·+xikk2+k X

i1,...,ik∈I

kxi1kkxi1 +· · ·+xikk‘

and so the second inequality in (6) is also proved.

(6)

Finally, we prove the first inequality in (6). Since kxi1 +· · ·+xikk=k −(xi1 +· · ·+xik)k

=kx±(xi1 +· · ·+xik)−xk

ŒŒŒkx±(xi1 +· · ·+xik)k − kxkŒŒŒ,

then

kxi1 +· · ·+xikk2 (kx±(xi1 +· · ·+xik)k − kxk)(xi1 +· · ·+xik)

=kx±(xi1 +· · ·+xik)k(xi1 +· · ·+xik)− kxk(xi1 +· · ·+xik). Summing over i1, . . . , ik in the index set I, we use (5) to obtain

X

i1,...,ik∈I

kxi1 +· · ·+xikk2

X

i1,...,ik∈I



kx±(xi1 +· · ·+xik)k(xi1 +· · ·+xik)− kxk(xi1 +· · ·+xik)

k X

i1,...,ik∈I

kx±(xi1 +· · ·+xik)kxi1 −knk−1kxkX

i∈I

xi

=k X

i1,...,ik∈I

kx±(xi1 +· · ·+xik)kxi1 −nk−1)kxkx

and thus the theorem is proved.

Corollary 2.4. With the above assumptions, if P

i∈Ixi = 0, then

(7)

k X

i1,...,ik∈I

kxi1 +· · ·+xikkxi1

X

i1,...,ik∈I

kxi1 +· · ·+xikk2

12 X

i1,...,ik∈I

kxi1 +· · ·+xikk2+k X

i1,...,ik∈I

kxi1k kxi1 +· · ·+xikk‘

12X

i∈I

kxi1k X

i1,...,ik∈I

kxi1 +· · ·+xikk.

III. Applications to Complex Numbers

(7)

6 S. S. DRAGOMIR, J. J. KOLIHA AND Y. J. CHO

The inequalities obtained in Section II can be restated to obtain new inequal- ities for complex numbers:

1. Let zi ∈C, i∈I (I is finite) and let z =P

i∈Izi. Then

ŒŒ

Œ|z|z X

i∈I

|z ±zi|ziŒŒŒX

i∈I

|zi|2 12

|z|+X

i∈I

|zi|‘ X

i∈I

|zi|.

In particular, if z = 0, then X

i∈I

|zi|2 12 X

i∈I

|zi|‘2

.

2. With the above assumptions, we have kŒŒŒ X

i1,...,ik∈I

|z±(zi1 +· · ·+zik)|zi1 −nk−1|z|zŒŒŒ

X

i1,...,ik∈I

(zi1 +· · ·+zik)2

12 X

i1,...,ik∈I

|zi1 +· · ·+xik|2+k X

i1,...,ik∈I

|zi1| |zi1 +· · ·+zik|‘

21

|z|+X

i∈I

|zi|‘ X

i1,...,ik∈I

|zi1 +· · ·+zik|,

where k ∈N, k 1 and card(I) =n.

In particular, ifz = 0, we have kŒŒŒ X

i1,...,ik∈I

|zi1 +· · ·+zik|zi1ŒŒŒ X

i1,...,ik∈I

|zi1 +· · ·+zik|2

12 X

i1,...,ik∈I

|zi1 +· · ·+xik|2 +k X

i1,...,ik∈I

|zi1(zi1 +· · ·+zik)|‘

12X

i∈I

|zi| X

i1,...,ik∈I

|zi1 +· · ·+zik|.

References

1. S. S. Dragomir,Some refinements of Ky Fan’s inequality, J. Math. Anal. Appl.163(1992), 317–321.

2. S. S. Dragomir,On some refinements of Jensen’s inequality and applications, Utilitas Math.

43(1993), 235–243.

3. J. E. Pecaric and S. S. Dragomir, A refinement of Jensen’s inequality and applications, Studia Univ. Babes-Bolyai Math. 34(1989), 15–19.

(8)

School of Communications and Informatics, Victoria University of Technol- ogy, Melbourne, VIC 8001, Australia

Department of Mathematics and Statistics, University of Melbourne, VIC 3010 Australia

Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea

Referensi

Dokumen terkait

NAKAI, Hardy-Littlewood maximal operator, singular integral operators, and the Riesz poten- tials on generalized Morrey spaces, Math. VOLBERG, Weak type estimates and

have shown that their definition of orthogonality in 2-normed spaces, when restricted to the standard case, is equivalent to the usual orthogonality (with respect to the given

In this paper we point out another inequality of Gr¨uss type and apply it in approximating the discrete Fourier transform, the Mellin transform of sequences, for polynomials with

In this paper we point out another inequality of Gr¨uss type and apply it in approximating the discrete Fourier transform, the Mellin transform of sequences, for polynomials with

A New Refinement of Jensen's Inequality in Linear Spaces with Applications This is the Published version of the following publication Dragomir, Sever S 2009 A New Refinement of

Emin and Dragomir, Sever S 2009 On the Hermite- Hadamard Inequality and Other Integral Inequalities Involving Two Functions.. Research report collection, 12

Some Inequalities in Inner Product Spaces Related to the Generalized Triangle Inequality This is the Published version of the following publication Dragomir, Sever S, Cho, Yeol Je

Introduction The Jensen inequality for convex functions plays a crucial role in the Theory of Inequalities due to the fact that other inequalities such as the generalised triangle