ContentslistsavailableatScienceDirect
NeuroImage
journalhomepage:www.elsevier.com/locate/neuroimage
Early brain morphometrics from neonatal MRI predict motor and cognitive outcomes at 2-years corrected age in very preterm infants
Alex M. Pagnozzi
a,∗, Liza van Eijk
a,b, Kerstin Pannek
a, Roslyn N. Boyd
c, Susmita Saha
a, Joanne George
c,d, Samudragupta Bora
e, DanaKai Bradford
a, Michael Fahey
f,
Michael Ditchfield
g,h, Atul Malhotra
f,i, Helen Liley
e, Paul B. Colditz
j, Stephen Rose
a, Jurgen Fripp
aaCSIRO Health and Biosecurity, The Australian e-Health Research Centre, Royal Brisbane and Women’s Hospital, Herston, Brisbane, QLD 4029, Australia
bDepartment of Psychology, James Cook University, Townsville, Queensland, Australia
cChild Health Research Centre, Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
dPhysiotherapy Department, Queensland Children’s Hospital, Children’s Health Queensland Hospital and Health Service, Brisbane, Australia
eMothers, Babies and Women’s Health Program, Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
fMonash Health Paediatric Neurology Unit and Department of Paediatrics, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
gMonash Imaging, Monash Health, Melbourne, Victoria, Australia
hDepartment of Medicine, Monash University, Melbourne, Victoria, Australia
iMonash Newborn, Monash Children’s Hospital, Melbourne, Victoria, Australia
jPerinatal Research Centre, Faculty of Medicine, The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
a r t i c le i n f o
Keywords:
Preterm birth Structural MRI Biomarkers Neurodevelopment Motor
Cognition Language Neonates
a b s t r a ct
Infantsbornverypretermfacearangeofneurodevelopmentalchallengesincognitive,language,behavioural and/ormotordomains.Earlyaccurateidentificationofthoseatriskofadverseneurodevelopmentaloutcomes, throughclinicalassessmentandMagneticResonanceImaging(MRI),enablesprognosticationofoutcomesand theinitiationoftargetedearlyinterventions.Thisstudyutilisesaprospectivecohortof181infantsborn<31 weeksgestation,whohad3TMRIsacquiredat29-35weekspostmenstrualageandacomprehensiveneurodevel- opmentalevaluationat2yearscorrectedage(CA).Cognitive,languageandmotoroutcomeswereassessedusing theBayleyScalesofInfantandToddlerDevelopment– ThirdEditionandfunctionalmotoroutcomesusingthe Neuro-sensoryMotorDevelopmentalAssessment.ByleveragingadvancedstructuralMRIpre-processingstepsto standardisethedata,andthestate-of-the-artdevelopingHumanConnectomePipeline,earlyMRIbiomarkersof neurodevelopmentaloutcomeswereidentified.UsingLeastAbsoluteShrinkageandSelectionOperator(LASSO) regression,significantassociationsbetweenbrainstructureonearlyMRIswith2-yearoutcomeswereobtained (r=0.51and0.48formotorandcognitiveoutcomesrespectively)onanindependent25%ofthedata.Addi- tionally,importantbrainbiomarkersfromearlyMRIswereidentified,includingcorticalgreymattervolumes, aswellascorticalthicknessandsulcaldepthacrosstheentirecortex.AdverseoutcomeontheBayley-IIImotor andcognitivecompositescoreswereaccuratelypredicted,withanAreaUndertheCurveof0.86forbothscores.
Theseassociationsbetween2-yearoutcomesandpatientprognosisandearlyneonatalMRImeasuresdemonstrate theutilityofimagingpriortotermequivalentageforprovidingearliercommencementoftargetedinterventions forinfantsbornpreterm.
Abbreviations:AUC,AreaUndertheCurve;CA,CorrectedAge;CP,CerebralPalsy;CPAP,ContinuousPositiveAirwayPressure;CSF,CerebrospinalFluid;CT, CorticalThickness;dHCP,DevelopingHumanConnectomeProject;ETT,EndotrachealTube;GA,GestationalAge;GI,GyrificationIndex;GM,GreyMatter;GMA, GeneralMovementsAssessment;LASSO,LeastAbsoluteShrinkageandSelectionOperator;MAE,MeanAbsoluteError;MRI,MagneticResonanceImaging;NSMDA, Neuro-SensoryMotorDevelopmentalAssessment;PMA,PostmenstrualAge;PPREMO,PredictionofPREtermMotorOutcomes;PREBO,PredictionofPretermBrain Outcomes;SA,SurfaceArea;SD,SulcalDepth;SES,SocioeconomicStatus;TEA,TermEquivalentAge;TPN,TotalParenteralNutrition;WM,WhiteMatter.
∗Correspondingauthor.
E-mailaddress:[email protected](A.M.Pagnozzi).
https://doi.org/10.1016/j.neuroimage.2022.119815.
Received6July2022;Receivedinrevisedform5December2022;Accepted13December2022 Availableonline15December2022.
1053-8119/CrownCopyright© 2022PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense
1. Introduction
Thecurrentglobalprevalenceofpretermbirthisestimatedataround 10%(Chawanpaiboonetal.,2019).Verypreterminfants(gestational age[GA]atbirth<32weeks)areatgreaterriskofcognitive,language, behaviouralandmotorproblems.Fromtheendofthesecondandbegin- ningofthethirdtrimesters,corticalneurogenesis,migrationandfolding arerapidlyoccurringupuntilTermEquivalentAge(TEA)(Duboisetal., 2008).Thisdevelopmentmaybedisruptedbythetypesofinjurythat canensuefromprematurebirth,potentiallyresultinginalteredwhite andgreymattervolumes,destructivelesionsinthewhitematter,neu- ronalandaxonalinjuryinvolvingthecerebralcortexanddeepgreymat- ter,aswellasaxonaldegeneration,hypomyelination,abnormalapop- tosisanddiminutionoflatemigratingneurons(Volpe,2009).
Brainmagneticresonanceimaging(MRI)isimprovingtheabilityto detectevidenceofbraininjury,withMRIatTEAplayinganimportant roleintheidentificationofinfantsatriskofadverseneurodevelopmen- taloutcomes(Georgeetal.,2018;van’tHooftetal.,2015).Increasingly, brainMRIistechnicallyfeasibleatearliertimepoints,suchas30-32 weekspostmenstrualage(PMA)(Counselletal.,2003;Georgeetal., 2015;Ibrahimetal.,2018)andfrom26weeksPMA(Makropoulosetal., 2018),potentially allowingan evenearlier prognostication,opening anewwindow fortherapeuticinterventionsatatimeofrapidbrain developmentwhiletheinfantis stillreceivingcare inaNeonatalIn- tensiveCare Unit(NICU).Manyverypreterm infantsaredischarged priortoTEA,soMRIbeforeTEAmaybeamorepracticaltime-point atwhichimagingbiomarkerscanbemeasuredtoassistclinicalassess- ment(Malhotra etal., 2017).Earlierimagingcan helptoensurein- fantswhoareatgreatestriskofadverseoutcomesareidentifiedand receiveappropriatesurveillanceandearlyinterventions(Morganetal., 2021).
Volumetricinformation(fromstructuralMRI)andmicrostructural information(fromdiffusionMRI)provideinsightsintobraindevelop- mentandmaturation,andinturnareassociatedwithneurodevelopmen- taloutcomesat2yearsandbeyond(Andersonetal.,2015;DeBruïne etal., 2013; Thompson etal., 2014),however this haslargely been basedon MRIacquiredatTEA.Usingthestate-of-the-art developing HumanConnectome Pipeline(dHCP) pipeline(Duboiset al., 2021), Klineetal.(2020)foundcorticalcurvatureandsurfaceareatobeasso- ciatedwithcognitiveandlanguagescoresat2years,andthevolumeof thethalamusinadditiontosurfaceareaandcorticalgyrificationtobe associatedwithmotoroutcomesat2years(Klineetal.,2020)inavery pretermcohortscannedatTEA.QualitativefindingsfromearlierMRI beforeTEAhavebeenshowntobeassociatedwithabnormalneurode- velopmentaloutcome(Milleretal.,2005).Quantitativefindingsinclud- ingtissuevolumesandcorticalmorphologyhavebeenassociatedwith motorandcognitiveoutcomesat2-3years(Moeskopsetal.,2017).As yet,quantitativebiomarkersfromEarlyMRI(29-35weeksPMA)have beenrelativelyunder-investigatedcomparedtoimagingatTEA,despite potentiallyprovidingearlierdetectionforinfantsatriskofimpairments andreducingburdenonfamiliesasimagingcanbeperformedwhilethe infantisstillintheNICU.
OurteamhaspreviouslyusedourlargeuniqueprospectivePredic- tionofPREtermMotorOutcomes(PPREMO,n=121)(Georgeetal., 2015)andPredictionofPretermBrainOutcomes(PREBO,n=150)co- hortstodemonstrateidentificationofinfantsatriskofadversemotor outcomesandCPat2yearscorrectedage(CA)usingsemi-quantitative EarlyandTEAMRImeasures(Georgeetal.,2021),basedontheexist- ingmanualscoringsystem(Kidokoroetal.,2013)modifiedforinfants bornverypreterm. Thesestudiesindicate thatthebrainchanges re- sponsibleforthese2-yearoutcomesmayalreadybepresentasearlyas 29-35weeksPMA(Earlytimepoint).Inthisstudyweaimtoinvestigate whetherheterogeneityinquantitativeneonatalbrainmeasuressuchas anatomicalvolumesandcorticalmorphometricsfrom3TMRIacquired atthisearlytimepointareassociatedwithcognitive,language,andmo- toroutcomesat2yearsCA.
2. Methods 2.1. Participants
Thisstudyanalyzeddatafromtwolongitudinalprospectivecohort studiesofverypreterminfants:thePredictionofPREtermMotorOut- comes(PPREMO)study(Georgeetal.,2015)andthePretermBrainOut- comes(PREBO)study.BoththePPREMOandPREBOcohortsrecruited infantsbornat<31weeks’gestationwithnocongenitalorchromosomal abnormalitywhoseparents/caregiverswereEnglish-speakingandlived withina200kmradiusoftherecruitinghospital.Infantswererecruited attheRoyalBrisbaneandWomen’sHospital(RBWH)andMonashChil- dren’sHospital (MCH),Mater MothersHospital (MMH)andQueens- landChildren’sHospital(QCH);PPREMObetweenFebruary2013and February2016(RBWHonly),andPREBObetweenFebruary2016and December2019(RBWH,MCH,MMH,QCH).
For PPREMO and PREBO cohorts, ethics approval was ob- tained from the Royal Brisbane and Women’s Hospital Human Re- searchEthicsCommittee(HREC/12/QRBW/245),theQueenslandChil- dren’s Hospital (HREC/15/QRCH/7), The University of Queensland (2012001060,2015000290)andMonashUniversity/MonashChildren’s Hospital(SSA/15/MonH/41).Bothcohortstudieswereregisteredwith the AustralianNew Zealand Clinical Trials Registry (PPREMO: AC- TRN12613000280707;PREBO:ACTRN12615000591550).Forbothco- horts, informed written parental/caregiverconsent was obtained for eachinfant.
2.2. Imageacquisition
Infantswerescannedat29-35weeksPMAduringnaturalsleepona 3TMRIscanner(SiemensTimTrio[PPREMO],SiemensSkyra[PREBO RBWHandQLDChildren’sHospitalforMMHinfants],Erlangen,Ger- many;PhilipsIngenia[PREBOMCH])(totaln=271)usinganMRcom- patibleincubatorwithadedicated8-channelneonatalheadcoil(Lam- mersLMT,Lübeck,Germany)[PPREMO,PREBORBWHandQCH],or paediatric 32-channelheadcoil withno incubator(Phillips, Amster- dam, Netherlands) [PREBOMonash]. Infantswere placed onan im- mobilisationpillowtominimisemovement.NoisefromtheMRIscan- nerwasattenuatedusingminimuffs(NatusMedicalInc.,SanCarlos, CA).Allinfantsweremonitoredwithpulseoximetryandelectrocardio- graphicmonitoring.Nosedationoranaesthesiawasused.ThePPREMO studyusedmulti-echoT2-weightedturbospin-echo(TSE)volumesac- quired in the axial plane with the following parameters at RBWH:
TR/TE1/TE2/TE310,580/27/122/189ms;flipangle150°,fieldofview 144 ×180mm,matrix204×256,in-planeresolution 0.7×0.7mm, slicethickness2mm,scantime5:40min.InthelaterPREBOstudyat RBWH andQCH,we acquiredthree orthogonal T2-weighted images (inaxial,coronal,andsagittalplane)toimproveimagequalityinre- lationtomotion,withthefollowingparameters:atRBWHT2HASTE TR/TE2,280/117ms;flipangle120°,fieldofview160×206mm,ma- trix252×198mm,voxelsize0.8×0.8mm,slicethickness1.8mm,scan time3:11mineach,andatMonash:T2TSETR/TE2,280/117ms;flip angle120°,fieldof view160×200mm,matrix256×256,in-plane resolution0.80×0.80mm,slicethickness1.8mm,scantime2:05min each.
2.3. Imageprocessing
2.3.1. Super-resolutionreconstruction
Toenableaccuratecorticalreconstructionandvolumetry,thethree T2HASTEorTSEimages(PREBOcohortonly)werereconstructedinto onesuper-resolution3Dimagewithresolutionmatchingthein-plane resolution(0.8mm3 isotropic[PREBORBWH, QCHandMonash]),as illustratedinFig.1.ForeachindividualHASTEimage,thebrainwas extractedusingFSL’s‘bet’tool(Smith,2002).Approximately50%of theautomaticallygeneratedbrainmasksweremanuallycorrected to
Fig.1. OriginalT2MRI(firstcolumn)foroneparticipant(age33weeksPMA)fromthePREBOstudy,illustratingthethick-sliceacquisitionsintheaxial,coronal andsagittalplanesintherespectiverows.Eachacquisitionunderwentbrainmasking(showninredinthesecondcolumn),withslicescontainingartefactremoved.
Theseslicesarereplacedinthethirdcolumn,withinterpolateddatausedtoreconstructthefinalhigh-resolutionT2MRI.
preventthemaskextendingintotheorbitalcavityandbelowthecere- bellum,requiringabout15minpermask tocorrect.Slicesimpacted bysubjectmotionweredetectedandreplacedusinganin-houseauto- matedstructuralMRIPythonworkflow.Inthisworkflow,aslicewas detectedasanoutlierifitsmeansignalintensitywaslessthan92%of themeanintensityoftheadjacenttwoslices(previousandnext).This thresholdwasdeterminedempiricallyfromasubset(20%)ofthedata.
Incaseswhereoneoftheadjacentsliceshadasubstantiallylowerin- tensity(80%oftheotheradjacentslice),themeansliceintensitywas onlycompared totheslice withthehigherintensity.Incaseswhere detectedoutliersliceswereadjacenttotwonormalslices(unimpacted bymotionartefact),theywerethenreplacedbyinterpolatedanatomy derivedasthemid-pointbetweentwoadjacentslicesusing‘ANTsun- biasedpairwiseregistration’(Yushkevichetal.,2012).Adjacentoutlier sliceswerenot correctedbythisapproachduetoalackofanorma- tiveslice comparison.Asaresult, darkslices willthenbe visible in thereconstructedoutput,andapoorerimagequalityrating.Afterslice interpolation,imagesweredenoisedin theBaby BrainToolkit(BTK) version2(Rousseauetal.,2013)usingthenon-localmeansalgorithm toimprovethequalityofsubsequentsuper-resolutionreconstruction.
Thesedenoisedimageswereusedasinputsforthesuper-resolutionre- constructionalsoperformedusingBTK.Super-resolutionreconstructed imageswerevisuallyinspectedandrated as‘good’(noor negligible artefacts),‘fair’(minorartefacts)or‘unusable’(reconstructionfailedor containedmajorartefacts)inaccordancewithpreviousrecommenda- tions(Backhausenetal.,2016).Ofthetotal271participantswithMRI, 192wereratesas‘good’(71%),67wereratedas‘fair’(25%)andspe- cificattentionwasdrawntowhetherthesubtleartefactsimpactedthe subsequentsegmentation,and12 hadsignificantartefactsprecluding furtheranalysis(4%).
2.3.2. Imagesegmentation
Reconstructedimagesthenunderwentseveralpre-processingoper- ations,includingsliceinterpolationup-samplingto0.7×0.7×1mm3 (forPPREMOonly)andN4biasfieldcorrection(Tustisonetal.,2010).
NeckslicesweremanuallyremovedforthePREBOimagescoveringa
largeportionoftheneck,usingFSL’s‘robustfov’tool.Imageswerereori- entedtoRAS(Right,Anterior,Superior)spacetoreducethefailurerate forthesubsequentsegmentationstep.Resultingimageswereprocessed withthestate-of-the-artdHCPparcellationpipeline(Makropoulosetal., 2018). The dHCP pipeline automatically performs segmentation on several cortical and subcortical areas using the DrawEM algorithm (Makropoulosetal.,2014),segmentingthebraininto87regionsusing the20ALBERTatlas(Gousiasetal.,2013, 2012).This segmentation wasfacilitatedbyalignmentoftheMRIstoanage-appropriatepreterm template(Schuhetal.,2018).ThedHCPpipelineadditionallymeasures corticalthickness(CT),sulcaldepth(SD),surfacearea(SA)andgyrifi- cationindex(GI)ofeachregionofthecerebralcortex,asdefinedbythe Gousiasneonatalatlas(Gousiasetal.,2013).AsthedHCPpipelinegen- eratesmanyvariables,particularlyforsuchasmallbrain,toreducethe riskofinflationoffalsepositive(type1)errorscorticalmeasureswere groupedintobilateralfrontal,parietal,temporalandoccipitallobes.In addition,8tissuevolumesweremeasured(CSF,corticalGM,WM,ven- tricles,cerebellum,DGM,brainstem,hippocampi/amygdala),resulting inatotalof24morphometricvariablesofinterest.Allsegmentations werevisuallycheckedfortransformationorsegmentationaccuracyer- rors,withinstancesofsubstantialerrorsinthesegmentationbeingre- moved.FourexamplesegmentationprovidedbythedHCPpipelineis illustratedinFig.2.Intheillustratedcase4,thecombinationofmild butvisiblesuper-resolutionartefactsaswellasventriculomegalyledto thesegmentationfailure.
2.4. Neurodevelopmentaloutcomes
Experiencedpaediatricphysiotherapists,blindedtoallearlierclin- icalandMRIfindings,assessedparticipantsat2years’CA.Neurode- velopmentaloutcomeswereassessedwiththeBayleyScalesofInfant andToddlerDevelopment– ThirdEdition(Bayley-III)(Bayley,2006), withthemotor, cognitiveandlanguagecompositescoresbeingused inthisstudy.TheBayley-IIIisanorm-referenced,discriminativemea- sureusedtodescribethedevelopmentalfunctioningofthechildwith goodtostrongvalidityandreliability(AlbersandGrieve,2007).Subtest
Fig.2.IllustrationoftissueparcellationperformedbythedHCPprocessing pipeline,illustratingthreesuccessfulsegmentations(agesatscan;case132 weeks+6daysPMA,case234weeks+2daysPMA,case331weeks+5 daysPMA)andonefailure(case4,ageatscan35weeks+2daysPMA).
compositescoresrangefrom40to160,withameanof100(andstan- darddeviation±15)basedonnormativeUSdata(Piñon,2010),with higherscoresindicatingbetteroutcomes.
MotoroutcomeswerealsoassessedusingthestandardizedNeuro- Sensory Motor Developmental Assessment (NSMDA) (Burns et al., 1989).TheNSMDAiscriterion-referencedandhasnonormativedata,
ratherinfantsaregivenacategoricalscoreofmotorperformancewith higherscoresindicatingincreaseddisability(totalscore6-8normal,9- 11minimaldisability,12-14milddisability,15-19moderatedisability, 20-25severedisability,>25profounddisability).TheNSMDAhasbeen foundtobeassociatedwithqualityoflife(Boswelletal.,2017),and more severemotorimpairmentinchildrenwithoutCP(Danksetal., 2012).
Infants wereassessedat theEarlytimepoint(29-35weeks PMA, concurrent withEarlyMRI)withtheGeneralMovementsAssessment (GMA)(EinspielerandPrechtl,2004)thathaspreviouslybeenshown tobepredictiveofalaterCPdiagnosis(sensitivity75-100%,specificity 40-48%)(Bosanquetetal.,2013;Darsaklisetal.,2011)andneuromo- tordeficits(Einspieleretal.,2016).Spontaneousmovementswerecat- egorisedaseitherNormal,PoorRepertoireorCrampedSynchronised during theWrithingperiodby twoadvancedGMsraters, withcases ofnon-agreementrevieweduntilconsensusreachedandadvicesought fromathirdblindedrater.Inaddition,ameasureofsocioeconomicsta- tus(SES)wasdeterminedatTEAusingacombinationoffactorsinclud- ingfamilylivingsituation,parentalrelationship,languages spokenat homeparentaleducationandworkstatus,whichwerecollectedthrough aquestionnairecompletedbyinfants’primarycaregiver(Hacketal., 1991;Robertsetal.,2008).Summingeachquestion(0norisk,1poten- tialrisk)providesatotalrawscorefrom0to12,withscoresof2and abovebeingconsideredhighsocialriskinlinewithotherresearchin thispopulation(Caesaretal.,2016;Spittleetal.,2009).
2.5. Statisticalanalyses
To examine the relationship between structural measures from MRIs takenat theEarlytimepointwith2-yearoutcomes,Least Ab- soluteShrinkageandSelectionOperator(LASSO)regressionwasused (Tibshirani,1996).Covariates wereincludedin allmodels,whichin- cludesex, gestationalage(GA) atbirth, PMA atMRI scan,SESraw score,andageatNSMDAassessment,studycohort,site,andGMA,as wellasmeasuresofclinicalcareincludingdaysoftotalparenteralnu- trition(TPN),hoursofphototherapy,daysofendotrachealtubeventila- tion,daysofcontinuouspositiveairwaypressure(CPAP)andhoursof oxygentherapy.AgeatBayley-IIIassessmentwasnotincludedinany modelasthemeasureinherentlyaccountsforthis.Giventhelargenum- berofstructuralmeasures(24regionalmeasures)relativetothenumber ofparticipants(n=181includedinfinalanalysis),modelsimplifica- tion(i.e.variablereduction)isimportanttopreventoverfittingandto identifythemostpredictivemeasures.Variablereductionisperformed implicitlyinLASSOwithapenaltyterm(alpha),withhighervaluesen- forcingsparser(fewernon-zero)modelcoefficients.Inaddition,models withonlythecovariatesincluded(i.e.noMRImeasures)werealsocon- structedtodeterminethepotentialbenefitofaddingMRIinformation.
TrainedmodelswerecomparedusingthepseudoR2,whichisequiva- lenttothemultipleR2forLASSOregressionandprovidethepercentof varianceexplainedbythemodel.
Datawassplitintotraining(75%)andtest(25%)setsthatwerecom- parableinGAatbirth,PMAatMRI,andsex.Modelsweregeneratedon thetrainingset,withtheoptimalsparsityterm(alpha)determinedus- ingmean-squareerrorand5-foldcross-validation.Thealphaofthebest performingmodelwasthenappliedtotheentiretrainingset,yieldingan optimaltrainingmodel(whichincludesonlytheretainedfeaturesfrom LASSOaswellasallcovariates).Thisoptimaltrainingmodelwasap- pliedtothetestset,withthecorrespondencebetweentheactualscores andthepredicted2-yearoutcomemeasuredwithbothPearson’srcorre- lationaswellasameanabsoluteerror(MAE).Thiswasrepeatedforeach outcome score,(Bayley-IIImotor, cognitive,language, andNSMDA), witheachusingthesametrainandtestsplits.Additionally,outcome measuresonthetestsetweredichotomisedas‘normal’or‘poorout- come’,whichforBayley-IIIwasdefinedas1standarddeviationbelow themean(scores<85)andforNSMDAwasdichotomisedtheNSMDA normal/minimal(6-11)vsmild-profound(12orabove).Fromthisthe
areaunderthecurve(AUC)wasquantifiedusingthe‘glmnet’libraryin R,whichmeasurestheoverallclassificationagreementbetweenthepre- dictedmodelandthedichotomisedoutcomeofthepredictivemodels.
3. Results 3.1. Participants
Atotalnumberof271recruitedparticipantsinthePPREMO/PREBO studieshadEarlyMRIsavailable.Ofthese,181participantswereavail- ablefortheanalysesinthisstudy,withthebreakdownofdatalossil- lustratedinFig.3.
The overalldemographics andclinical assessments of the cohort aredetailedinTable1.Thecohortincludeds(n=181)andexcluded (n=90)fromtheanalysisdidnotdiffersignificantlyonbaselinechar- acteristicsoroutcomeassessmentexceptonthesocioeconomicstatus riskrawscore,andMRimagequality,asexpectedasMRIqualitywas oneofthefactorsforbeingexcludedfromtheanalysis.Wenotethat inthistable,notall2-yearassessmentscoresfromthen=90excluded groupwereavailableforcomparison.Investigatingthecovariatesusing alogisticregressionmodelonthewholen=271cohort,SESriskscore wastheonlysignificantpredictorofparticipantsreturningfor2-year assessments(SupplementaryTable 1)withthoseathighersocialrisk beinglesslikelytoreturnforfollowup.
3.2. Predictionof2-yearfunctionaloutcomes
ForeachofthethreeBayley-IIImodelsandtheNSMDAfunctional grademodel,thepredictivefeaturesretainedfromLASSOregressionare providedinTable2.AshigherNSMDAscoresindicatemoreimpaired function,unlikeBayley-IIIcompositescoreswherehigherscoresindi- cateimprovedfunction,NSMDAscoreswereinvertedforregressionco- efficientsofallfourmodelstoindicateassociationswithbetteroutcome.
Theregressioncoefficientsforall4modelsareprovidedinTable2,how- everconfidenceintervalsarenotprovidedbypenalisedregressionsuch asLASSO.
OftheretainedMRIfeatures,corticalgreymattervolumewasre- tainedinthreemodelswithcorticalgreymattervolumebeingpositively
Fig.3. Diagramillustratingdataavailableforstatisticalanalysis,includingrea- sonsforexclusion.
associated withoutcomescores. ConverselyCSFvolumesandventri- clevolumes(presentinfourandtwomodels,respectively)werenega- tivelyassociatedwithoutcomescores.Ofthecorticalfeaturesretained byLASSO,corticalthicknessofthefrontal,occipitalandparietallobes wasacommonlyretainedfeatureinallfourmodels,withathickercor- texbeingassociatedwithincreasedassessmentscoresforallretainedCT features.Sulcaldepthofthefrontal,temporalandoccipitallobeswere alsofrequentlyretained,withlargersulcaldepthsbeingpredominantly positivelyassociatedwithBayley’sscore(in4of5retainedSDfeatures).
Table1
Baselinecharacteristicsoftheverypretermcohortwith2-yearfollow-upassessments,dividedintothose includedintheanalysis(n=181),andthoseexcluded(n=90)duetoMRIbeingofpoorquality(n=12), segmentationwasinaccurate(n=17),or2-yearassessmentswerenotavailable(n=64).Therewasn=3 excludedparticipantswhohadnoMRIor2-yearassessmentsavailable.
Included in analysis Excluded from analysis P-value N = 181 N = 90
Postmenstrual age at MRI, weeks +days, median (range) 32 +4(29 +1- 35 +2) 32 +2(30 +2- 35 +0) 0.972 Gestational age at birth, weeks +days, median (range) 28 +3(23 +1- 30 +6) 27 +3(23 +4- 30 +6) 0.599
Male, n (%) 98 (54%) 27 (30%) 0.680
SES risk score, mean (SD) 1.79 (1.67) 2.58 (1.58) < 0.001
High social risk (risk score > 2), n(%) 52 (29%) 25 (21%) 0.253 GMAs classification at Early time point
Normal (%) 70 (39%) 37 (41%) 0.885
Poor Repertoire (%) 98 (54%) 44 (49%) 0.571
Cramped Synchronised (%) 13 (7%) 9 (10%) 0.612
Bayley-III motor composite, mean (SD) 97.37 (16.33) 95.15 (17.49) 0.488 Bayley-III cognitive composite, mean (SD) 95.51 (16.02) 94.04 (17.49) 0.499 Bayley-III language composite, mean (SD) 92.87 (17.01) 93.07 (16.02) 0.907 NSMDA functional grade, mean (SD) 8.61 (2.99) 9.05 (3.82) 0.429 MR image quality
No MRI (%) 0 (0%) 0 (0%) 1.0
Unusable (%) 0 (0%) 12 (13%) 0.001
Fair (%) 34 (19%) 33 (37%) 0.007
Good (%) 147 (81%) 45 (50%) < 0.001
Bayley-III,BayleyScalesofInfant andToddlerDevelopment3rd Edition;GMA,GeneralMovementsAs- sessment;NSMDA,Neuro-SensoryMotorDevelopmentalAssessment;SD,Standarddeviation;SES,Socio- economicstatus;TEA,TermEquivalentAge.
Table2
Theretainedmorphometricbiomarkersandcovariatesforeachofthe2-year Bayley-IIIoutcomes(motor,cognitiveandlanguagecompositescores)andNS- MDAfunctionalgrade,andtheircorrespondingregressioncoefficient.
Model 1: Bayley-III motor composite
Feature Coefficient
CSF -0.00036
Cortical grey matter 0.00001
Ventricles -0.00010
Occipital lobe CT 1.64
Frontal lobe SD 0.17818
Occipital lobe SD -0.05580
Temporal lobe SD 0.04080
GA at birth 0.16967
Sex (male reference) 0.24845
PMA at MRI -1.0701
SES risk score -2.39768
GMAs classification -0.79964
Cohort (PREBO reference) -4.31271
Site < 0.00001
Days of ETT ventilation -0.29369
Days of CPAP -0.37486
Hours of oxygen therapy -0.00358
Days of TPN 0.28418
Hours of phototherapy -0.02337
Model 2: Bayley-III cognitive composite
Feature Coefficient
CSF -0.00030
Cortical grey matter 0.00004
Frontal lobe CT 1.64
Parietal lobe CT 1.06
Frontal lobe GI 0.95901
GA at birth 0.05028
Sex (male reference) 2.83693
PMA at MRI -4.00087
SES risk score -2.94637
GMAs classification -0.41402
Cohort (PREBO reference) -11.10821
Site < 0.00001
Days of ETT ventilation 0.21381
Days of CPAP -0.09152
Hours of oxygen therapy -0.00616
Days of TPN 0.11960
Hours of phototherapy 0.06188
Model 3: Bayley-III language composite
Feature Coefficient
CSF -0.00036
Frontal lobe CT 1.96
Frontal lobe SA -0.01542
Frontal lobe SD 0.33345
Occipital lobe SD 0.24407
GA at birth 0.25547
Sex (male reference) 0.70911
PMA at MRI -1.4561
SES risk score -4.8492
GMAs classification -2.34220
Cohort (PREBO reference) 0.38724
Site < 0.00001
Days of ETT ventilation -0.09814
Days of CPAP 0.10227
Hours of oxygen therapy -0.00047
Days of TPN 0.38442
Hours of phototherapy 0.01127
Model 4: NSMDA functional grade
Feature Coefficient
CSF -0.00002
Cortical grey matter 0.00001
Ventricles -0.00017
Frontal lobe CT 0.36541
GA at birth 0.01977
Sex (male reference) 0.47920
( continued on next column )
Table2(continued)
PMA at MRI -0.60005
SES risk score 0.45359
GMAs classification -0.48023
Cohort (PREBO reference) -0.77474
Site < 0.00001
Age at NSMDA assessment -0.56597
Days of ETT ventilation -0.00128
Days of CPAP -0.02750
Hours of oxygen therapy 0.00029
Days of TPN 0.04703
Hours of phototherapy -0.00530
CPAP,ContinuousPositiveAirwayPressure;CT,CorticalThickness;ETT,En- dotrachealTube;GI,GyrificationIndex;GMA,GeneralMovementsAssessment;
PMA,PostmenstrualAge;SA,SurfaceArea;SD,SulcalDepth;GA,GestationAge;
SES,Socio-economicstatus;TPN,TotalParenteralNutrition.
Table3
Pseudor2ofthefouroptimalLASSOmodelsindicatingvarianceinclinical outcomeexplainedbyMRImeasuresandcovariates,aswellasthecovariates only.
Model Pseudo r 2with MRI Pseudo r 2no MRI M1: Bayley-III motor composite 0.757 0.465
M2: Bayley-III cognitive composite 0.546 0.431 M3: Bayley-III language composite 0.773 0.482 M4: NSMDA functional grade 0.660 0.492
Bayley-III,BayleyScalesofInfantandToddlerDevelopment3rd Edition;
LASSO,Least AbsoluteShrinkageandSelectionOperator;MRI,Magnetic ResonanceImages; NSMDA,Neuro-sensory MotorDevelopmentalAssess- ment.
Covariates weremanuallyretainedinallfourmodelsinlinewith previous studies (Kline et al., 2020). Higher socio-economic status riskscoreswerenegativelyassociatedwithalldevelopmentaloutcome scores(averagereduction-2.66perpointinSESriskrawscore),sug- gestingthatthisisoneofthebiggestdriversof2-yearoutcomes.Sim- ilarly, abnormalwrithingmovements classifiedbytheGMAsclassifi- cationwerenegativelyassociatedwithalloutcomescores(averagere- duction-1.01perGMAsriskcategory).HigherGAatbirthwasassoci- atedwithbetteroutcomes(scoreincrease0.12perweek),whilePMA atMRIwasnegativelyassociatedwithoutcomes(scoredecrease1.78 perweek).Girlsperformedbetterthanboysinallmodels(averagein- crease1.07).BabiesinthePPREMOcohortperformedworseonaverage thatthePREBOcohortforthreeofthefour2-yearoutcomes(average Bayley-IIIcompositescorereduction-5.01),howeversiteplayedaneg- ligibleroleinallmodels(effectsize<1e-10).Measuresofcarewerepre- dominantlynegativelyassociatedwith2-yearoutcomes,includingdays ofventilation(averagereduction-0.04perday),daysofCPAP(average reduction-0.09perday),hoursofoxygentherapy(averagereduction -0.002perhour),andhoursofphototherapy(averagereduction-0.02 perhour),withtheexceptionofdaysoftotalparenteralnutritionwhich waspositivelyassociatedwith2-yearoutcomes(averageincrease0.21 perday).
3.3. MRIscoresexplainmuchofthevariancein2-yearassessments
ThemodelfitforeachoftheLASSOmodelsisprovidedbythePseudo r2inTable3.WhenthefourmodelswererunwithoutMRIcorrelates, thefactorsaccountedforlessofthevarianceinBayley-IIIandNSMDA scores,asindicatedbythePseudor2.
3.4. Modelvalidationonthetestset
ThetrainedLASSOmodelswereusedtopredictassessmentsscores fortheindependenttestdata.Pearson’srcorrelationsbetweenactual andpredictedassessmentscoresareprovidedinTable4.Moderatecor- relationswereobservedforallassessments,howeveronlythreeofthe
Fig.4. TestsetcorrelationsbetweenthebestperformingLASSOmodelandtheactualBayley-IIIassessmentscores(motorandcognitivecompositescore,toprow;
languagecompositivescore,bottomleft)andNSMDAfunctionalgrade(bottomright)usingmeasuresfromtheEarlyMRIacquiredbetween29and35weeksPMA.
Table4
CorrelationsbetweenthebestperformingmodelswithandwithoutMRImea- sures,andthetestsetassessmentscoresindependentbythemodel.Significance levelwascorrectedusingBonferronicorrection(𝛼=0.05/4models=0.0125).
Model Pearson’s r MAE AUC (Range)
M1: Bayley-III motor composite 0.508 ∗(p = 0.008) 9.25 0.864 (0.856-0.874) M2: Bayley-III cognitive composite 0.477 ∗(p = 0.011) 11.33 0.863 (0.846-0.880) M3: Bayley-III language composite 0.367 (p = 0.059) 12.77 0.677 (0.664-0.690) M4: NSMDA functional grade 0.624 ∗(p = 0.001) 1.34 0.852 (0.846-0.858)
∗p<0.00125.AUC,AreaUndertheCurve;Bayley-III,BayleyScalesofIn- fantandToddlerDevelopment3rd Edition;MAE,MeanAbsoluteError;MRI, MagneticResonanceImages;NSMDA,Neuro-sensoryMotorDevelopmentalAs- sessment.
fourmodelswerestatisticallysignificantinthetestset(p<0.0125Bon- ferronicorrected),includingtheBayley-IIImotorandcognitivecom- positescoresandNSMDAfunctionalgradewithEarlyMRIfeatures,but nottheBayley-IIIlanguagecompositescore.Thescatterplotillustrating thesetestsetcorrelationsareprovidedinFig.4.Inaddition,theAUC metricsusingthedichotomisedBayley-IIIcompositescores(<1SDbe- lowmean)andtheNSMDAfunctionalgrade(scoresabove8indicating disability)arealsoshowninTable4.
4. Discussion
Inthisstudy,wedemonstratethatmeasuresderivedfromEarlystruc- turalMRItakenbetween29-35weeksPMAareassociatedwithmotor, cognitiveandlanguageabilityattwo-yearsCAinaverypretermborn cohort.BycombiningEarlybrainmorphometricswithkeycovariatesin aLASSOpredictionmodel,estimatesof2-yearBayley-IIImotorandcog- nitivecompositescores,andNSMDAfunctionalgradewereobtained(in anindependenttestset),demonstratingthepredictiveabilityofthese earlyMRImeasures.Generaltrendsacrossthemodelsrevealedhigher GMvolumeandlowerCSFandventriclevolumestobeassociatedwith better2-yearoutcomesacrossmultiplefunctionaldomains,supporting previousstudiesthatreportedtheseearlybrainmeasuresinparticular maybeanimportantearlybiomarkersofabnormalbraindevelopment (Murphyetal.,2020).InallfourmodelswithMRImeasures,increased sulcaldepthandthickercortexacrossalllobes(frontal,parietal,occip- italandtemporal)werefrequentlyretainedamongmodelsaspredic- torsofbetteroutcome,albeitwithdifferentregionsimpactingdifferent functionaloutcomesInterestinglycerebellarvolumeswerenotretained in any model,despiteevidencein theliteraturethat theyarecorre- lated withmotorandcognitivedevelopment (Matthewsetal.,2018; Shahetal.,2006).Wesuspectthatthismaybebecausebrainvolume reductionoccursglobally,leadingtovolumesofthecorticalgreymatter
andthecerebellumtocovary,andasaresultLASSOretainsonlyoneof thesemeasuresforsparsity.Additionallythecovariateswereimportant driversof2-yearoutcomes,includingsocioeconomicstatuswhichhas beendemonstratedpreviously(Klineetal.,2020),GMAclassification whichhasbeenshowntobepredictiveofneurodevelopmentatboth2 and4yearsCA(Spittleetal.,2013),andsex,withthemalesexbeing animportantriskfactorbothforpoorneonataloutcomeaswellascog- nitionandMotoroutcomesat2-years(Peacocketal.,2012).Measures ofcarewerepredominantlyassociatedwithadverse2-yearoutcomes, whichmaybe aresultthatbabieswithmorecomplicatedbirthsdue toprematurityrequiremorecare,andalsoaremorelikelytohavead- verseneurodevelopmentaloutcomes(Kiechl-Kohlendorferetal.,2009).
Incontrast,thenumberofdaysofTPNwaspositivelyassociatedwith allfour2-yearoutcomes,supportingpreviousstudiesthatfoundgreater nutritionalintaketobepositivelyassociatedwithgrowthandneurode- velopment(Christmannetal.,2017).Infact,patientdemographicsand measuresofclinicalcarecombinedexplainedmorevariancein2-year outcomesthanwasexplainedbytoMRImeasures(Table3).Thismaybe duetocovariatesbeingretainedbyLASSOwithonlyMRImeasurespo- tentiallybeingremoved,andinfactthenumberofcovariatesexceeded thenumberofretainedMRIbiomarkersinallfourmodels.
Predictionscoresderivedfromourmodel(whichincludestheMRI biomarkersandcovariates)werecorrelatedwithactualoutcomemea- suresat2-yearfollow-up(r =0.36-0.62, Table4).This isconsistent withpreviousfindings followingup pretermcohortsimagedatTEA, with a previous study showing that cortical features (such as sur- facearea,gyrificationindex,sulcaldepthandcurvature)werecorre- latedwithbothBayley’scognitiveandlanguagescores(r=0.51-0.53, n=110),respectively(Klineetal.,2020).Wenotethatinthestudyby Klineetal.(2020),modelswerevalidatedacrossthewholedatasetusing leave-one-outcrossvalidation.Inourpresentstudymodelperformance wasestimatedonthetrainingsubsetonly(with5-foldcross-validation), andthenoptimalmodelswerevalidatedonthetestsubsetofdatacom- pletelyunseenbythemodel,which shouldprovideamore unbiased estimateofthemodelerror.Inanotherstudyof86infantsscannedat theEarlytimepoint(30-32weeksPMA),volumetricsandglobalcortical morphologywerefoundtobepredictiveofbothlowBayley-IIImotor andcognitiveoutcomesat2years(AUCof0.80and0.78respectively, n=86)(Moeskopsetal.,2017).Ourfindingsareinlinewiththis,show- ingthatbrainmorphometricsincludingregionalcorticalmorphometrics arepredictiveofmotoroutcomes(AUC=0.86)andcognitiveoutcomes (AUC=0.86).Expandingonpreviouslyreportedfindings,wealsofound associationswithlanguageability(AUC=0.67)andNSMDAfunctional grade(AUC=0.85)(Table4).WhilemeanBayley-IIIscoresforhealthy AustralianinfantsarestatisticallysignificantlyhigherthantheUSstan- dardisedmeansforallsubtests(Chintaetal.,2014),thechosen cut- off of<85was foundtoprovideanaccuratedefinitionofmoderate- severeneurodevelopmentaldelay(Johnsonetal.,2014).Thesemodels demonstratethatboththeNSMDAandBayley-IIIclinicaloutcomescan bepredictedatEarly(30-32weeksPMA)timepoints,withtheseclinical assessmentsinturnbeingstronglypredictiveoflaterimpairmentat4 yearsandbeyond(Griffithsetal.,2018).
Alimitationofthisstudyisthat,forthePPREMOstudy(n=121), weonlyusedmorphologymeasuredfromthemulti-echoT2-TSEMRIs topredict2-yearoutcomes,whichhasathickslice(2mm)toproduce afastersequence.Thissequenceisalsomoresusceptibleto“ring” arte- factswhenthere ismotionwhencomparedtoHASTEsequences, re- sulting in greater data loss due to image quality. Ideally a 3D T1- weightedsequencewouldbeadded,whichcouldprovideanadditional MRcontrasttoassistthesegmentationprovidedbythedHCPpipeline (Makropoulosetal.,2018).Inourcohorthowever,giventhelongdura- tionofthisT1-weightedscan(∼5min),manywereaffectedbymotion artefact,andweresubsequentlyremovedfromtheanalysis.Similarly, diffusionMRIwasnot includedinthepresentanalysis,whichwould probethemicrostructureofthewhitematternotdetectablebystruc- turalimaging.Severalstudieshavefoundassociationsbetweendiffu-
siontensorimaging(DTI)orotherdiffusionmodels,and2-yearBayley- IIIoutcomes(Vassaretal.,2020),includingstudiesusingthiscohort, whichfoundstrongerassociationswith1-yearBayley-IIIoutcomesover 2-yearoutcomes,andgreaterassociationsusingfixel-basedratherthan DTImetrics(Panneketal.,2020).InfutureworkweplantoincludeMRI derivedmeasuresfromimagesacquiredatEarlyandTEAtime-points,as wellastocombinemetricsofbrainstructureandmicrostructuretoseeif thereisanenhancedpredictionoflateroutcomes.Infuture,wealsoplan toreplacetheFSL‘bet’brainmaskingwithartificialneural-networkap- proaches(Isenseeetal.,2019)tominimizetheamountofmanualmask correction.AfurtherlimitationofthisstudyisthatthedHCPtissueat- lasgroupsallanatomiesbilaterally,groupsthefunctionallydistincthip- pocampusandamygdalaasonelabel,andadditionallygroupscortical measuresbylobe.Asinpreviousstudies(Moeskopsetal.,2017),this was donetominimize modelcomplexityandavoid overfittinggiven thecurrentsamplesize(n=181),howeverasaresultitignoredfunc- tionaldifferencesbetweenthehippocampusandamygdala,andstruc- tures bilaterallyingeneral.Anotherpotential limitationofthiswork wasthatthesamplemayhavebeenskewedtowardsinfantsatlower riskofadverseneurodevelopmentaloutcomes,becauseinfantswiththe highestseverityofillnessduringthe29-35weekPMAintervalwereless likelytoberecruitedforreasonsoffeasibilityandsafetyofperforming theMRI.Furthermore,forthoseparticipantswhoseadverseoutcomes wereassociatedwithsevere brainabnormality,theseMRIswerealso morelikelytofailatthedHCPsegmentation.Additionally,thePMAat MRIrangeofthiscohortatthis‘Early’timepointisquitewide(median age=32weeks,range=29-35weeks),andalthoughaccountedforin themodel,thereisaknownbiasinourcohortwhereinfantsscanned lateratthistimepointhadpooreroutcomesastheywerenotclinically stableenoughtohavetheMRIearlier.ThismayexplainwhyPMAat MRIwasfoundtobeconsistentlynegativelyassociatedwithBayley’s compositeoutcomes,andpositivelyassociatedwithNSMDAfunctional grade(Table2).OnefinallimitationwiththepredictionLASSOmod- elsisthattheytendtounderestimatehighassessmentscoresandover- estimatelowassessmentscores,makingpredictionsmuchclosertothe mean(Fig.4).WhatthismeansisthatpredictionofthenumericBayley- IIIcompositescoreisnotaccurateintermsofMAE(Table3),however clinicallythesemodelscouldaccuratelypredictthosewithadverseout- comes(<1SDfromthemean)basedontheAUC(Table3),potentially allowingearlierfollow-upandinterventionsforthoseinfants.
There isa needtolookbeyond2-yearoutcomes andseeifEarly MRI imagingcan reveal developmental outcomes at childhood age.
This is importantasintellectual, learningandbehaviouraloutcomes cannotbe fullydetermined at1-3 yearsCA.Laterfollow up beyond 3yearsis requiredtoevaluatethetrue predictiveaccuracyof Early MRI.WhiletherelationshipbetweenMRIatTEAandchildhoodout- comeshasbeendemonstratedatpreschoolage(Vanesetal.,2021)and at7years(Andersonetal.,2017;Thompsonetal.,2014) inpreterm infants, thesestudieshowever havebeenlimitedbysamplesize,MR fieldstrength,limitingimageresolutionandquality(Andersonetal., 2017;Lohetal., 2017),andonlyinvestigatedneonatalMRItakenat TEA (Anderson etal.,2015; van’tHooftet al.,2015).Integrationof diffusionMRI-basedwhitemattermeasures,includingfixel-basedmea- sures,willbeimportantinadditiontothemacromeasuresusedinthis studytoexplaintheimpactofpretermbirthonbraindevelopmentand lateroutcomes(Panneketal.,2018).Wearecurrentlyfollowingupthis cohortat6yearsaspartofthePREBO-6study(Georgeetal.,2020), whenadiagnosisofCP,ASDandschoolreadinessoutcomescanbere- liablyobtained.Thislongitudinal informationdataiskey,increasing thevalueofthePPREMO/PREBOcohortandpotentiallythepredictive potentialoftheearlyMRI.
5. Conclusions
Inthisstudyweperformstate-of-the-artstructuralimageanalysis ononeofthelargestcohortsofinfantsbornpretermwhounderwent
Early3TMRI(29-35weeksPMA).UsingLASSOregression,weiden- tifiedseveralbiomarkerspredictiveofmotor,cognitiveandlanguage functionat2-yearsofage,includingGMvolume,CSFandventricular volume,corticalthicknessandsulcaldepthacrossthecortex,andkey covariatesincludingsocio-economicstatus,EarlyGMAsclassification, sexandGAatbirth,whichhasbeenidentifiedpreviouslyasimportant factorsdrivingoutcomes.Furthermore,usingthesemodelsrevealedac- curatepredictionofoutcomesonanindependenttestset,indicatingthat Bayley-IIImotorandcognitivecompositescoresandNSMDAfunctional gradescouldbeestimatedasearlyas29weeksPMA.Accuratepredic- tionofoutcomesderivedfromearlyMRIwouldfacilitateinterventions tobeprovidedtoat-riskinfantsmuchearlierandmayassistwithmore effectiveinterventionstrategiesifdeliveredduringthisoptimalearly periodofneuroplasticity.Ultimately,wehopetousethisinformation toimproveclinicaloutcomesforinfantsbornpreterm.
Dataavailabililtystatement
The studyteam areavailable to collaborate with otherresearch teamsonreceiptofareasonablerequesttoaccessstudydata.Expres- sionsofinteresttoaccessstudydata, madeouttothecorresponding author,willbeconsideredandthengrouplevelorindividualleveldei- dentifieddatacouldbesharedasappropriate.
DataAvailability
Datawillbemadeavailableonrequest.
Creditauthorshipcontributionstatement
AlexM.Pagnozzi:Conceptualization,Methodology,Software,Val- idation,Formal analysis,Visualization, Writing– original draft.Liza vanEijk:Datacuration, Methodology,Software,Investigation,Writ- ing– review&editing.KerstinPannek:Datacuration,Methodology, Supervision,Writing– review&editing.RoslynN.Boyd:Projectad- ministration,Writing– review&editing.SusmitaSaha:Datacuration, Methodology,Software,Writing– review&editing.JoanneGeorge:
Conceptualization,Projectadministration,Fundingacquisition,Datacu- ration,Writing– review&editing.SamudraguptaBora:Projectad- ministration,Fundingacquisition,Writing– review&editing.DanaKai Bradford:Supervision, Writing – review & editing.Michael Fahey:
Datacuration, Writing– review& editing.MichaelDitchfield:Data curation, Writing– review& editing.AtulMalhotra: Datacuration, Writing– review&editing.HelenLiley:Writing– review&editing.
PaulB.Colditz:Projectadministration,Fundingacquisition,Datacu- ration,Writing– review&editing.StephenRose:Writing– review&
editing.JurgenFripp:Supervision,Projectadministration,Writing– review&editing.
Funding
ThefollowingsupporthasbeenprovidedbytheAustralianNational HealthandMedicalResearchCouncil(NHMRC):Projectgrant(PREBO NHMRC1084032)andInvestigatorFellowship(RB:NHMRC1195602) andanNHMRCClinicalCRE(NHMRC1116442CREAustralasianCP ClinicalTrialsNetwork).PPREMOwasfundedthroughgrantsfromthe CerebralPalsyAllianceResearchFoundation(IRG1413),theFinancial MarketsFoundationforChildren(2014–074),theQueenslandGovern- ment(SmartState;HealthPractitionerStimulusGrant)andtheRoyal BrisbaneandWomen’sHospital.Wewouldliketoacknowledgethefam- iliesofpreterminfantswhoparticipatedinthisstudy,themedicaland nursingstaff oftheneonatalunit,radiologyandadministrativestaff in thedepartmentofmedicalimagingandthePhysiotherapistsandPsy- chologistswhoassessed24-monthoutcomes,andJulieTrinderforher
managementoftheimaging,demographic,andclinicaldataforthisco- hort.
The study team are availableto collaborate with other research teamsonreceiptofareasonablerequesttoaccessstudydata.Expres- sions ofinteresttoaccessstudydata,madeouttothecorresponding author,willbeconsideredandthengrouplevelorindividualleveldei- dentifieddatacouldbesharedasappropriate.
Supplementarymaterials
Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.neuroimage.2022.119815. References
Albers, C.A., Grieve, A.J., 2007. Test review: Bayley, N. (2006). Bayley scales of infant and toddler development– Third Edition. San Antonio, TX: Harcourt Assessment. J.
Psychoeduc. Assess. 25, 180–190. doi: 10.1177/0734282906297199 .
Anderson, P.J., Cheong, J.L.Y., Thompson, D.K., 2015. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin. Perinatol. 39, 147–158. doi: 10.1053/J.SEMPERI.2015.01.008 .
Anderson, P.J., Treyvaud, K., Neil, J.J., Cheong, J.L.Y., Hunt, R.W., Thompson, D.K., Lee, K.J., Doyle, L.W., Inder, T.E., 2017. Associations of newborn brain magnetic resonance imaging with long-term neurodevelopmental impairments in very preterm children. J. Pediatr. 187, 58–65. doi: 10.1016/j.jpeds.2017.04.059 , e1 .
Backhausen, L.L., Herting, M.M., Buse, J., Roessner, V., Smolka, M.N., Vetter, N.C., 2016. Quality control of structural MRI images applied using FreeSurfer- a hands-on workflow to rate motion artifacts. Front. Neurosci. 10, 558.
doi: 10.3389/FNINS.2016.00558/BIBTEX .
Bayley, N., 2006. Bayley Scales of Infant and Toddler Development. PsychCorp, Pearson . Bosanquet, M., Copeland, L., Ware, R., Royd, R., 2013. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child Neurol. 55, 418–426.
doi: 10.1111/dmcn.12140 .
Boswell, L., Weck, M., Santella, M., Patrick, C., Russow, A., Deregnier, R., 2017. Neuro- sensory motor developmental assessment at 18-24 months predicts quality of life at 3-1/2 to 5 years. Dev. Med. Child Neurol. 59, 61–62. doi: 10.1111/dmcn.93_13511 . Burns, Y.R., Ensbey, R.M., Norrie, M.A., 1989. The Neuro-sensory motor developmental
assessment part 1: development and administration of the test. Aust. J. Physiother.
35, 141–149. doi: 10.1016/S0004-9514(14)60503-1 .
Caesar, R., Boyd, R.N., Colditz, P., Cioni, G., Ware, R.S., Salthouse, K., Doherty, J., Jack- son, M., Matthews, L., Hurley, T., Morosini, A., Thomas, C., Camadoo, L., Baer, E., 2016. Early prediction of typical outcome and mild developmental delay for prioriti- sation of service delivery for very preterm and very low birthweight infants: a study protocol. BMJ Open 6, e010726. doi: 10.1136/BMJOPEN-2015-010726 .
Chawanpaiboon, S., Vogel, J.P., Moller, A.B., Lumbiganon, P., Petzold, M., Hogan, D., Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M., Lewis, C., Rat- tanakanokchai, S., Teng, D.N., Thinkhamrop, J., Watananirun, K., Zhang, J., Zhou, W., Gülmezoglu, A.M., 2019. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob. Health 7, e37–e46. doi: 10.1016/S2214-109X(18)30451-0 .
Chinta, S., Walker, K., Halliday, R., Loughran-Fowlds, A., Badawi, N., 2014. A comparison of the performance of healthy Australian 3-year-olds with the standardised norms of the Bayley Scales of Infant and Toddler Development (version-III). Arch. Dis. Child.
99, 621–624. doi: 10.1136/ARCHDISCHILD-2013-304834 .
Christmann, V., Roeleveld, N., Visser, R., Janssen, A.J.W.M., Reuser, J.J.C.M., van Goudo- ever, J.B., van Heijst, A.F.J., 2017. The early postnatal nutritional intake of preterm infants affected neurodevelopmental outcomes differently in boys and girls at 24 months. Acta Paediatr. 106, 242. doi: 10.1111/APA.13669 .
Counsell, S.J., Rutherford, M.A., Cowan, F.M., Edwards, A.D., 2003. Magnetic resonance imaging of preterm brain injury. Arch. Dis. Child. Fetal Neonatal Ed. 88, F269–F274.
doi: 10.1136/fn.88.4.F269 .
Danks, M., Maideen, M.F., Burns, Y.R., O’Callaghan, M.J., Gray, P.H., Poulsen, L., Wat- ter, P., Gibbons, K., 2012. The long-term predictive validity of early motor devel- opment in “apparently normal ” ELBW survivors. Early Hum. Dev. 88, 637–641.
doi: 10.1016/J.EARLHUMDEV.2012.01.010 .
Darsaklis, V., Snider, L.M., Majnemer, A., Mazer, B., 2011. Predictive validity of Prechtl’s method on the qualitative assessment of general movements: a systematic review of the evidence. Dev. Med. Child Neurol. 53, 896–906.
doi: 10.1111/J.1469-8749.2011.04017.X .
De Bruïne, F.T., Van Wezel-Meijler, G., Leijser, L.M., Steggerda, S.J., Van Den Berg- Huysmans, A.A., Rijken, M., Van Buchem, M.A., Van Der Grond, J., 2013. Tractog- raphy of white-matter tracts in very preterm infants: a 2-year follow-up study. Dev.
Med. Child Neurol. 55, 427–433. doi: 10.1111/dmcn.12099 .
Dubois, J., Alison, M., Counsell, S.J., Hertz-Pannier, L., Hüppi, P.S., Benders, M.J.N.L., 2021. MRI of the neonatal brain: a review of methodological challenges and neurosci- entific advances. J. Magn. Reson. Imaging 53, 1318–1343. doi: 10.1002/jmri.27192 . Dubois, J., Benders, M., Borradori-Tolsa, C., Cachia, A., Lazeyras, F., Leuchter, R.H.-V., Sizonenko, S.V., Warfield, S.K., Mangin, J.F., Hüppi, P.S., 2008. Primary cortical fold- ing in the human newborn: an early marker of later functional development. Brain 131, 2028–2041. doi: 10.1093/brain/awn137 .
Einspieler, C., Bos, A.F., Libertus, M.E., Marschik, P.B., 2016. The general movement as- sessment helps us to identify preterm infants at risk for cognitive dysfunction. Front.
Psychol. 7. doi: 10.3389/FPSYG.2016.00406 .