• Tidak ada hasil yang ditemukan

PDF Kevin A. Broughan ersion:V 6th July 2007 - University of Waikato

N/A
N/A
Protected

Academic year: 2025

Membagikan "PDF Kevin A. Broughan ersion:V 6th July 2007 - University of Waikato"

Copied!
16
0
0

Teks penuh

(1)

ZetaPack: A system for the computation of zeta and L-functions with Mathematica

Kevin A. Broughan

Version: 6th July 2007

(2)
(3)

Contents

Contents 3

0.1 Preface . . . 9

0.2 Description . . . 9

0.3 Installation . . . 9

0.4 Acknowledgements . . . 10

0.5 Dedication . . . 10

1 Zeta and L-functions 11 1.1 Introduction . . . 11

1.2 Classes of zeta and L-functions . . . 12

1.2.1 The Selberg class . . . 12

1.2.2 Properties of the Selberg Class . . . 13

1.2.3 Selberg's conjectures . . . 14

1.2.4 Consequences of the Selberg denitions and conjectures . . . 15

1.2.5 Functions in the Selberg class . . . 15

1.2.6 Dokchitser L-functions . . . 15

1.2.7 Functions in the Dokchitser class . . . 16

1.3 Automorphic forms for GL(n; R) . . . 16

1.3.1 Iwasawa decomposition . . . 16

1.3.2 Algebras of dierential operators . . . 17

1.3.3 The power function . . . 17

1.3.4 Maass forms . . . 18

1.3.5 Fourier expansions . . . 18

1.3.6 Jacquet's Whittaker function . . . 19

1.3.7 Hecke operators . . . 20

1.3.8 Godement-Jacquet L-function . . . 21

1.3.9 Functional equation . . . 22

1.4 Dictionaries . . . 23

1.5 ZetaPack functions . . . 23

1.6 The L-function data type . . . 24

2 A database of elementary Dirichlet Series 27 2.1 Introduction . . . 27

2.2 Multiplicative Functions . . . 27 3

(4)

2.3 Database summary . . . 29

2.4 Operations on Dirichlet series . . . 31

2.5 Inverting a Riemann zeta related Dirichlet series . . . 32

2.6 Euler Products . . . 33

2.7 Evaluating the Riemann zeta function . . . 37

2.8 Historical notes and further reading . . . 38

3 Dirichlet L functions 39 3.1 Introduction . . . 39

3.2 Denitions . . . 39

3.3 The functional equation and Euler product . . . 40

3.4 ZetaPack functions . . . 40

3.5 Conjectures . . . 45

3.5.1 The generalized Riemann hypothesis (GRH) . . . 45

3.5.2 No Siegel zero conjecture . . . 45

3.5.3 The ratios conjecture . . . 45

3.6 Historical notes and further reading . . . 45

4 Dedekind zeta functions 47 4.1 Introduction . . . 47

4.2 Denitions . . . 47

4.3 The functional equation and Euler Product . . . 50

4.4 Computation in algebraic number elds . . . 51

4.4.1 Arithmetic operations . . . 51

4.4.2 Mathematica functions for algebraic numbers: . . . 51

4.4.3 ZetaPack functions . . . 51

4.4.4 Number Field Parameters . . . 52

4.4.5 Class numbers . . . 52

4.4.6 Prime decomposition . . . 55

4.5 The Dedekind L function type . . . 56

4.6 Deriving the Dirichlet coecients . . . 57

4.7 Conjectures . . . 58

4.7.1 Class number one conjecture . . . 58

4.7.2 Regulator conjecture . . . 58

4.7.3 Siegel zero . . . 58

4.8 Historical notes and further reading . . . 58

5 Epstein zeta functions 59 5.1 Introduction . . . 59

5.2 Denitions . . . 59

5.3 Functional equation . . . 59

5.4 ZetaPack functions . . . 60

5.5 Arithmetic Applications . . . 61

5.6 Failure of the Riemann hypothesis for Epstein zeta functions . . . 62

5.7 Conjectures . . . 62

5.8 Historical notes and further reading . . . 62

(5)

CONTENTS 5

6 Hasse-Weil zeta functions 63

6.1 Introduction . . . 63

6.2 Denitions . . . 63

6.3 The functional equation and Euler Product . . . 63

6.4 Functions for elliptic curves . . . 64

6.4.1 Mathematica functions . . . 64

6.4.2 ZetaPack functions . . . 64

6.5 Conjectures . . . 70

6.5.1 The Birch and Swinnerton-Dyer conjectures . . . 70

6.5.2 The Riemann hypothesis . . . 70

6.5.3 The Sato-Tate conjecture . . . 71

6.6 Historical notes and further reading . . . 71

7 Zeta functions for ane and projective hypersurfaces 73 7.1 Introduction . . . 73

7.2 Denitions . . . 73

7.3 Functional equation and Euler product . . . 73

7.4 Computation of the rational function representation . . . 74

7.5 Verication of the Riemann hypothesis . . . 74

7.6 Conjectures . . . 74

7.7 Historical notes and further reading . . . 74

8 Modular forms for SL(2,Z) 75 8.1 Introduction . . . 75

8.2 Denitions . . . 75

8.2.1 Holomorphic modular forms . . . 75

8.2.2 Vector spaces of modular forms . . . 75

8.2.3 Non-holomorphic modular forms . . . 76

8.2.4 Hecke Theory . . . 76

8.3 The functional equation and Euler product . . . 76

8.4 Computing with modular forms . . . 76

8.4.1 Mathematica functions . . . 76

8.4.2 ZetaPack functions . . . 77

8.5 Conjectures . . . 83

8.5.1 Lenstra's conjecture . . . 83

8.5.2 The Riemann Hypothesis . . . 83

8.6 Historical notes and further reading . . . 83

9 Ihara-Selberg zeta functions 85 9.1 Introduction . . . 85

9.2 Denitions . . . 85

9.3 The functional equation and Euler product . . . 86

9.4 Functions for computing with graphs . . . 86

9.4.1 Mathematica functions: . . . 86

9.4.2 ZetaPack functions . . . 86

9.5 Conjectures for Ihara zeta functions . . . 87

9.6 Historical notes and further reading . . . 87

(6)

10 Artin L functions 89

10.1 Introduction . . . 89

10.2 Denitions . . . 89

10.3 Euler product and functional equation . . . 92

10.3.1 Finite primes . . . 93

10.3.2 Innite primes . . . 93

10.3.3 Functional equation . . . 93

10.4 Properties of the Artin L-function . . . 94

10.5 Examples . . . 94

10.5.1 Quadratic and multi-quadratic eld examples . . . 94

10.5.2 Lenstra's abelian example . . . 94

10.5.3 Sneyder/Heillbron's example: x3 n . . . 95

10.5.4 Artin's example: the icosahedral eld . . . 95

10.6 ZetaPack functions . . . 95

10.7 Conjectures . . . 101

10.7.1 Artin's conjecture . . . 101

10.7.2 Dedekind's conjecture . . . 102

10.7.3 Langland's conjectures . . . 102

10.8 Historical notes and further reading . . . 102

11 Group zeta functions 103 11.1 Introduction . . . 103

11.2 Denitions . . . 103

11.3 The Dirichlet series and Euler products . . . 105

11.4 Examples . . . 106

11.4.1 Finite groups . . . 106

11.4.2 Finitely generated free groups . . . 106

11.4.3 Finitely generated free abelian group . . . 106

11.4.4 Discrete Heisenberg group . . . 106

11.4.5 Heisenberg Lie ring . . . 107

11.4.6 Free class-two nilpotent group on three generators . . . 107

11.4.7 Crystallographic (wallpaper) groups . . . 107

11.4.8 The group sl2(Z) . . . 108

11.4.9 Elliptic curve counter example . . . 108

11.5 ZetaPack functions . . . 109

11.6 Conjectures and problems . . . 113

11.6.1 Uniformity conjecture . . . 113

11.6.2 Functional equation problem . . . 113

11.6.3 Lie Ring problem . . . 113

11.7 Historical notes and further reading . . . 113

12 Phase portraits of L function ows 115 12.1 Introduction . . . 115

12.2 Denitions . . . 115

12.3 Topological properties . . . 117

12.4 Phase portraits for the zeta ow . . . 119

(7)

CONTENTS 7

12.5 Phase Portraits for the xi ow . . . 121

12.6 ZetaPack functions . . . 124

12.7 Examples . . . 126

12.7.1 Riemann zeta and xi functions . . . 126

12.7.2 Real primitive Dirichlet L function . . . 126

12.7.3 Complex primitive Dirichlet L function . . . 126

12.7.4 Dedekind zeta function . . . 126

12.7.5 Ihara zeta function . . . 126

12.7.6 Artin L function . . . 126

12.7.7 Epstein zeta function . . . 126

13 Connections between classes 127 13.1 Basic zeta functions which have functional equations . . . 127

13.2 Abelian Dedekind zeta functions and Dirichlet L functions . . . 127

13.3 Dedekind zeta functions and Epstein zeta functions . . . 128

13.4 Dedekind zeta functions and Artin L functions . . . 129

13.5 Artin L functions and Epstein zeta functions . . . 129

13.6 Relative and non-relative Artin L-functions . . . 130

13.7 Modular forms and elliptic curves . . . 130

13.8 A Group zeta function and Dedekind zeta function . . . 131

14 Numerical Evaluation and Zero analysis 133 14.1 Introduction . . . 133

14.2 Denitions for the Riemann Zeta function . . . 133

14.3 Evaluation of L-functions . . . 135

14.4 Finding zeros on the critical line . . . 136

14.5 Gram points . . . 137

14.6 Zero enumeration in the critical strip . . . 138

14.7 Pair correlation and nearest neighbour statistics . . . 139

14.8 Lehmer's phenomenon . . . 141

14.9 Verifying the RH, GRH and GGRH . . . 141

15 Epilogue 143 15.1 Other zeta and L-functions . . . 144

15.1.1 Hecke L-functions . . . 144

15.1.2 Maass wave forms . . . 144

15.1.3 Zeta functions of arithmetic schemes . . . 144

15.1.4 Shantani zeta functions . . . 144

15.1.5 Zeta functions of geometric origin . . . 144

15.1.6 Dynamical zeta functions . . . 144

15.2 Other software and information sources for zeta and L functions . . . 144

15.2.1 GAP . . . 144

15.2.2 Magma . . . 144

15.2.3 Maple . . . 144

15.2.4 Pari . . . 144

15.2.5 Sage . . . 144

15.2.6 Web sites . . . 144

(8)

Bibliography 145

Index 149

(9)

Bibliography

[1] Apostol, T. M. Introduction to Analytic Number Theory, Springer, Second Ed. 1990.

[2] Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory, Springer, 1976.

[3] H. Benzinger, Plane automomous systems with rational vector elds, Trans. Amer. Math. Soc.

326, (1991), 465{484.

[4] Bochner, S. On Riemann's functional equation with multiple gamma factors, Annals of Math.

67 (1958), 29-41.

[5] R. P. Brent, On the zeros of the Riemann zeta function in the critical strip, Math. Comp. 33 (1979), 1361-1372.

[6] Breuil, C.,Conrad, B., Diamond, F. and Taylor, R. On the modularity of elliptic curves over Q: wild 3-adic exercises, Amer. J. Math. (), - .

[7] Broughan, K. A. Holomorphic ows on simply connected domains have no limit cycles, Mec- canica, 38 (2003), 699-709.

[8] Broughan, K. A. and Barnett, A. R. D. Holomorphic ow of the Riemann zeta function, Math.

of Comp. 73 (2004), 987-1004.

[9] Broughan, K. A. Structure of sectors of zeros of entire ows, Topology Proceedings 27 (2002), 1-16.

[10] Broughan, K. A. Holomorphic ow of Riemann's function (s), Nonlinearity, xxxx

[11] Broughan, K. A. Web site for phase portraits of the zeros of (z) and (s):

http://www.math.waikato.ac.nz/kab.

[12] Broughan, K.A. and Barnett, A. R. Gram lines and the average of the real part of the Riemann zeta function, (preprint).

[13] Cassels, J. W. S. and Frohlich,A. Algebraic Number Theory, Academic Press, 1967.

[14] Cohen, H. A Course in Computational Algebraic Number Theory, Springer, 2000.

[15] Conrad, B., Diamond, F. and Taylor, R. Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Doc. 12, (1999), 521-567.

145

(10)

[16] Conrey, J. B. More than two fths of the zeros of the Riemann zeta function are on the critical line, J. reine angew. Math. 399 (1989), 1-26.

[17] Conrey, J.B. On the Selberg class of Dirichlet series: small degrees, Duke Math. J. 72, 673-693.

[18] Dedekind, R. Uber die Anzahl der Idealklassen in reinen kubischen Zahlkorern, J. Reine Angew.

Math. 121 (1900), 40-123.

[19] Davenport, H. Multiplicative Number Theory, Springer, 2000.

[20] Deitmar, A. A panorama of zeta functions, arXiv:math.NT/0210060, 2003.

[21] Deligne, P. La conjecture de Weil I, Publ. Math. IHES 43 (1974), 273-307.

[22] Denef, J. and Loeser, F. Motivic Igusa zeta functions, J. of Algebraic Geom. xxxx [23] Diamond, F. and Shurman, J. A rst course in modular forms, Springer, 2005.

[24] Diamond, F. Rational points on modular elliptic curves, CBMS No. 101, American Mathemat- ical Society, 2004.

[25] Dokchitser, T. Computing special values of motivic L-functions, Experimental Math. xxxx [26] du Sautoy, M.P.F. and Woodward, L. Zeta Functions of Groups and Rings, Springer, 20067.

[27] du Sautoy, M. P. F.Zeta functions of groups: Euler products and soluble groups, Proc. Edin- burgh Math. Soc. 45 (2002), 149-154.

[28] du Sautoy, M. P. F. Zeta functions of groups and rings: uniformity, Israel J. Math. 86 (1994), 1-23.

[29] Edwards, H. M. Riemann's Zeta Function, Dover, 1974, 2001.

[30] someone ed Enclyclopedic dictionary of mathematics, Elciever, xxxx.

[31] Goldfeld, D. Automorphic forms and L-functions for the group GL(n,R) with an appendix The GL(n)pack manual by K. A. Broughan, CUP, 2006.

[32] Gourdon, X. The 1013 rst zeros of the Riemann zeta function, and the zeros computation at very large height,(preprint) (2004).

[33] Hardy, G. H. Sur les Zeros de la fonction (s) de Riemann, C. R. Acad. Sci. Paris 158(1914) 1012-1014.

[34] Hardy, G. H. and Littlewood J. E. The zeros of Riemann's zeta function on the real line, Math.

Z. 10 (1921), 283-317.

[35] Heath-Brown, D. R. Simple zeros of the Riemann zeta function on the critical line, Bull.

London Math. Soc 11 (1979), 17-18.

[36] Hida, H. Elementary theory of L-functions and Eisenstein series, LMS, 1993.

[37] Iwaniec, H and Kowalski, E Analytic Number Theory, AMS, 2004.

[38] Iyanaga, S and Kawada, Y. Eds Encyclopedic Dictionary of Mathematics, M.I.T. Press 1977.

[39] Knapp, A. W. Elliptic Curves, Princeton, 1992.

(11)

BIBLIOGRAPHY 147 [40] Knopfmacher, J. Abstract Analytic Number Theory, North-Holland/Elsevier, 1975.

[41] Kowalski, E. Elemenentary theory of L-functions I, II in An introduction to the Langlands program, Edited by J. Bernstein and S.Gelbart, Birkhauser, 1-71.

[42] Lagarias, J.C. and Odlyzko, A.M. On Computing Artin L-functions in the Critical Strip, Math.

Comp. bf 33 (1979), 1081-1095.

[43] Lam, H. Y. q-series in Number Theory and Combinatorics, Thesis, Massey University, 2006.

[44] Lanlands, R. P. L-functions and automorphic representations, Proceedings of the International Congress of Mathematicians, Helsinki, 1978.

[45] Levinson, N. More than one third of the zeros of the Riemann zeta function are on = 12 Adv.

in Math. 13 (1974), 383-436.

[46] Lloyd, N. G. On the number of periodic solutions of the equation _z = zN+ p1(t)zN 1+ + pN(t), Proc. Lond. Math. Soc (3) 27 (1973), 667-700.

[47] Lubotzky, A and Segal, D. Subgroup Growth, Birkhauser, 2003.

[48] Marcus, D. A. Number Fields, Springer-Verlag, 1977.

[49] Marcus, L. Global structure of ordinary dierential equations in the plane, Trans. A.M.S 76 (1954) pp. 127{148.

[50] Montgomery, H. L. The Pair correlation of zeros of the zeta function. p181-193 Analytic Number Theory, Proceedings of the Symposia in Pure Mathematics 24, (1973).

[51] Moreno, C. J. Advanced Analytic Number Theory: L-functions, AMS, 2005.

[52] Murty, K. On the Sato-Tate conjecture, in Number Theory related to Fermat's last theorem, (ed. N. Koblitz), Birkhauser-Verlag, 1982, 195-205.

[53] Murty, M.R. and Murty, V.K. Non-vanishing of L-functions and Applications, Birkhauser, 1997.

[54] Murty, M. R. Selberg conjectures and Artin L-functions, Bull. Amer. Math. Soc. (N.S.) 31, (1994) 1-14.

[55] Murty, M. R. Selberg conjectures and Artin L-functions, II, (to appear).

[56] Murty, M.R. A motivated introduction to the Langlands program, Advances in Number Theory (eds. F. Gouvea and N. Yui), 37-66, Clarendon Press, Oxford, 1993.

[57] Odlyzko, A.M. On the distribution of spacings between zeros of the zeta function, Math. Comp.

48, (1987), 273-308.

[58] Ramakrishnan, D. and Wang, S, On the exceptional zeros of Rankin-Selberg L-functions, Com- positio Math. 135 (2), 211-244.

[59] Rubinstein, M. Computational methods and experiments in analytic number theory, in Recent perspectives in random matrix theory and number theory, 425-506, Lond. Math. Soc. Lecture Notes Series, 322, Cambridge University Press,2005.

(12)

[60] Selberg, A. On the zeros of Riemann's zeta-function, Skr. Norske vid.-Acad. Oslo, No. 10, (1942).

[61] Selberg, A. Old and new conjectures and results about a class of Dirichlet series, Collected Papers, (Vol II), Springer-Verlag, 47-63.

[62] Serre, J.-P. Abelian l-adic representations of elliptic curves, McGill University lecture notes (written in collaboration with W. Kuyk and J. Labute), W. A. Benjamin Inc, 1968.

[63] Shalika, J.A. The multiplicity one theorem for GL(n), Ann. Math. 100, (1974), 171-193.

[64] Speiser, A. Geometrisches zur Riemannschen Zetafunktion, Math. Annalen 110 (1934), 514- 521.

[65] Silverman, J. H. and Tate, J. Rational points on Elliptic Curves, Springer, 1992.

[66] Swinnerton-Dyer, H.P.F. A brief guide to algebraic number theory, Cambridge, 2001.

[67] Taylor, R. and Wiles, A. Ring theoretic properties of certain Hecke algebras, Ann. of Math.

141 (1995), 553-572.

[68] Terras, A. Harmonic Analysis on Symmetric Spaces and Applications I, Springer-Verlag, 1985.

[69] E.C. Titchmarsh and D.R. Heath-Brown, The theory of the Riemann zeta-function, Oxford, Second Edition, 1986.

[70] Vigneras, M.-F. Facteurs gamma et equations fonctionnelles, Springer-Verlag, LNM 627, 1977, 79-103.

[71] Waldschmidt, M., Moussa, P., Luck, J.-M. and Itzykson, C. (Eds) From Number Theory to Physics, Springer-Verlag, 1995.

[72] Wiles, A. Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443- 551.

(13)

Index

GL(n; R), 16 T-group, 104 AnalyticRank, 67 abelian extension, 90 abelian group character, 39 AbelianPolynomialSplitPrimes, 95 AlgebraicToPolynomial, 51 an irreducible representation, 90 ApplyBlowupSubstitution, 112 Arithmetic schemes, 144 Artin character, 91 Artin conductor, 92 Artin root number, 92 ArtinLSeries, 99 ArtinRootNumber, 99 Automorphic forms, 16 autonomous, 115 Backlund's method, 135 bad Gram point, 133 BadGramPointQ, 137 band, 123

band number, 123 basin of attraction, 116 basin of repulsion, 116 BlowupPadicIntegral, 111 Casimir operator, 17 center, 116

character conductor, 39

character of a representation, 90 character sum, 90

character table, 90 CharacterConductor, 44

CharacterTimes, 42 CharacterValue, 41 class number of a eld, 50 classes, 12

commensurator, 20 cone conditions, 105 ConeConditions, 110

CongruenceCosetRepresentatives, 81 CongruenceCusps, 81

CongruenceFundamentalDomain, 82 ConjugacyClasses, 96

critical line, 133 critical point, 115 critical strip, 133 CubicToWeierstrass, 65 CyclotomicExpansion, 36 CyclotomicProduct, 34 CyclotomicProductQ, 34 DataPolygon, 125 decomposition group, 91 DecompositionGroup, 97 DedekindProduct, 100 degree of an extension, 48 Dictionaries, 23

dimension of a group, 104 Dirichlet character, 39 DirichletCharacters, 41

DirichletCoecients, 44, 57, 61, 69, 80, 109 DirichletCoecients[Artin,..], 100

DirichletInverse, 32 DirichletProduct, 32 DirichletToZetas, 33 discriminant of a eld, 48 discriminant of a polynomial, 47 discriminant of an element, 47 149

(14)

discriminant of an ideal, 48 discriminant of n elements, 47

DisplayFunctionalEquation, 41, 57, 60, 70, 83 dynamical zeta functions, 144

EichlerSelbergTrace, 82 EisensteinG, 77

EllipticDiscriminant, 64 EllipticMinus, 69 EllipticPeriods, 65 EllipticPlus, 68 EllipticTimes, 68

Encyclopedic properties, 12 equlibrium point, 115 EulerMcLaren, 37 EulerMclaren, 136 EulerPolynomialQ, 33 ExpandDataInterval, 124 FactorModularMatrix, 82 eld polynomial, 48 FieldPolynomial, 51

FindBlowupSubstitutions, 112 FindFirstGramBlock, 137

FindFundamentalDiscriminants, 43 FindZeros, 136

focus, 116

Fourier expansion of a Maass form, 18 FriendlyGhostQ, 36

FrobeneousReciprocity, 99 Frobenius automorphism, 91 FrobeniusAutomorphism, 98 fundamental discriminant, 50 fundamental units, 50

FundamentalDiscriminantQ, 42 FundamentalQuadraticUnit, 54 Galois extension, 89

Galois group of a polynomial, 90 Galois group of an extension, 90 GaloisGroup, 96

GAP, 144

GeneralWeierstrassToWeierstrass, 65 geometric zeta functions, 144 GetAlphaBeta, 34

GetIntegerPoints, 66 GetTorsionPoints, 66

GetValue, 23

GhostPolynomial, 35 global Artin conductor, 92 Godement-Jacquet L-function, 21 GonekTheta, 139

good Gram point, 133 GoodGramPointQ, 137 Gram block, 134 Gram point, 133 Gram's law, 134 GramPoints, 137

GramsLawExceptions, 138 group of units, 49

group representation, 90 GUE hypothesis, 135 Hecke L-functions, 144 Hecke operator, 20

HeckeMinimalPolynomial, 79 HeckeOperatorMatrix, 79 holomorphic ow, 115 ideal class group, 50 IdealClassGroup, 53 IdealClassNumber, 53 IharaRegular, 86 IharaZeta, 86

ImaginaryQuadraticClassNumber, 54 index of a generator, 49

index of a number eld, 49 induced character, 91 induced modulus, 39 InducedModulusQ, 43 inertia group, 91 InertiaGroup, 97 inertial degree, 49 InertialDegrees, 55

inessential discriminant divisor, 49 innite prime, 92

InitializeLcalcGlobals, 135 Installation, 9

IntegerPositiveDeniteQ, 60 Jacquet's Whittaker function, 19 LehmerZeros, 141

length of a Gram block, 134

(15)

INDEX 151 LenstraEigenvector, 80

LfunctionQ, 24 limit cycle, 116

local Artin conductor, 92 local zeta function, 105 LocalArtinConductors, 99 LocalFactorFinite, 98 LocalFactorInnite, 98 LRootNumber, 44 LValue, 136

Maass wave forms, 144 Magma, 144

MakeEntry, 23, 109, 110 MakeL, 24, 40, 57, 60, 64 Maple, 144

maximal domain of existence, 115 MeromorphicProductQ, 37 MillerModularBasis, 79

minimum index of a number eld, 49 minimum polynomial, 47

ModularDelta, 77

ModularFormsDimension, 78 ModularFormsDimensions, 81 MonogenicQ, 56

MonomialConditionsQ, 111 MonomialPadicIntegral, 112 motivic L-functions, 15 MultiplicativeQ, 31 NearestNeighbour, 140 negative separatrix, 116 NewtonPolygon, 35 nilpotent group, 103 node, 116

norm of a fractional ideal, 49 norm of an element, 48 norm of an ideal, 48 normal extension, 89

normalized zero distance, 135 NormalizedSpacings, 140 NormalizedZero, 140 NumberFieldDegree, 52 NumberFieldIndex, 53 orbit, 115

orbital neighborhood, 123

outside, 118

p-adic analytic group, 104 p-adic inertia group, 91 p-adic integral, 104 p-group, 103

p-Sylow subgroup, 103

pair correlation conjecture, 135 PairCorrelation, 139

Pari, 144 perfect eld, 89 periodic orbit, 116 phase diagram, 115 phase portrait, 115 PlotComplexFlow, 125 PlotEllipticCurve, 67 PlotIntegerPoints, 68 PlotTorsionPoints, 67 PolynomialDiscriminant, 51 PolynomialFactorPrimes, 95 positive separatrix, 116 PrimeDecomposition, 56 PrimeReport, 55

primitive character, 39 PrimitiveCharacterQ, 43 PrimitiveElement, 52 principal character, 39 PrincipalCharacterQ, 42 PrintEntry, 24

pro-p-completion, 104 pro-p-group, 104 PuiseuxExpansions, 36

QuadraticClassNumberOne, 55 quotient representation, 92 ramication index, 49 RamicationGroups, 98 RamiedPrimeData, 97 RamiedPrimes, 97 ramies, 49

rank of a pro-p-group, 104 re-entrant separatrix, 123 RealCharacterQ, 43 RealPositiveDeniteQ, 60 RealQuadraticClassNumber, 54 regular Gram block, 134

(16)

regulator, 50

RemoveRedundantConstraints, 112 residually nite group, 104

Riemann-Siegel #-function, 133 Riemann-Siegel Z-function, 133 RiemannSiegel, 37

RiemannSiegelNu, 38 RiemannSiegelNuSeries, 38 root number, 92

RootNumberConductor, 69 Rosser's rule, 134

RossersRuleException, 138 saddle point, 115

Sage, 144

Sato-Tate conjecture, 71 SC1-SC6, 14

Selberg class, 12 Selberg degree, 13 Selberg properties, 13 Selberg's conjectures, 14 separable extension, 89 separable polynomial, 89 separatrix, 116

SetValue, 23

Shintani zeta functions, 144 signature, 49

SimplePadicIntegral, 111 singular point, 115 sink, 116

soluble group, 103 solvable group, 103 source, 116

splitting eld extension, 89 stable zero, 116

StandardModularBasis, 78 StandardSquare, 125 SubeldLattice, 96 SubgroupLattice, 96 subrepresentation, 90 sum of representations, 90 trace of an element, 48 trajectory, 115

transit time, 116 Turing's method, 134

TuringVerifyRHBacklund, 141

TuringVerifyRHTuring, 141 UnitaryQ, 34

unstable zero, 116 ValidateL, 25, 40

virtually soluble group, 104 Web site for ZetaPack, 9 web sites, 144

WeierstrassToMinimal, 66 ZeroCountE, 139

ZeroCountN, 138 ZetaPack, 2

ZetasToDirichlet, 32 ZF1-ZF4, 12

Referensi

Dokumen terkait