CITR at Tamaki Campus (http://www.citr.auckland.ac.nz)
CITR-TR-78 November 2000
The Background Subtraction Problem for Video Surveillance Systems
Alan McIvor 1 , Qi Zang 2 and Reinhard Klette 2
Abstract
This paper reviews papers on tracking people in a video surveillance system, and it presents a new system designed for being able to cope with shadows in a real-time application for counting people which is one of the remaining main problems in adaptive background subtraction in such video surveillance systems.
1 Reveal Ltd., Level 1, Tudor Mall, 333 Remuera Rd, Auckland, New Zealand
2 CITR, Department of Computer Science,Tamaki Campus, University of Auckland, Private Bag 92019, Auckland, New
Zealand
AlanMcIvor a
,QiZang b
, andReinhardKlette b
a
RevealLtd.,Level1,TudorMall,333RemueraRd.
b
CITR,University ofAuckland,TamakiCampus,Building 731
Auckland,NewZealand
Abstract. This pap er reviews pap ers on tracking p eople in a video
surveillance system, and it presents a new system designed for b eing
abletocop ewithshadowsinareal-time applicationforcounting p eople
which is one of the remaining main problems in adaptive background
subtractioninsuchvideosurveillan cesystems.
Keywords:videosurveillance,backgroundsubtraction,countingp eople
1 Introduction
Video surveillance systems seek to automatically identify events of interest in
avarietyofsituations.Exampleapplicationsinclude intrusiondetection,activ-
ity monitoring,and p edestrian counting. The capability of extracting moving
objects from a video sequence is a fundamental and crucial problem of these
visionsystems.Forsystems usingstaticcameras,backgroundsubtractionisthe
metho d typicallyused to segment moving regions in the image sequences, by
comparingeachnewframetoamo delofthescene background,see,e.g.,[6,13].
1.1 Classicationof ExistingApproaches
There aremanydierent approachesto solvingtheproblemoftracking p eople
inavideo surveillance system.These can b e classied into threemain groups:
feature-based tracking, background subtraction, and optical ow techniques.
Feature based tracking can b e further divided dep ending on the scale of the
features. These various approachesare discussed b elow.Note that this classi-
cationisbasedonthemetho dsused fordetecting objects ofinterest.Theother
comp onentof asuccessful system isthe metho dologyused forsolving thecor-
resp ondence offeaturesb etween frames.Inalmostallapproaches,thisissolved
usingametho dbased onKalmanFiltertracking[1].
LargeScaleFeatureBasedTracking Inthisapproach,alargescalefeature
ofanobjectisidentiedandsubsequentlytracked.Typically,thisistheb ounding
silhouetteoftheobjectandthisistrackedwithusingasnake-typ etracker,e.g.,
[3].Inthecontextoftrackingp eople,anotherusefulfeatureistodetect facesby
SmallScaleFeatureBasedTracking Inthisapproach,featuressuchasedge
fragments or corners are identied in the imagesand these are indep endently
tracked through the image sequence. Then these features have to b e group ed
intoclustersthatcorresp ondtoindep endentmovingobjects.Forexample,in[2],
corner p ointsare tracked in aroad surveillance applicationand then group ed
togetheronthebasisthatallcornersonavehiclewillhavethesamemotion,and
thatthismotionwillb esignicantlydierentfromthatofothervehiclesoverthe
scene,evenwhentravellinginthesamehighwaylane.Suchanapproachwouldb e
diÆculttotransfertoap edestriantrackingapplicationb ecausep eoplearehighly
articulatedobjects,andhenceindividualcomp onentsexhibitsignicantrelative
motion. But, moreover, given the smo other exterior of p eople, the extracted
corner p ointswillnot have stable surface generators, and they willtend to b e
viewp ointsensitive.
The signicant problem in this approach is the clustering of the tracked
primitivefeaturesintogroupsthatcorresp ondtoobjects.Onep ossibleapproach
istouseap erceptualgroupingtechnique[15].
OpticalFlowBasedTechniques Thebasisofthisapproachistoestimatethe
opticalowatallp ointsoftheimageplane.Signicantp ointsarethengroup ed
basedonprinciplesofmotioncoherence,etc.Thisapproachiscloselyrelatedto
thesmallscalefeaturebased trackingapproach.
BackgroundSubtraction Backgroundsubtractionisaregion-basedapproach
wheretheobjectiveisto identifypartsoftheimageplanethataresignicantly
dierenttothebackground,i.e.,thesceneaswouldapp eariftherewerenofore-
groundobjectsinit.Thesignicantproblemtob eaddressedinthisapproachis
thatofestimatingthebackgroundimage,esp eciallywhentheilluminationlevels
change. The metho d describ ed in this pap er falls into this category. Another
imp ortantasp ect of the background subtraction approach is the denition of
what constitutes asignicantdierence fromthebackground.Thisisathresh-
oldselection problem[19].
1.2 EvaluationCriteria
Whentheab ovemetho dsareappliedto avideosurveillanceproblem,thereare
anumb erofkeyattributesandscenariosthat mustb ehandled.Theseare:
{ Thechoice ofmo delsforkey comp onents.
{ Initializationofthemo delparameters whenthesystemisrststarted.
{ Distinguishingobjectsofinterestfromilluminationartifactssuchasshadows
andhighlights.
{ Handlinguncontrollableilluminationlevelchanges,suchaso ccurinoutdo or
scenes.
{ Adaptingto changes inthe scene, such as when anewchair is intro duced
intoarestaurant.
{ Detectingwhensomethingiswrongwiththepro cessing,andre-initialization
The rest of this pap er will concentrate on approaches based on background
subtraction.Firstly,existingmetho dswillb ereviewedwithresp ect totheab ove
criteria.Thenanewmetho dwillb edescrib ed anditsp erformanceevaluated.
2 Reviewof ExistingMethods
In abackground subtraction based approach,the eld of viewcan b e divided
intothreecomp onents:
background =thepartsofthestaticscene thatarestillvisible.
objects =thingsofinterest totheapplication,e.g.,p edestrians.
artifacts =imagechangessuch asshadowsandhighlights.
The combination of the \objects" and the \artifacts", i.e., everything that is
not \background", is often called the foreground. In most existing metho ds,
onlythebackgroundisexplicitlymo deled.Theforegroundisdividedintoobject
and artifact on the basis of various imageprop erties. However, [16] takes the
opp osite approach of explicitly mo dellingthe colordistribution of each object
usingamixtureofGaussiansandusesthistodetecttheobjects.In[18,22],b oth
thebackgroundandtheforegroundaremo delledasGaussiandistributions.
Inthis section,we discuss existing metho ds withresp ect to the choice of a
backgroundmo delandhowitismaintainedinthefaceofilluminationchanges,
how the foreground is dierentiated from the background, and what strate-
gies are used to correct classication errors. Finally,the classication of fore-
ground into objects and artifacts is discussed. The followingnotation will b e
usedthroughoutthissection:
I
t
=theincomingimageattimet.
B
t
=thebackgroundestimateattimet.
The co ordinates asso ciated withapixel arenotshown intheequations unless
necessary.
2.1 BackgroundMo dels
The simplest and most commonmo del for the background is to use a p oint
estimate of the color at each pixel lo cation, e.g., [12]. This p oint estimate is
usuallytakentob e themeanofaGaussiandistribution.Insomesystems,e.g.,
[17],thevariance oftheintensityisalsomo delled.
Tocop e with variationintheillumination,thebackgroundestimatehas to
b econtinuallyup dated.In[12],thisisup dated using
B
t+1
=I
t
+(1 )B
t
(1)
whereiskeptsmalltopreventarticial\tails"formingb ehindmovingobjects.
In[5],thebackgroundismaintainedasthetemp oralmedianofthelastNframes,
estimateis oftenrestricted topixels which haveb een classied as background.
In [9{11],three parameters are estimated at each pixel:M, N, and D,which
represent the minimum,maximum, and largest interframe absolute dierence
observableinthebackgroundscene.
Such simple background estimates fail to cop e with scenes which contain
regularlychangingintensitiesatapixel,such aso ccurswith ashinglightsand
swaying branches. Several more complexbackground mo dels have b een devel-
op edtohandlesuchscenarios. In[7,20,14],each pixelisseparatelymo deledby
amixtureofKGaussians
P(I
t )=
K
X
i=1
!
i;t (I
t
;
i;t
;
i;t
) (2)
where K = 4 in [14] and K = 3:::5 in [20]. In [7,20], it is assumed that
i;t
= 2
i;t
I.Thebackgroundisup dated,b eforetheforegroundisdetected,as
follows:
1. If I
t
matches comp onent i, i.e., I
t
is within standard deviations of
i;t
(whereis2in[7]and 2.5in[14,20]),then theith comp onentisup dated
asfollows:
!
i;t
=!
i;t 1
(3)
i;t
=(1 )
i;t 1 +I
t
(4)
2
i;t
=(1 ) 2
i;t 1 +(I
t
i;t )
T
(I
t
i;t
) (5)
where=Pr(I
t j
i;t 1
;
i;t 1 ).
2. Comp onentswhich theincomingimagedo esn'tmatchareup datedby
!
i;t
=(1 )!
i;t 1
(6)
i;t
=
i;t 1
(7)
2
i;t
= 2
i;t 1
(8)
3. IfI
t
do es notmatch any comp onent, thenthe least likelycomp onent(the
onewith smallest!
i;t
)isreplaced withanewone which has
i;t
=I
t ,
i;t
large,and!
i;t low.
Theweightsthenhave tob erenormalized.
In[4],three background mo delsare simultaneouslykept, aprimary,a sec-
ondary,andanoldbackground.Theyareup dated asfollows:
1. Theprimarybackgroundisup datedas
B
t+1
=I
t
+(1 )B
t
(9)
wherethepixelisnotmarkedas foreground,andisup dated as
B
t+1
=I
t
+(1 )B
t
(10)
where the pixel is marked as foreground. In the ab ove, was selected
from within the range [0:0000610351:::0:25],with the default value =
2. Thesecondary backgroundisup dated as
B
t+1
=I
t
+(1 )B
t
(11)
at pixels where the incomingimage is not signicantly dierent from the
current valueof thesecondary background, where is as for the primary
background.At pixelswherethere isasignicantdierence,thesecondary
backgroundisup dated by
B
t+1
=I
t
(12)
Whatconstitutes asignicantdierence isnotdened.Itisalsonotedthat
therewereproblemswith thisbackgroundestimator.
3. The old background is a copy of the incomingimage from9000 to 18000
framesago.Itisnotup dated.
They claimthatadding morethan onesecondary backgroundactuallyreduces
the sensitivity of the system b ecause there is agreater range of values that a
pixelcan takeonwithoutb eing markedasforeground.
In[21],twobackgroundestimatesareusedwhicharebased onalinearpre-
dictivemo del:
B
t
= p
X
k =1 a
k I
t k and
^
B
t
= p
X
k =1 a
k B
t k
(13)
where theco eÆcients a
k
are reestimated after each frame is received so as to
minimizethe predictionerror. The second estimator
^
B
t
is intro duced b ecause
theprimaryestimateB
t
canb ecomecorruptedifapartoftheforegroundcovers
apixelforasignicantp erio d oftime.Aswellastheab ove,anestimateofthe
predictionerrorvariance isalsomaintained:
E(e 2
t )=E(I
2
t )+
p
X
k =1 a
k E(I
t I
t k
): (14)
2.2 ForegroundDetection
The metho d used for detecting foreground pixels is highly dep endent on the
background mo del.But, inalmostall cases, pixels are classied as foreground
if the observed intensity in the new imageis substantially dierent from the
backgroundmo del,e.g.,
jI
t B
t
j> (15)
where is a\predened" threshold,or afactordep endent on thevariance es-
timatealsomaintainedwithinthebackgroundmo del.Insystemsthatmaintain
multiplemo delsforthebackground,thenapixelmustb esubstantiallydierent
from all background values to b e classied as foreground. In [4], an adaptive
InthemixtureofGaussiansapproach,theforegroundisdetectedasfollows.
Allcomp onentsinthemixturearesortedintotheorderofdecreasing!
i;t
=k
i;t k.
So higher imp ortance gets placed on comp onents with the mostevidence and
lowestvariance,whichare assumedto b ethebackground.Then let
B=argmin
b P
b
i=1
!
i;t
P
K
i=1
!
i;t
>T
!
(16)
forsomethresholdT.Thencomp onents1;:::;Bareassumedtob ebackground.
So if I
t
do es not match one of these comp onents,the pixel is markedas fore-
ground.
In[21],whichusestwopredictionsforthebackgroundvalue,apixelismarked
asforegroundiftheobservedvalueinthenewimagediersfromb othestimates
bymorethanathreshold =4 p
E(e 2
t
),whereE(e 2
t
)iscalculatedin(14).
2.3 Error Recovery Strategies
Thesectionab oveonbackgroundmo delsdescrib eshowthevariousmetho dsare
designed to handle gradual changes inillumination levels. Sudden changes in
illuminationmustb e detected and themo delparameters changed inresp onse.
In [21], the strategy used is to measure the prop ortion of the image that is
classied as foreground and if this is morethan 70%, then the current mo del
parameters are abandonedandare-initialization phase is invoked. In[12],if a
pixelismarkedasforegroundformostofthelastcoupleofframes(thevaluesof
`most'and`couple'arenotgiven),thenthebackgroundisup datedasB
t+1
=I
t .
This correction isdesigned tocomp ensate forsudden illuminationchanges and
theapp earanceofstaticnewobjects.
Another common problem are regular changes in illumination level, such
as that from moving foliage. Multiple mo del schemes such as the mixture of
Gaussians explicitly handle such problems. However, they present a problem
for singlemo del schemes. In [12],to comp ensate for these problems,apixel is
maskedoutfrominclusionintheforegroundifitchangesstate fromforeground
tobackgroundfrequently.
2.4 ForegroundClassication
Thepurp oseofforegroundclassicationistodistinguishobjectsofinterestsuch
as p edestrians fromilluminationartifactssuch as shadowsandhighlights.This
isusuallyaccomplishedbyevaluatingthecolordistributionwithinaforeground
region[13]:
Ashadow regionhassimilarhueandsaturationtothebackgroundbutalower
intensity(see Fig.2.4.
A highlight region has similar hue and saturation to the background but a
higherintensity.
and, consequently, an object region has a dierent hue and saturation to the
Fig.1. Value distributio n in the Blue channel of a region of the background: left -
withshadow, right -without. Thisshows atypical situation: shadow means reduced
intensity andreduced `dynamics'.
3 An Approach Incorporating Foreground Classication
The section b efore has indicatedthat there aremanybackground subtraction
metho ds. Most of them are only concerned ab out detecting pixels where the
backgroundisnolongervisible,withoutattemptingtounderstandwhatis`cov-
ering'suchpixels.Becausebackgroundsubtractionisbasedonobservedintensi-
ties,suchtechniquesnormallymisclassifyilluminationartifactssuchasshadows
and highlights. If these are considered as objects of interest in a surveillance
application,thenthisresultsinthree typ esof errors:
{ Falsealarmdue toavisible shadowbut notanobject(that generatedit).
{ Shadowsincrease theapparentsizeofanobject,p erhapsresultinginafalse
lab ellingasmultipleobjects.
{ Missingseparation ofobjects b ecauseashadowbridges thevisiblearea b e-
tween them.
In this section, a metho d is describ ed which addresses these problems.In the
followingsectionitsp erformanceisevaluated.
3.1 TheBackgroundMo del
Thebackgroundobservedateachpixelismo delledbyamultidimensionalGaus-
siandistributioninRGBspace.Thisrequiresestimatesofthemeanandstandard
deviation.Theestimatesoftheseparametersareup datedwitheachnewframe,
butonlyatpixelsthathaveb eenclassiedasbackground.Theup datingisdone
withthefollowinglinearlter:
=(1 )+Ii
2
=(1 )
2
+(Ii )
2
Here, isthepredenedlearningrate.
Initiallythedistributions ofthebackgroundarenotknown.Weinitializeall
unknownvariablesinthefollowingway:
Standarddeviation =a high value (the actual valuewill b e obtained during
up dating).
Brightnessdistortion=ahighvalue(the actualvaluewillb eobtainedduring
up dating).
3.2 PixelClassication
Each pixel ina new imageis classied as one of background, object, shadow,
or highlight. Pixels are classied as background if the observed color value is
withintheellipsoidofprobabilityconcentration(theregionofminimumvolume,
centeredaroundthebackgroundmean,thatcontains99%oftheprobabilitymass
fortheGaussiandistribution).
Thedistinction b etween objects, shadows, and highlightsamongthe pixels
not classied as background is madeusing thebrightness distortion [13]. This
detects shiftsintheRGB spaceb etween acurrentpixel andthecorresp onding
backgroundpixel.LetE
i
representtheexp ectedbackgroundpixel'sRGBvalue,
I
i
represents thecurrent pixel'sRGB valueinthecurrent frame,
i
represents
itsstandarddeviation,with
E
i
=[E
r (i);E
g (i);E
b (i)]; I
i
=[I
r (i);I
g (i);I
b
(i)]; and
i
=[
r (i);
g (i);
b (i)]:
The brightness distortion is ascalar valuethatbrings the observed colorclose
to the exp ected chromaticity line (line from origin to E
i
). It is obtained by
minimizing
(
i )=(I
i
i E
i )
2
;
where
i
represents the pixel's strength of brightness with resp ect to the ex-
p ected value:
i
is1ifthebrightness ofthegivenpixelinthecurrentimageis
thesameasinthereferenceimage,and
i
islessthan1ifitisdarker,andgreater
than1ifitb ecomes brighterthantheexp ectedbrightness.Ifthecurrentpixel's
intensityisgreaterthanthebackgroundintensityandthecurrentpixel'sbright-
nessdistortionvalueislessthanthecorresp ondingbackgroundpixel'sbrightness
distortionvalue,thispixelwillb e markedashighlight.Ifthecurrentpixel'sin-
tensity isless than thebackgroundintensity andthecurrent pixel's brightness
distortionvalueislessthanthecorresp ondingbackgroundpixel'sbrightnessdis-
tortionvalue,thispixelwillb emarkedasshadow.Otherwisethepixelismarked
as anobject of interest. Intheguresb elowthepro duced outputismarkedas
follows:movingobjects(p eople) inlightgreen,andshadoworhighlightindark
red.
4 Our Results
Thealgorithmas discussed ab ove hasb een testedforindo orlabscenes. Figure
2 illustrates the eects of dierent lighting on a static scene (i.e. no moving
p eople). It shows how dierent lighting aects our test area. Figure 3 shows
Fig.2. Dierentbackgroundlighting: left-uniformlighting withall curtainsclosed,
right-lighting coming justfromwindow.
Fig.3.Backgrondsubtractionforuniformlighting:left-theoriginalframe,right-the
resultafterbackground subtraction.
p erson ismarkedaslightgreen,theshadowismarkedasdarkredsuccessfully.
Figure 4 illustrates that the algorithm still works ne after adding one extra
light.Figure5showshowthealgorithmisabletocop ewithglobalillumination
changes afteraddingtwoextra lights.Figure6showsadierent lightingsitua-
Fig.4.Backgrondsubtractionforuniformlighting plusoneextralight:left-theorig-
inalframe,right-theresult afterbackground subtraction.
tion. Thealgorithmcan notonlydetectmovingp eopleandshadowsaccuratly,
Fig.5. Backgrond subtraction for uniform lighting plus two extra lights: left - the
original frame,right-theresult afterbackgroundsubtraction.
Fig.6. Backgrond subtractionforlighting coming from window plusoneextra light:
left-theoriginal frame,right -theresult afterbackgroundsubtraction.
italsocan cop e withhighlights.Figure7illustratesthehighlightabilitiesafter
adding an extra light. It still works fairlywell and robust for moving p eople
sutractionandshadowdetection.Figure 8showsaresult after initializationby
usingstaticframeswithoutmovingp eople.Weobtaingo o dforeground subrac-
tionandshadowdetection resultsinreal-time.Figure9showsthatafter static
initialization,thebackgroundmo delcanb eup dated adaptively.Thealgorithm
up datesanewbackgroundmo delwhileframeswithmovingp eoplearecaptured.
Figure10istoillustratetherobustnessofbackgroundup dating.Evenwhenwe
captureaverydierentframewithmovingp eople,thisalgorithmstillcanrene
Fig.7. Backgrond subtractionforlighting coming fromwindowplustwoextralights:
left-theoriginal frame,right -theresult afterbackgroundsubtraction.
Fig.8.Here,allframesb eforethecurrentframehaveb eenstatic(i.e.withoutmoving
p eople):left-thecurrentframe,right-theresult afterbackgroundsubtraction.
Fig.9.Here,startingwithstaticframes(i.e.withoutmovingp eople)wecontinuewith
5framesshowing movingp eopleuntilthecurrentframe:left-thecurrentframe,right
-theresult afterbackgroundsubtraction.
Fig.10. Same situation as in gure b efore, but dierent p eople are walking in the
sceneb eforethecurrentframeistaken:left-thecurrentframe,right-theresultafter
background subtraction.
5 Conclusion and Further work
This pap er presents and discusses a background subtraction approach which
can detectmovingp eopleonabackgroundwhile alsoallowingforshadowsand
highlights.Thebackgroundisadaptivelyup dated.Theapproachhasb eentested
in RGB space. The metho d is eÆcient with resp ect to computation timeand
storage.Itonlyrequires tostore abackgroundmo delandbrightness distortion
values.Thisallowsreal-timevideopro cessing.
Themetho dhasanumb eroflimitationsthatwillb eaddressedinfuturework.
A staticbackground withoutmovingp eopleis needed during the initialization
phase,otherwiseittakesasubstantialamountoftimetoreliablyclassifypixels
asforeground.Verydarkpartsofp eoplearestillclassiedaseitherbackground,
or shadows. Another limitation is that shadows on very dark backgrounds or
severalshadowsaddedtogetherwillnotb edetectedeectively.Brighthighlights
arealsoaproblemb ecauseofsaturationinthecamerasensor.
References
1. Y. Bar-Shalom, Th. E. Fortmann: Tracking and Data Association.Academic
Press,NewYork(1988).
2. D. Beymer,Ph. McLauchlan,B. Coifman,J. Malik:Areal-timecomputervision
3. A. Blake, M. Isard:ActiveContours.Springer,Berlin(1998).
4. T. E. Boult, R. Micheals, X. Gao, P. Lewis, C. Power, W. Yin, A. Erkan:
Frame-rateomnidirectio nalsurveillanceandtrackingofcamouagedando ccluded
targets.SecondIEEEWorkshoponVisualSurveillance.(1999)48{55.
5. R. Cutler,L. Davis:View-baseddetectionandanalysisofp erio dicmotion.Inter-
nat.Conf.PatternRecognition(1998)495{500.
6. A. Elgammal, D. Harwo o d,L. A. Davis: Non-parametric mo delforbackground
subtraction.ICCV'99(1999)??{??.
7. W. E. L. Grimson,C. Stauer,R. Romano,L. Lee:Usingadaptivetrackingto
classify andmonitoractivitiesinasite.ComputerVisionandPatternRecognition
(1998)1{8.
8. W. E. L.Grimson,C. Stauer:Adaptivebackgroundmixturemo delsforreal-time
tracking.CVPR'99(1999) ??{??.
9. I. Haritaoglu,D. Harwo o d,L. S. Davis:W 4
:Who?When?Where?What?Areal
timesystemfordetectingand tracking p eople.3rd FaceandGestureRecognition
Conf.(1998)222{227.
10. I. Haritaoglu,R. Cutler,D. Harwo o d,L.S. Davis:Backpack:Detectionofp eople
carrying objects using silhouettes. Internat.Conf. ComputerVision(1999) 102{
107.
11. I. Haritaoglu, D. Harwo o d, L. S. Davis: Hydra: Multiple p eople detection and
tracking usingsilhouettes. 2ndIEEE Workshopon VisualSurveillance(1999) 6{
13.
12. J. Heikkila,O. Silven:Areal-timesystemformonitoringofcyclistsandp edestri-
ans.2ndIEEEWorkshoponVisualSurveillance(1999)74{81.
13. T. Horprasert,D. Harwo o d,L. A. Davis:Astatisticalapproachforreal-timero-
bustbackground subtractionand shadow detection.ICCV'99FrameRateWork-
shop(1999)1{19.
14. T. Y. Ivanov,C. Stauer,A. Bobick, W. E. L. Grimson VideoSurveilla nce of
Interactions.2ndIEEE WorkshoponVisualSurveillance(1999)82{90.
15. M.-S. Lee:Detectingp eoplein clutteredindo orscenes.CVPR'00(2000)??-??.
16. S. J. McKenna,Y. Raja,S. Gong:Trackingcolorobjectsusingadaptivemixture
mo dels. ImageandVisionComputing(1999)780{785.
17. J. Orwell, P. Remagnino, G. A. Jones: Multi-camera color tracking. 2nd IEEE
WorkshoponVisualSurveillance(1999)14{24.
18. R. Rosales, S. Sclaro: 3D trajectory recoveryfortracking multiple objects and
trajectoryguidedrecognitionofactions.ComputerVisionandPatternRecognition
(1999)117{123.
19. P. L. Rosin:Thresholding forchangedetection.ICCV'98(1998)274{279.
20. C. Stauer,W. E.L.Grimson,Adaptivebackgroundmixturemo delsforreal-time
tracking.ComputerVisionandPatternRecognition(1999)246{252.
21. K.Toyama,J.Krumm,B.Brumitt,B.Meyers:Wallower:Principlesandpractice
ofbackground maintenance.Internat.Conf.ComputerVision(1999)255{261.
22. C. Wren,A. Azabayejani, T. Darrell,A. Pentland:Pnder:Real-timetrackingof
the human b o dy.IEEETrans.PatternAnalysisand MachineIntelligence(1997)
780{785.