BDwbU cuvP c„ôv 79
m~PK I jMvwi`g
Indice and Logarithm
f~wgKv
Introduction
m~PK I jMvwi`‡gi mvnv‡h¨ MvwYwZK wnmve I mgm¨v mgvavb A‡bK †ÿ‡Î mnRZi nq| m~P‡Ki mvnv‡h¨ A‡bK eo msL¨v ev †QvU msL¨v‡K ïaygvÎ GKwU cÖZx‡Ki mvnv‡h¨ cÖKvk Kiv hvq| †hgb: 100000 †K †jLv hvq105| GKB fv‡e jMvwi`‡giI cÖ‡qvM i‡q‡Q| †hgb: RbmsL¨v e„w×, Pµe„w× gybvdvi wnmve BZ¨vw` †ÿ‡Î m~PK Ges jMvwi`g e¨envi Kiv nq| Rb †bwcqvi (John Napier 1550-1617) me© cÖ_g jMvwi`g Avwe®‹vi K‡ib| Rb †bwcqvi (Ag~j`) f~wgi Dci wfwË K‡i jMvwi`g Avwe®‹vi K‡ib Ges GwU‡K e wfwËK jMvwi`g ev ¯^vfvweK jMvwi`g ejv nq| cieZ©x‡Z Rb
†bwcqv‡ii mgmvgwqK MwYZwe` †nbwi weªMm (Henry Briggs 1561-1630) g~j` 10 wfwË jMvwi`g Avwe®‹vi I e¨envi K‡ib hv mvaviY MYbvq e¨envi Kiv nq|
BDwbU mgvwßi mgq BDwbU mgvwßi m‡e©v”P mgq 2 w`b
g~L¨ kã
g~j`, Ag~j`, m~PK, g~j, eM©g~j, n Zg g~j, msL¨vi ˆeÁvwbK ev Av`k©i~c, c~Y©K, AskK, jMvwi`g, ¯^vevweK ev cÖvK…wZK jMvwi`g, mvaviY jMvwi`g BZ¨vw`|
G BDwb‡Ui cvVmg~n cvV 5.1: m~PK cvV 5.2: jMvwi`g
5
m~PK
Indices D‡Ïk¨G cvV †k‡l Avcwb-
g~j` m~PK Kx Zv e¨vL¨v Ki‡Z cvi‡eb;
abvZ¥K I FYvZ¥K c~Y©-mvswL¨K m~PK e¨vL¨v I cÖ‡qvM Ki‡Z cvi‡eb;
m~P‡Ki m~Îvewj eY©bv I Zv cÖ‡qvM K‡i mgm¨v mgvavb Ki‡Z cvi‡eb;
n Zg g~j‡K m~PK AvKv‡i cÖKvk Ki‡Z cvi‡eb|
m~PK
Indices
m~PK A_© kw³ ev Power| †Kvb msL¨v‡K H msL¨v Øviv GKvwaKevi ¸Y Ki‡j m~PK bv‡gi GKwU ms‡KZ Øviv G‡K cÖKvk Kiv nq| hw` x †h‡Kv‡bv ev¯Íe msL¨v Ges n ¯^vfvweK msL¨v nq Z‡e xGi µwgK ¸Y, A_©vr
x x
x x
x ... (nmsL¨K evi x) †K xn AvKv‡i †jLv nq| GLv‡b, n n‡jv m~PK ev NvZ Ges x †K wfwË ejv nq|
m~PK ïay abvZ¥K c~Y©msL¨vB bq, FYvZ¥K c~Y©msL¨v ev abvZ¥K fMœvsk ev FYvZ¥K fMœvskI n‡Z cv‡i|
A_©vr wfwË Ix∈ 𝐑 ev¯Íe msL¨vi †mU) Ges m~PK nQ (g~j` msL¨vi †mU) Gi Rb¨ msÁvwqZ| Z‡e we‡kl †ÿ‡Î N
n (¯^vfvweK msL¨vi †mU) aiv nq|
m~P‡Ki ag©vewj (Rules for Indices) g‡b Kiæb, xR Ges m,nN
1. hw` mn nq, Z‡e xmxnn‡e|
wecixZµ‡g xmxn n‡j, mn n‡e|
2. Avevi, hw` xy nq, Z‡e xm yn n‡e|
wecixZµ‡g x0,y0n‡j, hw` xm yn nq, Zvn‡jx y n‡e|
m~P‡Ki m~Îvewj (Formulae for Indices) g‡b Kiæb, xR Ges m,nN
1. xmxn xmn
2. n m n
m
x x
x hw`, mn 3. n m n
m
x x x
1
hw`, mn 4. mn 1
x
x hw`, mn 5.
xm n xmn 6. (x.y)mxmym7. m
m m
y x y x
8. m
m x
x
1 , †hLv‡b, x0
9. m x m x
1 , †hLv‡b, x0 10. x0 1
cvV-5.1
BDwbU cuvP c„ôv 81
n Zg g~j jÿ¨ Kiæb,
2 2 1 2 1 2 1
3 3
3
Avevi, 3 3 3 3 2 3
2 1 2 1 2 1 2 1 2 1
3 3
2 2 1
2 1
3 Gi eM© (wØZxq NvZ) 3 Ges 3Gi eM©g~j (wØZxq g~j) 2
1
3
2 1
3 †K eM©g~‡ji wPý Gi gva¨‡g 3 AvKv‡i †jLv nq|
Avevi, jÿ¨ Kiæb-
3 3 1 3 1 3 1 3 1
3 3 3
3
Avevi, 3 3 3 3 3 3 3
3 1 3 1 3 1 3 1 3 1 3 1 3 1
3 3
3 3 1
3 1
3 Gi Nb (Z…Zxq NvZ)3 Ges 3Gi Nbg~j (Z…Zxq g~j) 3
1
3
3 1
3 †K Nbg~‡ji wPý 3 Gi gva¨‡g 3 3 AvKv‡i †jLv nq|
n Zg g~‡ji †ÿ‡Î
n n
n
n x x x
x
1 1
1 1
...
[n msL¨K xn
1
Gi µwgK ¸Y]
n
xn
1
Avevi, xn xn xn xn
1 1
1 1
...
n n
x
1
[m~P‡K nmsL¨K
n
1 Gi †hvM] x x x
n n
1
xn 1
Gi n Zg NvZ x Ges x Gi n Zg g~j xn
1
A_©vr xn
1
Gi nZg NvZ x x
n n
1
Ges xGi nZg g~j
x n1 xn1 n x xGi n Zg g~j †K n xAvKv‡i †jLv nq|(73)5× (7
3)−5
D`vniY 1: gvb wbY©q Kiæb: (K) 9
7
5
5 (L) (7
3)5× (7
3)−5 mgvavb: (K)
25 1 5 5 1 5 5
5
2 2 9 7 9
7 (L) (7
3)5× (7
3)−5= (7
3)5−5= (7
3)0 = 1
D`vniY 2:mij Kiæb: (K) 7
7 . 7 3
3 2
, (L)
2 2
2 . 4 2
2 1 4
n
n n
mgvavb: (K) †`Iqv Av‡Q, 7
7 . 7 3
3 2
2 1 3 1 3 2
7 7 .
7
2 1 3 1 3 2
7
723121
2 1 1
7
2 1
7 7
(L) †`Iqv Av‡Q,
2 2
2 . 4 2
2 1 4
n
n n
2 2 . 2
2 . 2 . 4 2 . 2
2 4
n n n
2 2 . 2
2 . 8 2 . 16
2 n
n n
2 . 2
) 1 2 ( 2 . 8
n
n
2
8 4
D`vniY 3: mij Kiæb:
x x x
x
8 2 16
4 9
1 1
2
mgvavb: †`Iqv Av‡Q,
x x x
x
8 2 16
4 9
1 1
2
x
x
xx 3 1 1
4
2 2 2
2 2 2
2 3
x x x
x 3 1 4 4
4 2
2 2 2
2 3
4 24 44 1 2 2
2 3
x xx
2 4
4 4 4 1
3 2
2 2 2 2
x
x x
2 (2 2) 2 3
4 4
4 2
x x
14 9 ) 2 16 (
32
D`vniY 4: mij Kiæb: m n m
n n m n m m
15 10 6
6 5 3 2
3 1
1 3 2
3
mgvavb: †`Iqv Av‡Q, m n m
n n m n m m
15 10
6
6 5 3
2
3 1
1 3 2
3
m n
m
n n
m n m m
) 3 5 ( ) 2 5 ( ) 3 2 (
) 3 2 ( 5 3
2
3 1
1 3
2 3
3 2 3 1 1
1 1 3 3
2 3 5 3 2
2 3 5 2 5 3
m m n m n n n
m m n n m m
m n n m m m n n m n
m n
m
2 3 1 1 3 32 1 1 5 3 3
1 5 3 20 0 0
BDwbU cuvP c„ôv 83
D`vniY 5: hw` yy y
y y ynq Zvn‡j cÖgvY Ki‡Z n‡e †h,4
9 y
mgvavb: †`Iqv Av‡Q, yy y
y y y⇒yy y y
2 1 1
2 1 1
⇒
y
y y
y
2 1 2
2 1 2
⇒yy y2y
3
2 3
⇒y y
2
2 3
3
⇒ y y
y y 1
2 3
2 1
3
, [Dfq c‡ÿ
y
1 Øviv ¸Y K‡i]
⇒ 2
3
1 2 3
y ⇒
2
2 3
2 3
y ⇒
2
2 3
1
y ⇒
2 2 2 1
2 3
y [Dfq c‡ÿ eM© K‡i]
4
9
y (cÖgvwYZ)|
D`vniY 6: †`Lvb †h, . . 1
1 1
1
ca
a bc c c ab b b a
x x x
x x
x
mgvavb: L.H.S =
ca a bc c c ab b b a
x x x
x x
x
1 1
1
.
.
ca a ca
c
bc c bc b
ab b ab
a
x x x x x
x . .
c a
b c
a b
x x x x x x
1 1
1 1
1 1
.
.
c b a
c b a
x x x
x x x
1 1 1
1 1 1
. .
.
. 1= R.H.S
weKí c×wZ: L.H.S =
ca a bc c c ab b b a
x x x
x x
x
1 1
1
.
.
xab ab1.xbc bc1.xca ca1
ca a c bc
c b ab
b a
x x x
. .
ca a c bc
c b ab
b a
x
abc a c b c b a b a c
x
abc ab bc ac ab bc ac
x
0 1
x = R.H.S
D`vniY 7: hw` pqr1 nq Zvn‡j †`Lvb †h, 1
1 1 1
1 1
1
1 1
1
p q q r r p
mgvavb: †`Iqv Av‡Q, pqr1pqr1
L.H.S = 1 1 1
1 1 1
1 1
1
p q q r r p
1
1 1
1 1
1 1
1
p q q pq r p [r1pq]
r p pq q
p q 1
1 1 1
1 1 1
1
p rp pq p
q q
pq
q 1
1 1
1 1
1
1 1
1
1
rp p
p pq
q pq
q q
q pqr pq
pq pq
q pq
q q
1 1
1 [Z…Zxq As‡ki je I ni‡K 𝑝 Øviv ¸Y K‡i]
q pq
pq pq
q pq
q q
1 1
1
1 [†h‡nZz, pqr1]
= 1
1 1
pq q
pq
q = R.H.S
1 1 1 1
1 1
1
1 1
1
p r r
q q
p (cÖgvwYZ)
D`vniY 8: mgvavb Kiæb: 41x 41x 10
mgvavb: †`Iqv Av‡Q, 41x 41x 10
⇒ 41.4x41.4x 10
⇒ 10
4 . 1 4 4 .
41 1
x x
⇒ 1 10
4
4
y y [g‡b Kiæb, 4x y]
⇒ 4y2 410y [Dfq c‡ÿy Øviv ¸Y K‡i]
⇒ 4y2 10y40
⇒ 4y2 8y2y40
⇒ 4y(y2)2(y2)0
⇒ (y2)(4y2)0
y2 A_ev,
2
1 y GLb,y2 n‡j, 4x 2
⇒ 22x 2
⇒ 2x1
2
1
x wb‡Y©q mgvavb,
2
1
x
Avevi
2
1
y n‡j,
2 4x 1
⇒ 22x 21,
⇒ 2x1
2
1
x
mvims‡ÿc:
hw` x †h‡Kv‡bv ev¯Íe msL¨v Ges n ¯^vfvweK msL¨v nq Z‡e x Gi µwgK ¸Y, A_©vr xxx...x (n msL¨K evi x) †K xn AvKv‡i †jLv nq| GLv‡b, n n‡jv m~PK ev NvZ Ges x †K wfwË ejv nq|
BDwbU cuvP c„ôv 85
jMvwi`g
Logarithm D‡Ïk¨
G cvV †k‡l Avcwb-
jMvwi`g Kx Zv e¨vL¨v Ki‡Z cvi‡eb;
†Kv‡bv m~PKxq dvskb‡K jMvwi`‡gi mvnv‡h¨ cÖKvk Ki‡Z cvi‡eb;
jMvwi`‡gi m~‡Îi mvnv‡h¨ wewfbœ mgm¨v mgvavb Ki‡Z cvi‡eb|
jMvwi`g
Logarithm
Logos Ges Arithmas bvgK `ywU wMÖK kã n‡Z Logarithm kãwUi DrcwË n‡q‡Q| Logos A_© Av‡jvPbv Ges
Arithmas A_© msL¨v | A_©vr msL¨v wb‡q Av‡jvPbv| jM Gi gva¨‡g ax NGi Avi GKwU Abyiƒc cÖKv‡ki gva¨g n‡jv LogaN x| f~wg ev base a-Gi Dci m~PK DwbœZ n‡j djvdj n‡e N| myZivs, †Kvb msL¨vi GKwU cÖ`Ë wfwËhy³ jMvwi`g n‡”Q H m~PK ev NvZ ev cÖ`Ë wfwËi Dci DwbœZ Ki‡j msL¨vwU cvIqv hv‡e| †hgb: hw`ax b
nq, †hLv‡b a0Ges a1Z‡e x†K ejv nq b Gi 𝑎 wfwËK jMvwi`g, A_©vrxlogab|
wecixZµ‡g, hw`xlogab n‡j ax b n‡e| G‡ÿ‡Î bmsL¨vwU‡K 𝑎 Gi mv‡c‡ÿxGi cÖwZjM (Anilogarithm)
e‡j Ges †jLvi c×wZ banti loga x.
jMvwi`‡gi m~Îvejx (Formulas of Logarithm)
m~Î 1: logaa1 Ges loga10 m~Î 2: loga(MN)logaMloga N
m~Î 3: M N
N M
a a
a log log
log
m~Î 4: loga(M)N NlogaM
m~Î 5: logaM logbMlogab
m~Î 6:
M a
M
a log
log 1 or logaMlogMa1
m~Î 7: logablogxbloga x
m~Î 8:
a b b
x x
a log
log log
m~Î 9: xlogay ylogax, †hLv‡b, x,y0
D`vniY 𝟏: gvb wbY©q Kiæb: (K) log10100 (L) log 81
3
mgvavb: (K) log10100log10(10)33log10103.13 [logaa1]
(L) log 81 log 3 log
3 log
3 8log 3
3 8 83 2 4
3 4
3
3 [logaa1]
jMvwi`‡gi e¨envi (Use of Logarithms): ‰`bw›`b Rxe‡b jMvwi`‡gi e¨envwiK Z_v e¨emvwqK cÖ‡qvM i‡q‡Q|
Avi GRb¨ we‡kl ai‡bi MYbv Kv‡h© jMvwi`‡gi cÖ‡qvRb Abyf~Z n‡q _v‡K| wb‡¤œ jMvwi`‡gi e¨envwiK cÖ‡qvM D‡jøL Kiv n‡jv:
1. m~PK ev NvZ wewkó gv‡bi MYbv jMvwi`‡gi mvnv‡h¨ `ªæZ I mn‡R Kiv hvq|
2. Pµe„w× my` msµvšÍ mgm¨v mgvav‡b jMvwi`g e¨eüZ n‡q _v‡K|
cvV-5.2
3. ARvbv my‡`i nvi Ges mgqKvj wbY©‡qi Rb¨ jMvwi`g e¨envi Kiv nq|
4. µgn«vmgvb †Ri c×wZ‡Z AeP‡qi cwigvY, m¤úwËi RxebKvj, AeP‡qi nvi cÖf…wZ wbY©‡q jMvwi`g Gi cÖ‡qvM i‡q‡Q|
5. exgv wKw¯Í wba©vi‡YI jMvwi`‡gi e¨envi jÿ¨ Kiv hvq|
6. AwZ eo Ges RwUj msL¨vi ¸Y, fvM cÖf„wZ MYbvi †ÿ‡Î jMvwi`g Gi e¨envi KvR‡K mnR K‡i †`q|
7. GKvwaK dvsk‡bi ¸Ydj wbY©q Ges AbycvZ m¤^wjZ dvsk‡bi wewfbœ MYbv Kvh© mn‡R Kivi Rb¨ jMvwi`g Gi e¨envi Kiv nq|
8. RbmsL¨v e„w×i nvi wbY©q, cÖe„w×i nvi wbY©q QvovI A_©bxwZi wewfbœ MvwYwZK Kvh©µ‡g jMvwi`g Gi e¨envi jÿ¨bxq|
jMvwi`‡gi cÖKvi‡f` (Types of Logarithm)
jMvwi`g `yB cÖKvi| h_v: 1. ¯^vfvweK ev cÖvK…wZK jMvwi`g 2.mvaviY jMvwi`g
1. ¯^vfvweK ev cÖvK…wZK jMvwi`g (Naal/ Napierian/ ‘e’ base Logarithm): MwYZwe` Rb †bwcqvi cÖ_g e wfwËK jMvwi`g Avwe®‹vi K‡ib Zv cÖvK…wZK jMvwi`g| cÖvK…wZK jMvwi`g Gi wfwË n‡jv e| ZvB GwU‡K e wfwËK jMvwi`g ev bvg Abymv‡i †bwcqvi jMvwi`g ejv nq| e Gi gvb n‡jv: ... 2.71828
! 3 1
! 2 1
! 1
11
e | G jMvwi`g‡K
eN
log A_ev lnN(LynnN co‡Z nq) cÖZx‡Ki mvnv‡h¨ cÖKvk Kiv nq|
2. mvaviY jMvwi`g (Common Logarithm/ Briggsian/10 base Logarithm)
10wfwËK jMvwi`g‡K mvaviY ev weªMmxq jMvwi`g e‡j| 10 wfwËK jMvwi`g †K ïay log10N Øviv wb‡`©k Kiv hvq|
A_©vr, mvaviY MYbvi Rb¨ Rb¨ †bwcqv‡ii mgmvgwqK MwYZwe` †nbwi weªMm (Henry Briggs 1561-1630) G jMvwi`g e¨envi K‡ib|mvaviY jMvwi`‡gi †ÿ‡Î wfwË †jLv bv _vK‡jI 10 †K wfwË aiv nq|
D`vniY 𝟐: jMvwi`‡gi gvb wbY©q Kiæb:
(K) log 64Gi wfwËK 2 2 (L) log 1
324Gi wfwËK 3 2
mgvavb: (K) log 64 Gi wfwËK 2 2 𝑙𝑜𝑔2√264 = 𝑙𝑜𝑔2√226
= 𝑙𝑜𝑔2√2(2 × √2)4 = 4𝑙𝑜𝑔2√22 × √2 = 4 × 1
(L) log 1
324Gi wfwËK 3 2
44 2
1 1 1
log log log
324 3 2 3 2
42
3 3 2
log
2 3 log 4 3 2
4 1 4
= 4
BDwbU cuvP c„ôv 87
vniY 𝟑: hw`
3 31
log 27 x nq, Z‡exGi gvb wbY©q Kiæb|
mgvavb: †`Iqv Av‡Q,
3 10 3 31 log 27 x
myZivs,
27 103
33 21 103
x
125 3
3 3 5
10 2 3
wb‡Y©q x125
D`vniY 𝟒: cÖgvY Kiæb, log 2 2log 5 log 3 2log 7 147
log10 50 10 10 10 10
mgvavb: evgcÿ =
147
log10 50 = 2
2 10
10 3 7
5 log 2 7 7 3
2 5 log 5
=
10
2
2
10 2 5 log 3 7
log
10 10 2
2 10
102 log 5 log 3 log 7
log
7 log 2 3 log 5 log 2 2
log10 10 10 10
= Wvbcÿ (cÖgvwYZ) D`vniY 𝟓: cÖgvY Kiæb †h, xlogay ylogax
mgvavb: g‡b Kiæb, loga y pGes loga xq
myZivs, ap yGes aq x
ap q yq , [Dfq c‡ÿ q NvZ wb‡q]
ev,apq yq......(i)
Avevi,
aq p xp [Dfq c‡ÿ p NvZ wb‡q]ev, apq xp.....(ii)
( ) I (ii) bs †_‡K cvB, xp yq
x
y a
a y
xlog log
(cÖgvwYZ)
D`vniY 𝟔: cÖgvY Kiæb, 6 1 log 3 log 5
log5 2 3 4 10
mgvavb: L.H.S.log552log334log101 0
3 log 4 5 log
2 5 3
1 4 1 2
2 4 6 R.H.S.
log552log334log1016(cÖgvwYZ)
D`vniY 7: cÖgvY Kiæb †h, 3log2 10
log 16 log
8 log
4 9
3
mgvavb:
10 log 16 log
8 . log
. .
4 9
3
S H L
4 log
10 log 9 log
16 log
3 log
8 log
e e e
e e e
10 log
4 log 16 log
9 log 3 log
8 log
e e e
e e
e
10 log
2 log 2 log
3 log 3 log 2
2
log 2
4 2 3
e e e
e e
e
10 log
2 log 2 2 log 4
3 log 2 3 log
2 log 3
e e e
e e
e
1 2 log 2 2 log 4
3 log 2 3 log
2 log
3 e
e e e
e
. . . 2 log
3 e RH S
2 log 10 3 log 16 log
8 log
4 9
3
(cÖgvwYZ)
mvims‡ÿc:
†Kvb msL¨vi GKwU cÖ`Ë wfwËhy³ jMvwi`g n‡”Q H m~PK ev NvZ ev cÖ`Ë wfwËi Dci DwbœZ Ki‡j msL¨vwU cvIqv hv‡e| †hgb: hw`ax b nq, †hLv‡b a0Ges a1Z‡e x†K ejv nq b Gi 𝑎 wfwËK jMvwi`g, A_©vrxlogab|
m~Î 1: loga(MN)logaMloga N
m~Î 2: M N
N M
a a
a log log
log
m~Î 3: loga(M)N NlogaM