• Tidak ada hasil yang ditemukan

(1) DA F DA F P AY/TIME FRIDAY P P (M AY/TIME FRIDAY P P (M Name of Prof

N/A
N/A
Protected

Academic year: 2023

Membagikan "(1) DA F DA F P AY/TIME FRIDAY P P (M AY/TIME FRIDAY P P (M Name of Prof"

Copied!
1
0
0

Teks penuh

(1)

 

DA

F

DA

F

P

AY/TIME 

FRIDAY  P

P (M

AY/TIME 

FRIDAY  P

P (M

Name of Prof. Dr. M Prof. Dr. M Prof. Dr. A Prof. Dr. M Prof. Dr. M Prof. Dr. S Prof. Dr. M Prof. Dr. M Prof. Dr. M Dr. Ruma Mr. Md. M Mr. Md. A Ms. Tapat Mr. Md. H

Professio

PM

9:00‐10:25 

PM‐ASDS04  (AKM)  SECTION‐A 

PM‐ASDS01  MFH & MHR) 

SECTION‐B 

PM-A

9:00‐11:00 

PM‐ASDS04  (AKM)  SECTION‐A 

PM‐ASDS01  MFH & MHR) 

SECTION‐B 

Course Teac M. Mazibar R M. A. Matin - Ajit Kumar Ma Md. Forhad H Md. Abdus Sa Syeda Shaha Mohd. Muzibu Mohammed N Mohammad A na Rois - (R Moyazzem Ho Asraful Alam – ti Basak – (TB Habibur Rahm

J

onal Maste

Sem M-ASDS

(E

10:25‐11

PM‐ASD (MAM & M

SECTION

PM‐ASDA (MMR1 & 

SECTION

ASDS Cla

(Ef

11:05‐01

PM‐ASD (MAM & M

SECTION

PM‐ASDA (MMR1 & 

SECTION

chers (Abbre ahman – (MM (MAM) ajumder - (AK Hossain - (MF

alam - (MAS) anara Huq - (S ur Rahman – Nazmul Huq - Alamgir Kabir

R)

ossain – (MMH (MAA)

B)

man – (MHR)

Departm Jahangi

Sava ers in App

mester: S Class R

ffective fro

1:50 11:

DS01  MHR) N‐A 

PM (M

SEC

ANC01 MMH) N‐B 

PM (MA SEC

ass Rou

ffective fro

1:05  02:

DS01  MHR) N‐A 

PM (M

SEC

ANC01 MMH) N‐B 

PM (MA SE

eviation) MR1)

KM) H)

SSH) (MMR2) - (MNH)

- (MAK) H)

ment of rnagar ar, Dhak plied Stati

 

Summer Routine

om May 17

50‐01:15

M‐ASDS02  AS & TB)  CTION‐A 

M‐ASDS05 AK & MAA)

CTION‐B 

utine for

om June 14

:00‐04:00 

M‐ASDS02  AS & TB)  CTION‐A 

M‐ASDS05  AK & MAA)

CTION‐B 

Profess

Statisti Univers ka-1342

istics and

r - 2019 for Ram

7, 2019)

02:15‐03:4

PM‐ASDS0 (SSH & MAA

SECTION‐A

PM‐ASDS0 (MNH & TB

SECTION‐B

r After R

4, 2019)

04:05‐06:0

PM‐ASDS0 (SSH & MAA

SECTION‐A

PM‐ASDS0 (MNH & TB

SECTION‐B

(Prof.

sional Maste

ics sity d Data Sci

madan

40 03:40

05  A) 

PM‐ASD (MMR2 

SECTI

02 B) 

PM‐A (R SECT

Ramadan

05  06:10

05  A) 

PM‐ASD (MMR2 

SECT

02  B) 

PM‐A (R SECT

Dr. M. Maz ers in Applie Data Sci Departmen

ence (AS

0‐05:05  Cla

DANC01 

& MMH) ION‐A 

ASDS04  RR) 

ION‐B 

n

0‐08:10  Cla

DANC01 

& MMH) ION‐A 

ASDS04  RR) 

ION‐B 

zibar Rahman Coordinato ed Statistics i

ience (ASDS nt of Statistic

DS)

ass Room

116 

117 

ass Room

116 

117 

n)

or

in

S)

cs

Referensi

Dokumen terkait

Khi đó, d là một metric trên Hn.Trong [3], các tác giả đã chứng minh được rằng mỗi không gian metric H2 là không gian metric hyperbolic và mỗi tam giác trắc địa trong H2 là - thin

4 If hyperideal I1×I2 ofR1×R2 isϕ-2-absorbing, then hyperidealI1 ofR1 isϕ1- 2-absorbing and hyperidealI2 ofR2 isϕ2- 2-absorbing... Then hyperidealI1×R2is 2-absorbing and soϕ-2-asorbing