Fourier Transform
S H A H R E A R K H A N R A S E L S E N I O R L E C T U R E R D E P T . O F G E D
D A F F O D I L I N T E R N A T I O N A L U N I V E R S I T Y
▪ Virtually everything in the world can be described via a waveform - a function of time, space or some other variable.
▪ For instance, sound waves, electromagnetic fields, the elevation of a hill versus location, a plot of VSWR versus frequency, the price of your favorite stock versus time, etc.
▪ The Fourier Transform gives us a unique and
powerful way of viewing these waveforms.
Fourier Transform
Finite Transform Infinite Transform Complex Transform Finite
Fourier Sine Transform
Finite Fourier
Cosine Transform
Infinite Fourier
Sine Transform
Infinite Fourier
Cosine
Transform
Finite Transforms
Finite Fourier Sine transform: The finite Fourier sine transform of 𝐹 𝑥 , 0 < 𝑥 < 𝑙, is defined as 𝑓𝑠 𝑛 = 0𝑙 𝐹(𝑥) sin𝑛𝜋𝑥
𝑙 𝑑𝑥 where 𝑛 is an integer.
The function 𝐹(𝑥)is then called the inverse finite Fourier sine transform of 𝑓𝑠 𝑛 , and is given by 𝐹 𝑥 = 2
𝑙 σ𝑛=1∞ 𝑓𝑠 𝑛 sin𝑛𝜋𝑥
𝑙
Finite Fourier Cosine transform: The finite Fourier cosine transform of 𝐹 𝑥 , 0 < 𝑥 < 𝑙, is defined as 𝑓𝑐 𝑛 = 0𝑙𝐹(𝑥) cos𝑛𝜋𝑥
𝑙 𝑑𝑥 where 𝑛 is an integer.
The function 𝐹(𝑥) is then called the inverse finite Fourier cosine transform of 𝑓𝑐 𝑛 , and is given by 𝐹 𝑥 = 1
𝑙 𝑓𝑐 0 + 2
𝑙 σ𝑛=1∞ 𝑓𝑐 𝑛 cos𝑛𝜋𝑥
𝑙
Finite Fourier Transforms are used to solve partial differential equations.
Infinite Transforms
Infinite Finite Fourier Sine Transform: The Infinite Fourier Sine transform of 𝐹(𝑥), 0 < 𝑥 < ∞, is defined as 𝑓𝑠 𝑛 = 0∞𝐹(𝑥) sin 𝑛𝑥 𝑑𝑥 ; where 𝑛 is an integer.
The function 𝐹(𝑥)is then called the inverse infinite Fourier sine transform of 𝑓𝑠 𝑛 , and is given by 𝐹 𝑥 = 2
𝜋0∞𝑓𝑠 𝑛 sin 𝑛𝑥 𝑑𝑛 ; where 𝑛 is an integer.
Infinite Finite Fourier Cosine Transform: The infinite Fourier cosine transform of 𝐹(𝑥), 0 < 𝑥 < ∞, is defined as 𝑓𝑐 𝑛 = 0∞𝐹(𝑥) cos 𝑛𝑥 𝑑𝑥 where 𝑛 is an integer.
The function 𝐹(𝑥)is then called the inverse infinite Fourier cosine transform of 𝑓𝑐 𝑛 , and is given by 𝐹 𝑥 = 2
𝜋0∞𝑓𝑐 𝑛 cos 𝑛𝑥 𝑑𝑛 ; where 𝑛 is an integer
Example 5.7 Find the Fourier Sine Transform of 𝒔𝒊𝒏 𝒌𝒙, 𝟎 ≤ 𝒙 ≤ 𝝅, 𝒌 > 𝟎.
Solution: By the definition of Fourier sine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 ≤ 𝑙, we have 𝑓𝑠 𝑛 = 0𝑙𝐹 𝑥 sin𝑛𝜋𝑥
𝑙 𝑑𝑥
∴ 𝑓𝑠 𝑛 = 0𝜋sin 𝑘𝑥 sin𝑛𝜋𝑥
𝜋 𝑑𝑥 = 1
20𝜋2 sin 𝑘𝑥 sin 𝑛𝑥 𝑑𝑥 = 1
20𝜋 cos 𝑘 − 𝑛 𝑥 − cos 𝑘 + 𝑛 𝑥 𝑑𝑥
= 1
2
sin 𝑘−𝑛 𝑥
𝑘−𝑛 − sin 𝑘+𝑛 𝑥
𝑘+𝑛 0
𝜋 = 1
2
sin 𝑘−𝑛 𝜋
𝑘−𝑛 − sin 𝑘+𝑛 𝜋
𝑘+𝑛
= 1
2
sin 𝑘𝜋 cos 𝑛𝜋−cos 𝑘𝜋 sin 𝑛𝜋
𝑘−𝑛 − sin 𝑘𝜋 cos 𝑛𝜋+cos 𝑘𝜋 sin 𝑛𝜋
𝑘+𝑛 ;
= 1
2
sin 𝑘𝜋 cos 𝑛𝜋
𝑘−𝑛 − sin 𝑘𝜋 cos 𝑛𝜋
𝑘+𝑛 ; [∵ sin 𝑛𝜋 = 0]
= 1
2 1
𝑘−𝑛 − 1
𝑘+𝑛 sin 𝑘𝜋 cos 𝑛𝜋 = 2𝑛
2 𝑘2−𝑛2 −1 𝑛 sin 𝑘𝜋 [∵ cos 𝑛𝜋 = −1 𝑛]
= 𝑛
𝑘2−𝑛2 −1 𝑛sin 𝑘𝜋 ∴ 𝑓𝑠 𝑛 = 𝑛
𝑘2−𝑛2 −1 𝑛 sin 𝑘𝜋
Example 5.8 Find the Fourier Cosine Transform of 𝒔𝒊𝒏 𝒌𝒙, 𝟎 ≤ 𝒙 ≤ 𝝅, 𝒌 > 𝟎.
Solution: By the definition of Fourier Cosine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 ≤ 𝑙, we have 𝑓𝑐 𝑛 = 0𝑙𝐹 𝑥 cos𝑛𝜋𝑥
𝑙 𝑑𝑥
∴ 𝑓𝑐 𝑛 = 0𝜋sin 𝑘𝑥 cos𝑛𝜋𝑥
𝜋 𝑑𝑥 = 1
20𝜋2 sin 𝑘𝑥 cos 𝑛𝑥 𝑑𝑥 = 1
20𝜋 sin 𝑘 + 𝑛 𝑥 + s𝑖𝑛 𝑘 − 𝑛 𝑥 𝑑𝑥
= 1
2
−cos 𝑘+𝑛 𝑥
𝑘+𝑛 − cos 𝑘−𝑛 𝑥
𝑘−𝑛 0
𝜋 = 1
2
−cos 𝑘+𝑛 𝜋
𝑘+𝑛 − cos 𝑘−𝑛 𝜋
𝑘−𝑛 + 1
𝑘+𝑛 + 1
𝑘−𝑛
= 1
2 −cos 𝑘𝜋 cos 𝑛𝜋−sin 𝑘𝜋 sin 𝑛𝜋
𝑘+𝑛 − cos 𝑘𝜋 cos 𝑛𝜋+sin 𝑘𝜋 sin 𝑛𝜋
𝑘−𝑛 + 𝑘−𝑛+𝑘+𝑛
(𝑘+𝑛)(𝑘−𝑛)
= 1
2 −cos 𝑘𝜋 cos 𝑛𝜋(𝑘−𝑛+𝑘+𝑛)
𝑘2−𝑛2 + 2𝑘
𝑘2−𝑛2 ; [sin 𝑛𝜋 = 0]
= 1
2 −2𝑘 −1 𝑛cos 𝑘𝜋
𝑘2−𝑛2 + 2𝑘
𝑘2−𝑛2
= 𝑘
𝑘2−𝑛2 1 − −1 𝑛cos 𝑘𝜋 = 𝑘
𝑛2−𝑘2 −1 𝑛cos 𝑘𝜋 − 1
∴ 𝑓𝑐 𝑛 = 𝑘
𝑛2−𝑘2 −1 𝑛 cos 𝑘𝜋 − 1
Also we can show that, 𝐹 𝑥 = sin 𝑘𝑥 , 0 ≤ 𝑥 ≤ 𝜋, 𝑘 > 0, 𝑓𝑠 𝑛 + 𝑓𝑐 𝑛 = 1
𝑘2 − 𝑛2 −1 𝑛 𝑛 sin 𝑘𝜋 + 𝑘 cos 𝑘𝜋 − 𝑘
Example 5.9 For 𝐹 𝑥 = 𝑒
𝑚𝑥, 0 ≤ 𝑥 ≤ 𝜋, 𝑚 > 0, Show that 𝑓
𝑠𝑛 + 𝑓
𝑐𝑛 = (𝑚 − 𝑛)
𝑚
2+ 𝑛
2𝑒
𝑚𝜋cos 𝑛𝜋 − 1
Solution: By the definition of Fourier sine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 ≤ 𝑙, we have 𝑓
𝑠𝑛 =
0𝑙𝐹 𝑥 sin
𝑛𝜋𝑥𝑙
𝑑𝑥
⇒ 𝑓
𝑠𝑛 =
0𝜋𝑒
𝑚𝑥sin 𝑛𝑥 𝑑𝑥 =
𝑒𝑚𝑥 𝑚 sin 𝑛𝑥−𝑛 cos 𝑛𝑥 𝑚2+𝑛2 0𝜋
=
1𝑚2+𝑛2
𝑒
𝑚𝜋𝑚 sin 𝑛𝜋 − 𝑛 cos 𝑛𝜋 − 𝑒
0𝑚 sin 0 − 𝑛 cos 0
=
1𝑚2+𝑛2
𝑒
𝑚𝜋0 − 𝑛 cos 𝑛𝜋 − 1 0 − 𝑛. 1
=
𝑛(1−𝑒𝑚𝜋cos 𝑛𝜋)𝑚2+𝑛2
∴ 𝑓
𝑠𝑛 =
𝑛(1−𝑒𝑚𝜋 cos 𝑛𝜋)𝑚2+𝑛2
By the definition of Fourier Cosine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 ≤ 𝑙 , we have 𝑓
𝑐𝑛 =
0𝑙𝐹 𝑥 cos
𝑛𝜋𝑥𝑙
𝑑𝑥
⇒ 𝑓
𝑐𝑛 =
0𝜋𝑒
𝑚𝑥cos 𝑛𝑥 𝑑𝑥 =
𝑒𝑚𝑥 𝑚 cos 𝑛𝑥+𝑛 sin 𝑛𝑥 𝑚2+𝑛2 0𝜋
=
1𝑚2+𝑛2
𝑒
𝑚𝜋𝑚 cos 𝑛𝜋 + 𝑛 sin 𝑛𝜋 − 𝑒
0𝑚 cos 0 + 𝑛 sin 0
=
1𝑚2+𝑛2
𝑒
𝑚𝜋𝑚 cos 𝑛𝜋 − 0 − 1 𝑚 + 0
=
−𝑚(1−𝑒𝑚𝜋 cos 𝑛𝜋)𝑚2+𝑛2
∴ 𝑓
𝑐𝑛 =
−𝑚(1−𝑒𝑚𝜋 cos 𝑛𝜋)𝑚2+𝑛2
Therefore, 𝑓 𝑛 + 𝑓 𝑛 =
𝑛(1−𝑒𝑚𝜋 cos 𝑛𝜋)+
−𝑚(1−𝑒𝑚𝜋 cos 𝑛𝜋)=
(𝑚−𝑛)𝑒
𝑚𝜋cos 𝑛𝜋 − 1 .
Example 5.10 Find the Fourier Sine and Cosine Transform of 𝒆
−𝒎𝒙, 𝒙 ≥ 𝟎. Hence show that 𝒇
𝒔𝒏 + 𝒇
𝒄𝒏 =
𝒎+𝒏𝒎𝟐+𝒏𝟐
.
Solution: By the definition of Infinite Fourier Sine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 < ∞, we have 𝑓
𝑠𝑛 =
0∞𝐹 𝑥 sin 𝑛𝑥 𝑑𝑥
∴ 𝑓
𝑠𝑛 =
0∞𝑒
−𝑚𝑥sin 𝑛𝑥 𝑑𝑥
=
𝑒−𝑚𝑥 − 𝑚 sin 𝑛𝑥−𝑛 cos 𝑛𝑥𝑚2+𝑛2 𝑥=0
∞
= 0 −
𝑒−𝑚.0 − 𝑚 sin 0−𝑛 cos 0𝑚2+𝑛2
; [∵ 𝑒
−∞= 0]
⇒ 𝑓
𝑠𝑛 =
𝑛𝑚2+𝑛2
.
By the definition of Infinite Fourier Cosine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 < ∞, we have 𝑓
𝑐𝑛 =
0∞𝐹 𝑥 cos 𝑛𝑥 𝑑𝑥
∴ 𝑓
𝑐𝑛 =
0∞𝑒
−𝑚𝑥cos 𝑛𝑥 𝑑𝑥
=
𝑒−𝑚𝑥 − mcos 𝑛𝑥+𝑛 sin 𝑛𝑥𝑚2+𝑛2 𝑥=0
∞
= 0 −
𝑒−𝑚.0 − mcos 0+𝑛 sin 0𝑚2+𝑛2
; [∵ 𝑒
−∞= 0]
=
𝑚𝑚2+𝑛2
⇒ 𝑓
𝑐𝑛 =
𝑚𝑚2+𝑛2
.
Therefore, 𝑓
𝑠𝑛 + 𝑓
𝑐𝑛 =
𝑚+𝑛𝑚2+𝑛2
.
Complex Fourier Transform:
The complex Fourier transform of 𝐹(𝑥) is defined by 𝑓 𝑛 = −∞∞ 𝐹 𝑥 𝑒−𝑖𝑛𝑥 𝑑𝑥.
Example 5.13 Find the complex Fourier transform of 𝑭 𝒙 = 𝒆−𝒂|𝒙| where 𝒂 > 𝟎.
Solution. We have 𝑥 = ቊ−𝑥 𝑖𝑓 𝑥 < 0 𝑥 𝑖𝑓 𝑥 > 0
∴ 𝑓 𝑛 = −∞∞ 𝑒−𝑎 𝑥 𝑒−𝑖𝑛𝑥 𝑑𝑥 = −∞0 𝑒−𝑎(−𝑥)𝑒−𝑖𝑛𝑥 𝑑𝑥 + 0∞𝑒−𝑎𝑥𝑒−𝑖𝑛𝑥 𝑑𝑥
= −∞0 𝑒𝑎𝑥−𝑖𝑛𝑥 𝑑𝑥 + 0∞𝑒−𝑎𝑥−𝑖𝑛𝑥 𝑑𝑥 = −∞0 𝑒(𝑎−𝑖𝑛)𝑥 𝑑𝑥 + 0∞𝑒−(𝑎+𝑖𝑛)𝑥 𝑑𝑥
= 𝑒 𝑎−𝑖𝑛 𝑥
𝑎−𝑖𝑛 −∞
0
− 𝑒− 𝑎+𝑖𝑛 𝑥
𝑎+𝑖𝑛 0
∞
= 1
𝑎−𝑖𝑛 𝑒0 − 𝑒−∞ − 1
𝑎+𝑖𝑛 𝑒−∞ − 𝑒0
= 2𝑎
𝑎2+𝑛2
1. Find the Fourier Sine and Cosine Transform of 𝐹 𝑥 = cos 𝑚𝑥 , 0 ≤ 𝑥 ≤ 𝜋, 𝑚 > 0, hence show that 𝑓𝑠 𝑛 + 𝑓𝑐 𝑛 = 1
𝑚2−𝑛2 −1 𝑛 𝑚 sin 𝑚𝜋 + 𝑛 cos 𝑚𝜋 − 𝑛 Ans. 𝑓𝑠 𝑛 = 𝑛
𝑚2−𝑛2 −1 𝑛 cos 𝑚𝜋 − 1 , 𝑓𝑐 𝑛 = 𝑚
𝑚2−𝑛2 −1 𝑛 sin 𝑚𝜋
2. Find the Fourier Sine and Cosine Transform of 𝐹 𝑥 = 2𝑥, 0 ≤ 𝑥 ≤ 4, 𝑚 > 0, hence show that 𝑓𝑠 𝑛 + 𝑓𝑐 𝑛 = 32
𝑛2𝜋2[cos 𝑛𝜋 1 − 𝑛𝜋 − 1] ;Ans. 𝑓𝑠 𝑛 = −32 cos 𝑛𝜋
𝑛𝜋 , 𝑓𝑐 𝑛 = 32(cos 𝑛𝜋−1) 𝑛2𝜋2
3. Find the Fourier Sine and Cosine Transform of 𝐹 𝑥 = 𝑥2, 0 ≤ 𝑥 ≤ 1 Ans. 𝑓𝑠 𝑛 = −2+(2−𝑛2𝜋2) cos 𝑛𝜋
𝑛3𝜋3 , 𝑓𝑐 𝑛 = 2 cos 𝑛𝜋
𝑛2𝜋2
4. Find the Fourier Sine transform of 𝐹 𝑥 = 2𝑒−5𝑥 + 5𝑒−2𝑥, 0 ≤ 𝑥 < ∞ Ans. 8𝑛
3+133𝑛 (𝑛2+25)(𝑛2+4)
5. Find the Fourier Cosine transform of 𝐹 𝑥 = 2𝑒−5𝑥 + 5𝑒−2𝑥, 0 ≤ 𝑥 < ∞ Ans. 20𝑛
2+290 (𝑛2+25)(𝑛2+4)
Exercises