• Tidak ada hasil yang ditemukan

PDF Fourier Transform

N/A
N/A
Protected

Academic year: 2023

Membagikan "PDF Fourier Transform"

Copied!
16
0
0

Teks penuh

(1)

Fourier Transform

S H A H R E A R K H A N R A S E L S E N I O R L E C T U R E R D E P T . O F G E D

D A F F O D I L I N T E R N A T I O N A L U N I V E R S I T Y

(2)

▪ Virtually everything in the world can be described via a waveform - a function of time, space or some other variable.

▪ For instance, sound waves, electromagnetic fields, the elevation of a hill versus location, a plot of VSWR versus frequency, the price of your favorite stock versus time, etc.

▪ The Fourier Transform gives us a unique and

powerful way of viewing these waveforms.

(3)
(4)
(5)

Fourier Transform

Finite Transform Infinite Transform Complex Transform Finite

Fourier Sine Transform

Finite Fourier

Cosine Transform

Infinite Fourier

Sine Transform

Infinite Fourier

Cosine

Transform

(6)

Finite Transforms

Finite Fourier Sine transform: The finite Fourier sine transform of 𝐹 𝑥 , 0 < 𝑥 < 𝑙, is defined as 𝑓𝑠 𝑛 = ׬0𝑙 𝐹(𝑥) sin𝑛𝜋𝑥

𝑙 𝑑𝑥 where 𝑛 is an integer.

The function 𝐹(𝑥)is then called the inverse finite Fourier sine transform of 𝑓𝑠 𝑛 , and is given by 𝐹 𝑥 = 2

𝑙 σ𝑛=1 𝑓𝑠 𝑛 sin𝑛𝜋𝑥

𝑙

Finite Fourier Cosine transform: The finite Fourier cosine transform of 𝐹 𝑥 , 0 < 𝑥 < 𝑙, is defined as 𝑓𝑐 𝑛 = ׬0𝑙𝐹(𝑥) cos𝑛𝜋𝑥

𝑙 𝑑𝑥 where 𝑛 is an integer.

The function 𝐹(𝑥) is then called the inverse finite Fourier cosine transform of 𝑓𝑐 𝑛 , and is given by 𝐹 𝑥 = 1

𝑙 𝑓𝑐 0 + 2

𝑙 σ𝑛=1 𝑓𝑐 𝑛 cos𝑛𝜋𝑥

𝑙

Finite Fourier Transforms are used to solve partial differential equations.

(7)

Infinite Transforms

Infinite Finite Fourier Sine Transform: The Infinite Fourier Sine transform of 𝐹(𝑥), 0 < 𝑥 < ∞, is defined as 𝑓𝑠 𝑛 = ׬0𝐹(𝑥) sin 𝑛𝑥 𝑑𝑥 ; where 𝑛 is an integer.

The function 𝐹(𝑥)is then called the inverse infinite Fourier sine transform of 𝑓𝑠 𝑛 , and is given by 𝐹 𝑥 = 2

𝜋׬0𝑓𝑠 𝑛 sin 𝑛𝑥 𝑑𝑛 ; where 𝑛 is an integer.

Infinite Finite Fourier Cosine Transform: The infinite Fourier cosine transform of 𝐹(𝑥), 0 < 𝑥 < ∞, is defined as 𝑓𝑐 𝑛 = ׬0𝐹(𝑥) cos 𝑛𝑥 𝑑𝑥 where 𝑛 is an integer.

The function 𝐹(𝑥)is then called the inverse infinite Fourier cosine transform of 𝑓𝑐 𝑛 , and is given by 𝐹 𝑥 = 2

𝜋׬0𝑓𝑐 𝑛 cos 𝑛𝑥 𝑑𝑛 ; where 𝑛 is an integer

(8)

Example 5.7 Find the Fourier Sine Transform of 𝒔𝒊𝒏 𝒌𝒙, 𝟎 ≤ 𝒙 ≤ 𝝅, 𝒌 > 𝟎.

Solution: By the definition of Fourier sine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 ≤ 𝑙, we have 𝑓𝑠 𝑛 = ׬0𝑙𝐹 𝑥 sin𝑛𝜋𝑥

𝑙 𝑑𝑥

∴ 𝑓𝑠 𝑛 = ׬0𝜋sin 𝑘𝑥 sin𝑛𝜋𝑥

𝜋 𝑑𝑥 = 1

2׬0𝜋2 sin 𝑘𝑥 sin 𝑛𝑥 𝑑𝑥 = 1

2׬0𝜋 cos 𝑘 − 𝑛 𝑥 − cos 𝑘 + 𝑛 𝑥 𝑑𝑥

= 1

2

sin 𝑘−𝑛 𝑥

𝑘−𝑛sin 𝑘+𝑛 𝑥

𝑘+𝑛 0

𝜋 = 1

2

sin 𝑘−𝑛 𝜋

𝑘−𝑛sin 𝑘+𝑛 𝜋

𝑘+𝑛

= 1

2

sin 𝑘𝜋 cos 𝑛𝜋−cos 𝑘𝜋 sin 𝑛𝜋

𝑘−𝑛sin 𝑘𝜋 cos 𝑛𝜋+cos 𝑘𝜋 sin 𝑛𝜋

𝑘+𝑛 ;

= 1

2

sin 𝑘𝜋 cos 𝑛𝜋

𝑘−𝑛sin 𝑘𝜋 cos 𝑛𝜋

𝑘+𝑛 ; [∵ sin 𝑛𝜋 = 0]

= 1

2 1

𝑘−𝑛1

𝑘+𝑛 sin 𝑘𝜋 cos 𝑛𝜋 = 2𝑛

2 𝑘2−𝑛2 −1 𝑛 sin 𝑘𝜋 [∵ cos 𝑛𝜋 = −1 𝑛]

= 𝑛

𝑘2−𝑛2 −1 𝑛sin 𝑘𝜋 ∴ 𝑓𝑠 𝑛 = 𝑛

𝑘2−𝑛2 −1 𝑛 sin 𝑘𝜋

(9)

Example 5.8 Find the Fourier Cosine Transform of 𝒔𝒊𝒏 𝒌𝒙, 𝟎 ≤ 𝒙 ≤ 𝝅, 𝒌 > 𝟎.

Solution: By the definition of Fourier Cosine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 ≤ 𝑙, we have 𝑓𝑐 𝑛 = ׬0𝑙𝐹 𝑥 cos𝑛𝜋𝑥

𝑙 𝑑𝑥

∴ 𝑓𝑐 𝑛 = ׬0𝜋sin 𝑘𝑥 cos𝑛𝜋𝑥

𝜋 𝑑𝑥 = 1

2׬0𝜋2 sin 𝑘𝑥 cos 𝑛𝑥 𝑑𝑥 = 1

2׬0𝜋 sin 𝑘 + 𝑛 𝑥 + s𝑖𝑛 𝑘 − 𝑛 𝑥 𝑑𝑥

= 1

2

−cos 𝑘+𝑛 𝑥

𝑘+𝑛cos 𝑘−𝑛 𝑥

𝑘−𝑛 0

𝜋 = 1

2

−cos 𝑘+𝑛 𝜋

𝑘+𝑛cos 𝑘−𝑛 𝜋

𝑘−𝑛 + 1

𝑘+𝑛 + 1

𝑘−𝑛

= 1

2cos 𝑘𝜋 cos 𝑛𝜋−sin 𝑘𝜋 sin 𝑛𝜋

𝑘+𝑛cos 𝑘𝜋 cos 𝑛𝜋+sin 𝑘𝜋 sin 𝑛𝜋

𝑘−𝑛 + 𝑘−𝑛+𝑘+𝑛

(𝑘+𝑛)(𝑘−𝑛)

= 1

2cos 𝑘𝜋 cos 𝑛𝜋(𝑘−𝑛+𝑘+𝑛)

𝑘2−𝑛2 + 2𝑘

𝑘2−𝑛2 ; [sin 𝑛𝜋 = 0]

= 1

22𝑘 −1 𝑛cos 𝑘𝜋

𝑘2−𝑛2 + 2𝑘

𝑘2−𝑛2

= 𝑘

𝑘2−𝑛2 1 − −1 𝑛cos 𝑘𝜋 = 𝑘

𝑛2−𝑘2 −1 𝑛cos 𝑘𝜋 − 1

∴ 𝑓𝑐 𝑛 = 𝑘

𝑛2−𝑘2 −1 𝑛 cos 𝑘𝜋 − 1

(10)

Also we can show that, 𝐹 𝑥 = sin 𝑘𝑥 , 0 ≤ 𝑥 ≤ 𝜋, 𝑘 > 0, 𝑓𝑠 𝑛 + 𝑓𝑐 𝑛 = 1

𝑘2 − 𝑛2 −1 𝑛 𝑛 sin 𝑘𝜋 + 𝑘 cos 𝑘𝜋 − 𝑘

(11)

Example 5.9 For 𝐹 𝑥 = 𝑒

𝑚𝑥

, 0 ≤ 𝑥 ≤ 𝜋, 𝑚 > 0, Show that 𝑓

𝑠

𝑛 + 𝑓

𝑐

𝑛 = (𝑚 − 𝑛)

𝑚

2

+ 𝑛

2

𝑒

𝑚𝜋

cos 𝑛𝜋 − 1

Solution: By the definition of Fourier sine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 ≤ 𝑙, we have 𝑓

𝑠

𝑛 = ׬

0𝑙

𝐹 𝑥 sin

𝑛𝜋𝑥

𝑙

𝑑𝑥

⇒ 𝑓

𝑠

𝑛 = ׬

0𝜋

𝑒

𝑚𝑥

sin 𝑛𝑥 𝑑𝑥 =

𝑒𝑚𝑥 𝑚 sin 𝑛𝑥−𝑛 cos 𝑛𝑥 𝑚2+𝑛2 0

𝜋

=

1

𝑚2+𝑛2

𝑒

𝑚𝜋

𝑚 sin 𝑛𝜋 − 𝑛 cos 𝑛𝜋 − 𝑒

0

𝑚 sin 0 − 𝑛 cos 0

=

1

𝑚2+𝑛2

𝑒

𝑚𝜋

0 − 𝑛 cos 𝑛𝜋 − 1 0 − 𝑛. 1

=

𝑛(1−𝑒𝑚𝜋cos 𝑛𝜋)

𝑚2+𝑛2

∴ 𝑓

𝑠

𝑛 =

𝑛(1−𝑒𝑚𝜋 cos 𝑛𝜋)

𝑚2+𝑛2

(12)

By the definition of Fourier Cosine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 ≤ 𝑙 , we have 𝑓

𝑐

𝑛 = ׬

0𝑙

𝐹 𝑥 cos

𝑛𝜋𝑥

𝑙

𝑑𝑥

⇒ 𝑓

𝑐

𝑛 = ׬

0𝜋

𝑒

𝑚𝑥

cos 𝑛𝑥 𝑑𝑥 =

𝑒𝑚𝑥 𝑚 cos 𝑛𝑥+𝑛 sin 𝑛𝑥 𝑚2+𝑛2 0

𝜋

=

1

𝑚2+𝑛2

𝑒

𝑚𝜋

𝑚 cos 𝑛𝜋 + 𝑛 sin 𝑛𝜋 − 𝑒

0

𝑚 cos 0 + 𝑛 sin 0

=

1

𝑚2+𝑛2

𝑒

𝑚𝜋

𝑚 cos 𝑛𝜋 − 0 − 1 𝑚 + 0

=

−𝑚(1−𝑒𝑚𝜋 cos 𝑛𝜋)

𝑚2+𝑛2

∴ 𝑓

𝑐

𝑛 =

−𝑚(1−𝑒𝑚𝜋 cos 𝑛𝜋)

𝑚2+𝑛2

Therefore, 𝑓 𝑛 + 𝑓 𝑛 =

𝑛(1−𝑒𝑚𝜋 cos 𝑛𝜋)

+

−𝑚(1−𝑒𝑚𝜋 cos 𝑛𝜋)

=

(𝑚−𝑛)

𝑒

𝑚𝜋

cos 𝑛𝜋 − 1 .

(13)

Example 5.10 Find the Fourier Sine and Cosine Transform of 𝒆

−𝒎𝒙

, 𝒙 ≥ 𝟎. Hence show that 𝒇

𝒔

𝒏 + 𝒇

𝒄

𝒏 =

𝒎+𝒏

𝒎𝟐+𝒏𝟐

.

Solution: By the definition of Infinite Fourier Sine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 < ∞, we have 𝑓

𝑠

𝑛 = ׬

0

𝐹 𝑥 sin 𝑛𝑥 𝑑𝑥

∴ 𝑓

𝑠

𝑛 = ׬

0

𝑒

−𝑚𝑥

sin 𝑛𝑥 𝑑𝑥

=

𝑒−𝑚𝑥 − 𝑚 sin 𝑛𝑥−𝑛 cos 𝑛𝑥

𝑚2+𝑛2 𝑥=0

= 0 −

𝑒−𝑚.0 − 𝑚 sin 0−𝑛 cos 0

𝑚2+𝑛2

; [∵ 𝑒

−∞

= 0]

⇒ 𝑓

𝑠

𝑛 =

𝑛

𝑚2+𝑛2

.

(14)

By the definition of Infinite Fourier Cosine Transform of 𝐹(𝑥) for 0 ≤ 𝑥 < ∞, we have 𝑓

𝑐

𝑛 = ׬

0

𝐹 𝑥 cos 𝑛𝑥 𝑑𝑥

∴ 𝑓

𝑐

𝑛 = ׬

0

𝑒

−𝑚𝑥

cos 𝑛𝑥 𝑑𝑥

=

𝑒−𝑚𝑥 − mcos 𝑛𝑥+𝑛 sin 𝑛𝑥

𝑚2+𝑛2 𝑥=0

= 0 −

𝑒−𝑚.0 − mcos 0+𝑛 sin 0

𝑚2+𝑛2

; [∵ 𝑒

−∞

= 0]

=

𝑚

𝑚2+𝑛2

⇒ 𝑓

𝑐

𝑛 =

𝑚

𝑚2+𝑛2

.

Therefore, 𝑓

𝑠

𝑛 + 𝑓

𝑐

𝑛 =

𝑚+𝑛

𝑚2+𝑛2

.

(15)

Complex Fourier Transform:

The complex Fourier transform of 𝐹(𝑥) is defined by 𝑓 𝑛 = ׬−∞ 𝐹 𝑥 𝑒−𝑖𝑛𝑥 𝑑𝑥.

Example 5.13 Find the complex Fourier transform of 𝑭 𝒙 = 𝒆−𝒂|𝒙| where 𝒂 > 𝟎.

Solution. We have 𝑥 = ቊ−𝑥 𝑖𝑓 𝑥 < 0 𝑥 𝑖𝑓 𝑥 > 0

∴ 𝑓 𝑛 = ׬−∞ 𝑒−𝑎 𝑥 𝑒−𝑖𝑛𝑥 𝑑𝑥 = ׬−∞0 𝑒−𝑎(−𝑥)𝑒−𝑖𝑛𝑥 𝑑𝑥 + ׬0𝑒−𝑎𝑥𝑒−𝑖𝑛𝑥 𝑑𝑥

= ׬−∞0 𝑒𝑎𝑥−𝑖𝑛𝑥 𝑑𝑥 + ׬0𝑒−𝑎𝑥−𝑖𝑛𝑥 𝑑𝑥 = ׬−∞0 𝑒(𝑎−𝑖𝑛)𝑥 𝑑𝑥 + ׬0𝑒−(𝑎+𝑖𝑛)𝑥 𝑑𝑥

= 𝑒 𝑎−𝑖𝑛 𝑥

𝑎−𝑖𝑛 −∞

0

𝑒− 𝑎+𝑖𝑛 𝑥

𝑎+𝑖𝑛 0

= 1

𝑎−𝑖𝑛 𝑒0 − 𝑒−∞1

𝑎+𝑖𝑛 𝑒−∞ − 𝑒0

= 2𝑎

𝑎2+𝑛2

(16)

1. Find the Fourier Sine and Cosine Transform of 𝐹 𝑥 = cos 𝑚𝑥 , 0 ≤ 𝑥 ≤ 𝜋, 𝑚 > 0, hence show that 𝑓𝑠 𝑛 + 𝑓𝑐 𝑛 = 1

𝑚2−𝑛2 −1 𝑛 𝑚 sin 𝑚𝜋 + 𝑛 cos 𝑚𝜋 − 𝑛 Ans. 𝑓𝑠 𝑛 = 𝑛

𝑚2−𝑛2 −1 𝑛 cos 𝑚𝜋 − 1 , 𝑓𝑐 𝑛 = 𝑚

𝑚2−𝑛2 −1 𝑛 sin 𝑚𝜋

2. Find the Fourier Sine and Cosine Transform of 𝐹 𝑥 = 2𝑥, 0 ≤ 𝑥 ≤ 4, 𝑚 > 0, hence show that 𝑓𝑠 𝑛 + 𝑓𝑐 𝑛 = 32

𝑛2𝜋2[cos 𝑛𝜋 1 − 𝑛𝜋 − 1] ;Ans. 𝑓𝑠 𝑛 = −32 cos 𝑛𝜋

𝑛𝜋 , 𝑓𝑐 𝑛 = 32(cos 𝑛𝜋−1) 𝑛2𝜋2

3. Find the Fourier Sine and Cosine Transform of 𝐹 𝑥 = 𝑥2, 0 ≤ 𝑥 ≤ 1 Ans. 𝑓𝑠 𝑛 = −2+(2−𝑛2𝜋2) cos 𝑛𝜋

𝑛3𝜋3 , 𝑓𝑐 𝑛 = 2 cos 𝑛𝜋

𝑛2𝜋2

4. Find the Fourier Sine transform of 𝐹 𝑥 = 2𝑒−5𝑥 + 5𝑒−2𝑥, 0 ≤ 𝑥 < ∞ Ans. 8𝑛

3+133𝑛 (𝑛2+25)(𝑛2+4)

5. Find the Fourier Cosine transform of 𝐹 𝑥 = 2𝑒−5𝑥 + 5𝑒−2𝑥, 0 ≤ 𝑥 < ∞ Ans. 20𝑛

2+290 (𝑛2+25)(𝑛2+4)

Exercises

Referensi

Dokumen terkait

For South African Learners, Teachers and the General Public Essential facts about The disease, the responses and an uncertain future Commissioned by the Academy of Science of South