Uji Homogenitas Marginal Dengan Model Log Linear Pada Tabel Kontingensi Tiga Dimensi Atau Lebih

44  30  Download (1)

Teks penuh

(1)

UJI HOMOGENITAS MARGINAL DENGAN MODEL LOG

LINIER PADA TABEL KONTINGENSI

TIGA DIMENSI ATAU LEBIH

SKRIPSI

ELFRIEDE MAHULAE 070823033

DEPARTEMEN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS SUMATERA UTARA

(2)

UJI HOMOGENITAS MARGINAL DENGAN MODEL LOG

LINIER PADA TABEL KONTINGENSI

TIGA DIMENSI ATAU LEBIH

SKRIPSI

Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Sarjana Sains

ELFRIEDE MAHULAE 070823033

DEPARTEMEN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS SUMATERA UTARA

(3)

ii

PERSETUJUAN

Judul : UJI HOMOGENITAS MARGINAL DENGAN MODEL

LOG LINIER PADA TABEL KONTINGENSI TIGA

DIMENSI ATAU LEBIH

Kategori : SKRIPSI

Nama : ELFRIEDE MAHULAE

Nomor Induk Mahasiswa : 070823033

Program Studi : SARJANA (S1) MATEMATIKA STATISTIK

Departemen : MATEMATIKA

Fakultas : MATEMATIKA DAN ILMU PENGETAHUAN ALAM

(FMIPA) UNIVERSITAS SUMATERA UTARA

Medan, Juni 2009

Komisi Pembimbing:

Pembimbing 2 Pembimbing 1

Drs. H. Haluddin Panjaitan Dra. Rahmawati Pane, M.Si

NIP 130701888 NIP 131 474 682

Diketahui Oleh

Departemen Matematika FMIPA USU

Ketua,

Dr. Saib Suwilo, M.Sc

(4)

PERNYATAAN

UJI HOMOGENITAS MARGINAL DENGAN MODEL LOG LINIER

PADA TABEL KONTINGENSI TIGA DIMENSI ATAU LEBIH

SKRIPSI

Saya mengakui bahwa skripsi ini adalah hasil kerja saya sendiri, kecuali beberapa

kutipan dan ringkasan yang masing masing disebutkan sumbernya.

Medan, Juni 2009

ELFRIEDE MAHULAE

070823033

(5)

PENGHARGAAN

Puji dan Syukur penulis panjatkan kepada Tuhan Yang Maha Pemurah dan Maha

Penyayang, dengan limpah karunia-Nya kertas kajian ini berhasil diselesaikan dalam

waktu yang telah ditetapkan.

Ucapan terima kasih saya sampaikan kepada Dra. Rahmawati Pane, M.Si dan

Drs. H. Haluddin Panjaitan, selaku pembimbing saya pada penyelesaian skripsi ini

yang telah memberikan panduan dan kepercayaan kepada saya untuk

menyempurnakan kajian ini. Panduan ringkas dan padat serta profesional telah

diberikan kepada saya agar penulis dapat menyelesaikan tugas ini. Ucapan terima

kasih juga ditujukan kepada Ketua dan Sekretaris Departemen Matematika FMIPA

USU Dr. Saib Suwilo, M.Sc dan Drs. Henri Rani Sitepu, M.Si., Dekan dan Pembantu

Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sumatra Utara,

semua Dosen pada Departemen Matematika FMIPA USU, pegawai di FMIPA USU

dan rekan-rekan kuliah. Akhirnya tidak terlupakan kepada Bapak dan Mama serta

semua sanak keluarga yang selama ini memberikan bantuan dan dorongan yang

diperlukan. Semoga Tuhan Yang Maha Esa akan membalasnya

(6)

ABSTRAK

Tabel kontingensi dan model log linier merupakan metode statistik yang dapat

diterapkan pada kasus-kasus data kualitatif. Dengan tabel kontingensi dapat diketahui

hubungan antar variabel berskala kualitatif dan dengan analisa log linier dapat

diketahui resiko atau pengaruh dari setiap kategori suatu variabel terhadap variabel

lainnya. Model log linier dapat digunakan untuk mendiskripsikan pola hubungan antar

beberapa variabel kategorik. Dengan pendekatan log linier, angka-angka dalam sel

dapat disusun dalam tabel kontingensi tiga dimensi. Angka-angka tersebut dapat

diselesaikan dalam bentuk perhitungan dan hasil perhitungnnya dapat disajikan dalam

(7)

ABSTRACT

Contingency table and log linier model are statistic method can be used in kualitative

case. By used contingency table could known relation among variable kuaitative scale

and log linier analisis could known risk of each category all variable with others. Log

linier models describe pattern among categorical variables. With the log linier

approach, we model cell counts in a contingency table in term of association among

the variables. The result could count and applied by table anova, and then we can see

the relation of all the variables.

(8)

DAFTAR ISI

Halaman

Persetujuan ii

Pernyataan iii

Penghargaan iv

Abstrak v

Abstract vi

Daftar isi vii

Daftar Tabel viii

Bab 1 Pendahulan 1.1 Latar Belakang 1 1.2 Perumusan Masalah 3

1.3 Tujuan Penelitian 3 1.4 Kontribusi Penelitian 3

1.5 Metode Penelitian 3 1.6 Tinjauan Pustaka 6 Bab 2 Landasan Teori 2.1 Data Kategorik 7 2.2 Analisis Berdasarkan Tabel IxJxK 12

2.3 Ukuran Asosiasi Berdasarkan Tabel 2x2x2 12

2.3.1 Selisih Prevalensi atau Proporsi Bersyarat 12

2.4 Model Log Linier 14

2.4.1 Penerapan Model Log Linier 17

Bab 3 Pembahasan 3.1 Kasus 25

3.2 Pembahasan Contoh Kasus 26

Bab 4 Kesimpulan dan Saran 4.1 Kesimpulan 31

4.2 Saran 32

DAFTAR PUSTAKA

LAMPIRAN

(9)

DAFTAR TABEL

Tabel 1.1. Tabel Kontingensi bxk 2

Tabel 2.1 Tabel Data Untuk Lapis Pertama 10

Tabel 2.2 Tabel Data Untuk Lapis Kedua 11

Tabel 2.3 Banyaknya Responden Menurut Variabel X1,X2danX3 13

Tabel 3.1 Hasil pengujian efisiensi pemakaian insektisida dan herbisida

pada daerah penanaman tomat. 25

Tabel 3.2 Klasifikasi dua arah Antara Insektisida dengan Herbisida 27

Tabel 3.3 Klasifikasi antara insektisida dan Herbisida dengan Daerah Tomat 28

Tabel 3.4 Klasifikasi Dua Arah Berdasarkan Herbisida dan Daerah Tomat 29

Tabel 3.5 Tabel Anava 30

(10)

ABSTRAK

Tabel kontingensi dan model log linier merupakan metode statistik yang dapat

diterapkan pada kasus-kasus data kualitatif. Dengan tabel kontingensi dapat diketahui

hubungan antar variabel berskala kualitatif dan dengan analisa log linier dapat

diketahui resiko atau pengaruh dari setiap kategori suatu variabel terhadap variabel

lainnya. Model log linier dapat digunakan untuk mendiskripsikan pola hubungan antar

beberapa variabel kategorik. Dengan pendekatan log linier, angka-angka dalam sel

dapat disusun dalam tabel kontingensi tiga dimensi. Angka-angka tersebut dapat

diselesaikan dalam bentuk perhitungan dan hasil perhitungnnya dapat disajikan dalam

(11)

ABSTRACT

Contingency table and log linier model are statistic method can be used in kualitative

case. By used contingency table could known relation among variable kuaitative scale

and log linier analisis could known risk of each category all variable with others. Log

linier models describe pattern among categorical variables. With the log linier

approach, we model cell counts in a contingency table in term of association among

the variables. The result could count and applied by table anova, and then we can see

the relation of all the variables.

(12)

BAB I

PANDAHULUAN

1.1 Latar Belakang

Data merupakan sejumlah informasi yang dapat memberikan gambaran/keterangan

tentang suatu keadaan. Informasi yang diperoleh memberikan keterangan, gambaran,

atau fakta mengenai suatu persoalan dalam bentuk kategori, huruf, atau lambang

disebut data kategorik. Fakta menjadikan suatu penelitian memberikan hasil yang

sesuai harapan bila didukung oleh data yang representatif. Data berupa bilangan

disebut data kuantitatif nilainya berubah-ubah atau bersifat variabel. Dari nilainya,

dikenal dua golongan data kuantitatif yaitu data dengan variabel diskrit atau

singkatnya data diskrit dan dengan variabel kontiniu atau singkatnya data kontinu,

sedangkan data bukan bilangan disebut data kualitatif, ini tiada lain daripada data

yang dikategorikan menurut lukisan kualitas obyek yang dipelajari. Misalnya sembuh,

rusak, gagal, berhasil dsb. Kedua data tersebut diklasifikasikan berdasarkan jenis

datanya, dimana data kualitatif atau data kategorik adalah data yang sifatnya hanya

penggolongan saja.

Data kuantitatif adalah data yang berbentuk angka, atau data yang diukur dalam skala

numerik yang diperoleh dengan perhitungan atau pengukuran. Data tersebut dapat

disajikan, penyajian data dilakukan dalam rangka memperjelas secara visual kondisi

data yang bermanfaat dalam pengambilan kesimpulan yang baik secara deskriptif

maupun inferen banyak cara menyajikan data, seperti dalam tabel maupun gambar

(diagram).

Data kualitatif yang dikumpulkan disajikan menurut kualitas atau kategorik yang

digunakan disertai banyaknya frekuensi yang terjadi atau diperoleh. Jika terdapat

lebih dari satu kategori, biasanya data disajikan dalam daftar baris dan kolom.

(13)

Daftar kontigensi bxk, berarti terdapat dua kategori (2 dimensi) masing-masing

memiliki b, k tingkat, dapat ditulis dalam tabel berikut:

Tabel 1.1 Tabel Kontingensi b x k

variabel 2

variabel 1

1

B ... Bj ... B k

Jumlah baris

1

Pada pengujian hipotesa yang menggunakan tabel kontingensi, pertama kali dihitung

kesesuaian frekuensi-frekuensi sel yang diharapkan atau teoritis menurut dasar

hipotesa dalam aturan probabilitas. Jumlah seluruh frekuensi sel yang diharapkan

harus sama dengan jumlah seluruh pengamatan.

Tabel Kontingensi dan Model Log Linier merupakan metode statistik yang dapat

diterapkan pada kasus-kasus data kualitatif. Dengan tabel kontingensi dapat diketahui

hubungan antar variabel berskala kualitatif dengan analisa Log Linier dapat diketahui

resiko atau pengaruh dari setiap kategori suatu variabel terhadap variabel lainnya.

Kelebihan Model log linier adalah dapat menentukan model matematik yang cocok

untuk dependensi lebih dari dua variabel dan dapat digunakan untuk mengetahui ada

(14)

merupakan suatu model statistik yang berguna untuk menentukan

depensi/kecenderungan antara beberapa variabel yang berskala nominal, kategorik.

Untuk uji Homogenitas misalkan untuk setiap baris dari tabel, terhadap distribusi

multinomial dengan sampel tertentu yang merupakan jumlah baris n1,n2,...,nb,maka

model untuk uji homogenitas baris ke i, {yi1,yi2,...yik}berdistribusi

multinomialdengan n 1 trial dan probabilitas pi1,pi2,...,pik, i=1,2,...,b

peristiwaA menunjukkan bahwa kita mengambil sampel dari populasi ke i, semua i

sampel {yi1,yi2,...yik},i=1,2,...,b adalah saling independen.

Dari uraian di atas maka penulis tertarik mengambil judul ”UJI HOMOGENITAS

MARGINAL DENGAN MODEL LOG LINIER PADA TABEL KONTINGENSI

TIGA DIMENSI ATAU LEBIH”

1.2 Perumusan Masalah

Berdasarkan latar belakang di atas, maka permasalahannya adalah bagaimana

penyelesaian suatu kasus dengan menggunakan uji homogenitas marginal dengan

model log linier tiga dimensi atau lebih.

1.3 Tujuan Penelitian

Adapun tujuan penelitian ini adalah untuk mengetahui, menganalisa dan

menyelesaikan suatu kasus dengan uji homogenitas marginal dengan model log linier

(15)

1.4 Kontribusi Penelitian

Penelitian ini diharapkan bermanfaat bagi siapapun, terutama bagi para peneliti

dalam bidang sosial sehingga lebih mudah mengklasifikasikan data yang ingin diteliti

agar lebih mudah untuk diolah, sehingga jelas tujuannya

1.5 Metodologi Penelitian

Metode yang digunakan pada tugas akhir ini bersifat literatur yaitu di susun

berdasarkan rujukan pustaka dan studi kasus, lalu permasalahan yang akan diteliti di

uji dengan langkah sebagai berikut :

Menyusun atau membuat tabel kontingensi tiga dimensi

a) Tentukan hipotesis H

k

c) Statistik uji yang digunakan adalah

n observasi pada variabel ke i, j dan k

=

ijk

e frekuensi harapan jika H benar o

Akan mendekati distribusi Chi-Kuadrat dengan derajat bebas

(b-1)(k-1)

d) Daerah kritis

0

H ditolak jika W > χ2((b−1)(k−1);α), dari persoalan kita hitung

statistik penguji W

e) Kesimpulan

Setelah dihitung hasil perhitungan tersebut dapat ditulis dalam bentuk model log

(16)

Model log linier dapat digunakan untuk mendeskripsikan pola hubungan antar

variabel kategorik. Dengan pendekatan log linier, angka-angka pada sel tabel

kontingensi dapat dimodelkan sedemikian hingga pada tabel tiga dimensi.

Dapat juga diselesaikan dengan menggunakan analisis varian multiklasifikasi, yang

model log liniernya dapat langsung di dapatkan dari tabel anava. Disini penulis akan

menggunakan analisis varian multiklasifikasi.

ijkl ijk jk

ik ij

k j i ijkl

X =µ +α +β +Γ +(αβ) +(αΓ) +(βΓ) +(αβΓ) +ε

Dengan: =

ijkl

X pengamatan ke 1 (1=1,2,…,n) untuk faktor X yang ke i (i=1,2,…,n), factor

Yyang ke j (j=1,2,…,b), dan faktor z yang ke k (k=1,2,…,c) =

µ rata-rata

= i

α pengaruh faktor X yang ke i

=

j

β pengaruh faktor Y yang ke j

=

Γk pengaruh faktor Z yang ke k

=

ij )

(αβ interaksi faktor X yang ke i dengan faktor Y yang ke j

= Γ)ik

(α interaksi faktor X yang ke i dengan faktor Z yang ke k

(βΓ)jk = interaksi faktor Y yang ke j dengan faktor Z yang ke k

(αβΓ)ijk = interaksi faktor X yang ke i, faktor Y yang ke j dengan faktor Z yang ke k

=

ijkl

ε sesatan pengamatan yang bersangkutan

1.6 Tinjauan Pustaka

Tabel Kontingensi, analisis ini merupakan teknik penyusunan data untuk melihat

hubungan antara beberapa variabel dalam satu tabel. Variabel yang dianalisis

merupakan variabel kategorik yang memiliki skala nominal atau ordinal. Untuk

(17)

uji Chi-Square, uji ini digunakan untuk mengetahui adanya hubungan antara variabel

yang diukur tersebut signifikan atau tidak

( Agresti, 1990)

Model Log Linier dapat digunakan untuk menggambarkan pola hubungan antar

variable kategorik. Dengan pendekatan Log linier, angka-angka pada table

kontingensi dapat dimodelkan sedemikian hingga pada tabel kontingensi tiga dimesi

( Agresti, 1990)

Model log-linier mengizinkan pengujian untuk menentukan apakah data dapat

menjadi cocok digambarkan oleh beberapa model tertentu. Untuk contoh ilustrasi, kita

mengikuti prosedur yang relevan untuk pengujian model interaksi orde pertama

(18)

BAB II

LANDASAN TEORI

2.1 Data Kategorik

Data statistik yang diperhatikan dalam setiap analisis atau penelitian pada umumnya

memuat banyak variabel numerik maupun variabel kategorik. Sehingga analisis data

juga dapat dilakukan dengan memakai kedua macam ukuran variabel tersebut. Akan

tetapi, dengan mentransformasikan semua variabel numerik menjadi variabel

kategorik (ordinal) maka kita akan mempunyai suatu data baru dengan semua variabel

kategorik, yang akan disebut data kategorik. Manfaat atau keuntungan yang dapat

diperoleh dengan memakai data kategorik antara lain:

a) Ruang yang diperlukan untuk menyimpan data menjadi sangat

sempit/kecil dibandingkan dengan data aslinya atau data primernya

b) Waktu yang diperlukan untuk melakukan analisis data akan menjadi jauh

lebih singkat daripada memakai data primer menjadi sangat kecil

c) Akhirnya, hasil analisis data kategorik dapat dilakukan atau

dipertanggungjawabkan atas dasar pemikiran sebagai berikut

1. Pada dasarnya, analisis statistik dilakukan dengan tujuan untuk

mempelajari perbedaan atau kesamaan kelompok-kelompok individu

yang dibentuk berdasarkan kategori sebuah variabel atau lebih, antara

lain perbedaan proporsi (persentase), prevalensi atau insiden suatu

peristiwa tertentu antara kelompok individu yang ditinjau.

2. mempelajari asosiasi ganda antar variabel kategorik dengan

menerapkan model log linier, atau model regresi logistik yang meliputi

penerapan statistik Rasio Kesamaan atau Rasio Kecenderungan (RK)

3. Model asosiasi (korelasi) antara variabel kategorik, seperti model

regresi logistik t dinyatakan telah mempunyai pola yang standard atau

baku. Sehingga lebih mudah dapat dipahami dan diulang kembali

dengan memakai berbagai macam data kategorik sesuai dengan

(19)

4. di pihak lain, kesimpulan yang diperoleh berdasarkan model asosiasi

(empiris) antara variabel numerik kerap kali tidak dapat

dipertanggungjawabkan, karena data yang dipakai pada umumnya

bukanlah data yang sesuai.

Data sering terdiri dari sejumlah objek yang terhitung dengan atribut tertentu yang

dimiliki oleh kategori-kategori tertentu yang disusun dalam tabel satu dimensi, dua

dimensi, tiga dimensi atau bahkan dalam tabel berdimensi lebih tinggi lagi, biasanya

disebut tabel kontingensi satu arah, dua arah dan tiga arah. Masing-masing dimensi

atau arah berhubungan dengan sebuah klasifikasi dalam kategori-kategori yang

menyajikan satu atribut.

Tabel satu arah, pengkategoriannya mungkin tidak relevan untuk setiap analisis

statistik. Seseorang dapat memisalkan pernyataan yang dibuat-buat bahwa datanya

merupakan sampel acak dan memperoleh sebuah perkiraan dari median atau rata-rata

tetapi hasilnya tidak informatif atau sah karena datanya tidak dipilih secara acak,

disini kurang pengacakan juga dapat menimbulkan pertanyaan bagaimana (dalam arti

statistik) setiap kesimpulan populasi yang diterapkan. Pengujian ini sebenarnya bukan

non parametrik jika pengujiannya mengenai sebuah parameter p yang merinci

frekuensi terjadinya setiap angka. Ini adalah sebuah uji kecocokan dan goodness of fit

test.

Tabel dua arah, sama formatnya tetapi berbeda dalam status logikanya. Datanya

terdiri dari dua sampel bebas. Namun demikian dalam dua kasus tersebut masih

digambarkan bahwa pembedaannya dapat diabaikan untuk ukuran sampel yang cukup

yang besar, dan dapat digunakan uji untuk sampel besar yang sama tanpa memandang

apakah pemilihannya menetapkan hanya jumlah keseluruhan yang akan diambil

sampelnya dan kemudian mencatat jumlah masing-masing kelas. Pada suatu keadaan,

kita hanya menetapkan total keseluruhannya pada keadaan lain kita menetapkan tabel

keseluruhan dan total baris. Hal ini juga mungkin untuk menetapkan total keseluruhan

dan total kolom, dan sama dengan pertukaran baris dan kolom. Pendekatan uji sampel

(20)

keadaan tersebut, dan merupakan uji terpenting yang tergantung pada total baris dan

kolom pengamatan. Uji sampel besar yang cocok digunakan adalah uji Q Cochran

Tabel multiarah, bila tabel dua arah dengan mudah disajikan pada kertas, tabel tiga

arah atau lebih paling baik disajikan dengan subtabel-subtabel dan lebih dari satu

penyajian selalu mungkin. Setelah data tersebut diberikan dalam tabel lebih baik

untuk analisis selanjutnya dengan memasukkan tabel marginal yang ditunjukkan.

Pembaca dapat menyusun data ini dengan susunan logika yang berbeda meskipun

pengujian untuk kebebasan dapat diperluas dari tabel dua arah sampai multi arah, dan

uji berpasangan mengenai kebebasan dapat digunakan, sehingga analisisnya biasanya

tidak cukup( tidak efisien) dan kita sering tertarik dalam menguji dengan lebih

mengembangkan hipotesis-hipotesis, atau bahkan serangkaian hipotesis.

Banyak eksperimen secara simultan mempelajari lebih dari dua independen variabel

atau lebih dari dua faktor. Misalnya eksperimen bias melibatkan dua kategori atau dua

tingkatan dari satu faktor, tiga kategori dari faktor yang kedua, 5 kategori atau lima

tingkat dari faktor yang ketiga, dengan sejumlah n subjek yang ditarik secara acak

dari masing-masing 2x3x5 kelompok eksperimen tersebut. Ekperimen seperti itu

dikenal dengan nama ‘2x3x5 faktorial eksperimen’. Data yang diperoleh dari

eksperimen seperti itu dapat dikonseptualisasikan sebagai kubus bertiga dimensi, yang

terdiri dari 2 baris, 3 kolom dan 5 lapis, dengan masing-masing n subjek dari 30 sel

yang berbeda dalam eksperimen tersebut.

Analisis dan interpretasi dari data yang dihasilkan dari eksperimen seperti itu adalah

merupakan perluasan langsung dari analisis dan interpretasi dari klasifikasi dua arah.

Dalam suatu eksperimen dua-faktor dengan n subjek dalam setiap sel, jumlah kuadrat

total terbagi dalam empat bagian, yaitu: jumlah kuadrat antar baris, jumlah kuadrat

antar kolom, jumlah kuadrat interaksi dan jumlah kuadrat sel dalam. Setiap jumlah

kuadrat mempunyai sebuah angka yang menjadi angka derajat kebebasan. Jumlah

(21)

atau rata-rata kuadrat yang digunakan untuk menguji signifikansi pengaruh utama dan

interaksi.

Umpamakan sejumlah eksperimen yang melibatkan sejumlah R tingkatan dari faktor

pertama, sejumlah C tingkatan dari faktor kedua, dan sejumlah L tingkatan dari faktor

ketiga. Jumlah sel menjadi sebanyak RxCxL yang disingkat menjadi RCL. Misalkan

khusus dalam kasus ini kita mempunyai satu alat pengukuran untuk setiap kombinasi

RCL, jumlah total hasil pengukuran menjadi N. data untuk lapis pertama dari

angka-angka hasil pengukuran itu dapat dituliskan sebagai berikut:

Tabel 2.1 Tabel Data Untuk Lapis Pertama

(22)

Dalam subskrip di atas diidentifikasikan, yang pertama sebagai baris, yang kedua

sebagai kolom dan yang ketiga sebagai lapis. Dengan demikian, misalnya e321

menunjukkan observasi pada baris ketiga kolom kedua dari lapis pertama.

_

e .11 adalah

rata-rata dari kolom pertama dari lapis petama, sedang

_

e ..1rata-rata dari semua

observasi yang ada pada lapis pertama.

Adapun notasi pada lapis kedua adalah sebagai berikut:

Tabel 2.2 Tabel Data Untuk Lapis Kedua

(23)

Demikian juga halnya dapat ditunjukkan lapis yang ketiga, keempat sampai lapis yang

ke-L. secara umum erc1 menunjukkan yang menunjukkan hasil pengukuran baris yang

ke-r, pada kolom yang ke-c dan pada baris yang ke-1.harus dipahami bahwa R

menunjukkan angka dari baris, C merupakan angka dari kolom dan L merupakan

angka dari lapis. Jumlah r menunjukkan baris yang ke-r, dimana r bias saja berupa

angka 1, 2,…R. demikian juga dengan c dan 1 menunjukkan kolom yang ke c dan

lapis yang ke-1.

Rata-rata dari semua RCL= N adalah ...

_

Χ jumlah kuadrat simpangan total dari

rata-rata umum tadi dapat dituliskan:

2

1 1 1

...)

(Xrcl X

L

l C

c R

r

= = =

2.2 Analisis Berdasarkan Tabel IxJxK

Berdasarkan data trivariat (V1, V2,V3) dengan berbagai skala ukuran, selalu dapat

dibentuk tabel berdimensi tiga, termasuk tabel 2x2x2. Dengan sendirinya langkah

pertama yang harus dilakukan adalah mentransformasikan atau mengubah ketiga

variabel yang ditinjau menjadi variabel kategorik, berdasarkan kriteria yang

disepakati atau ditentukan.

Disini akan diperhatikan tiga variabel satu-nol, dimana simbol Y dipakai untuk

menyatakan variabel tak bebas atau variabel respon dan kedua variabel lainnya

sebagai variabel bebas yang akan dinyatakan dengan simbol X1 dan X2. Penentuan

variabel tak bebas dan variabel bebas diantara komponen trivariat (V1,V2,V3)

haruslah didukung oleh landasan teori dan substansi, karena pola asosiasi antar

variabel ditentukan secara teoritis. Dipihak lain, secara statistik koefisien asosiasi atau

korelasi antara variabel selalu dapat dihitung walaupun variabel tersebut tidak

berasosiasi secara substansi. Sehingga, analisis statistika berdasarkan data trivariat

(24)

statistik yang sesuai dengan pola hubungan teoritis antar ketiga variabel yang ditinjau,

yang akan disebut model teoritis.

2.3 Ukuran Asosiasi Berdasarkan Tabel 2x2x2

2.3.1 Selisih Prevalensi atau Proporsi Bersyarat

Tabel berikut menunjukkan suatu bentuk tabel 2x2x2. tabel ini menyajikan banyaknya

observasi menurut variabel X1,X2 dan Y yang masing-masing merupakan variabel

satu- nol. Perhatikanlah tabel ini mempunyai empat buah baris dan dua buah kolom

dan banyaknya observasi dalam tiap-tiap sel dinyatakan dengan simbol Oijk untuk

setiap i, j dan k sama dengan satu atau nol

Tabel 2.3 Banyaknya Responden Menurut Variabel X1, X2 dan X3

Variabel Y

X1=1 Y=1 Y=0 Jumlah

X2=1 0111 0110 011+

X2=0 0101 0100 010+

.

.

.

.

.

.

.

.

.

.

.

.

X2=1 0011 0010 001+

X2=0 0001 0000 000+

(25)

Sebenarnya tabel ini menggambarkan ruang bedimensi –tiga (kubus) dengan sumbu

X1, X2 dan Y, yang dibagi menjadi 8 (2x2x2) buah kubus kecil yang membentuk

delapan buah sel yang dikemukakan di atas.

2.4 Model Log Linier

Dalam kategorik bivariat dimana diperoleh nilai statistik Chi-kuadrat dari pearson

(Pearson Chi-Kuadrat) dan Rasio Kesamaan. Akan tetapi untuk mempelajari pola

asosiasi ganda berdasarkan data trivariat atau lebih harus diterapkan Model Log

Linier, terlebih-lebih jika model yang ditinjau secara teoritis menunjukkan hubungan

antara demikian banyaknya variabel. Model statistik Model Log Linier akan dipakai

untuk mempelajari apakah data sampel yang akan dipakai mendukung atau tidak

mendukung model asosiasi ganda yang dihipotesiskan dinyatakan atau diasumsikan

berlaku untuk ketiga variabel yang ditinjau.

Analisis yang lebih terinci mengenai tabel kontingensi tiga dimensi atau yang

biasanya menggunakan pengujian pasangan yang tidak sederhana dari kebebasan yang

dapat dilakukan pada bagian-bagian dari tabel-tabel dua arah. Sejumlah besar dari

model-model yang berbeda adalah mungkin dan teknik analitik yang modern sering

didasarkan pada model log-linier. Dalam sebuah buku dasar-dasar statistik, hal ini

cocok hanya untuk memberikan pengenalan singkat untuk model dan pengujian, dan

dijelaskan dengan satu contoh sederhana. Teknik-teknik analitik adalah data diskrit

yang analog dengan analisis varians untuk data kontinu. Pembaca yang belum kenal

dengan analisis varians model linier untuk rancangan percobaan dengan struktur

percobaan faktorial mungkin sulit untuk mengikuti bagian ini, tetapi diharapkan

sebuah penjelasan yang mendasar akan memberikan beberapa indikasi tentang

kekuatan model linier sebagai sebuah alat analitik. Penerapan yang lebih sulit dari

metode ini membutuhkan pengetahuan yang luas mengenai statistik dan tersedianya

program komputer yang cocok.

Misalkan {mijk} merupakan frekuensi harapan, dugalah semua mijk>0 dan misalkan

ijk ijk =logm

η . Tanda dot dibawah merupakan rata-rata, seperti: η.jk =(

iηijk)/I

(26)

...

Jumlah semua parameter di atas sama dengan nol, yaitu:

=

=

=

=

= =

=

Sehingga bentuk umum model log linier untuk tabel kontingensi tiga dimensi, adalah:

XYZ

Dalam hal pengujian ini juga sama dengan analisis variansi tiga dimensi.

Beberapa model log linier untuk tabel tiga dimensi:

Model log-linier simbol

Z

log (XY,YZ,XZ)

(27)

Untuk menunjukkan model log-linier kita cari bentuk marginal dan partialnya dengan

Dengan k dalam Z, hubungan odds ratiosnya:

k

Menunjukkan hubungan X-Y. Sama halnya antara X dan Y didapatkan dari (I-1)(K-1)

Odds ratios {θi(j)k}untuk setiap J pada Y, dan hubungan antara Y dan Z didapatkan

dari (J-1)(K-1) odds ratios {θ(i)jk} untuk setiap I pada X.

Untuk tabel tiga dimensi logmijkdalam log odds ratios, didapat:



ratios antara dua variabel sama dengan tiga variabel. Bentuk umumnya

}

Seperti dalam kasus dua dimensi parameternya sebanding pada log odds ratios. Model

Log linier dapat dikenal dengan menggunakan hubungan odds ratios. Dalam hal

hubungan independent antara X dan Y equivalent terhadap

(28)

Kenudian kita berikan satu keadaan yang cukup terhadap X-Y odds ratios menjadi

sama dalam tabel parsial seperti pada tabel marginal. Ketika keadaan sama kita dapat

mempelajari gabungan X-Y dengan cara menyederhanakan menyelesaikan dimensi Z.

selanjutnya, Z akan menjadi variabel tunggal atau multidimensi.

)

Dengan kata lain, gabungan marginal da parsial X-Y disamakan jika Z dan X bebas

(i.e, disimbolkan dengan (XY,YZ)terikat), atau jika Z danY bebas (i.e, bentuknya

(XY,XZ)terikat)

2.4.1 Penerapan Model Log Linier Data Trivariat

Dalam sebuah tabel kontingensi dua dimensi, nilai harapan e untuk sel ij dengan ij

hipotesis kebebasan atau tidak ada asosiasi adalah eij=

N

diagonal adalah sama, atau

1

Sifat perkalian dan harapan untuk kebebasan ini dapat dibandingkan dengan sifat

harapan aditif bila tidak ada interaksi dalam model liniernya. Sebenarnya ada

kesamaan model-model jika kita mengambil logaritma eij dan menulis x lneij

~

= ini

(29)

1

adalah sebuah kondisi yang diperlukan untuk kebebasan, maka selanjutnya

setiap hipotesis yang menyebutkan ketergantungan menyatakan sebuah hubungan

yang lebih umum

1

Dengan mengambil logaritmanya kita mempunyai analog model yang berinteraksi.

Perluasan untuk tabel tiga dimensi, modelnya dapat diperluas untuk tabel r x c dan

lebih penting untuk tabel multi arah. Pertama, kita membuat perluasan dari model

linier untuk tiga faktor masing-masing dengan dua level dalam konteks analisis

varians. Pengukuran interaksi telah diperkenalkan dalam model dua faktor yang

disebut sebuah orde pertama atau kadang-kadang disebut sebuah interaksi dua faktor.

Jika kita mempunyai tiga faktor masing-masing pada dua level, kita dapat menyajikan

hasil yang diharapkan dalam sebuah perluasan yang jelas dari notasi xijk

~

i, j, k = 1,2 .

Jika kita mempertimbangkan dua faktor pertama pada level pertama dari faktor ketiga

(ditunjukkan dengan k=1) kita akan mempunyai sebuah interaksi pertama antara

faktor 1 dan faktor 2 pada level tetap faktor 3 ini jika x111+x221−x121−x211 =Ι,Ι≠0

sebagai tambahan, jika kita mempunyai sebuah interaksi orde pertama antara faktor 1

dan faktor 2 pada level kedua dari faktor 3 ( k= 2 ), ini menyatakan

~

x 212= J, J=0. jika IJ kita katakana tidak ada interaksi orde kedua antara ketiga

faktor. Jika IJ kita katakan tidak ada sebuah interaksi orde kedua atau orde

ketiga. Jika I= J= 0 mempunyai model tidak ada interaksi. Dalam konteks dari model

log-linier dimana kita tulis

~

x ijk=lneijk dimana eijk adalah harapan untuk level ke-i

klasifikasi 1, untuk level ke-j klasifikasi 2, untuk level ke-k klasifikasi 3, model

dengan tidak ada interaksi berhubungan dengan kebebasan dan eijk menjadi:

(30)

Ketergantungan dapat menjadi orde pertama atau kedua (ditunjukkan untuk interaksi

orde pertama atau kedua dalam model log-linier). Untuk interaksi model pertama:

k

Model log-linier mengizinkan pengujian untuk menentukan apakah data dapat

menjadi cocok digambarkan oleh beberapa model tertentu. Untuk contoh ilustrasi, kita

mengikuti prosedur yang relevan untuk pengujian model interaksi orde pertama.

Dalam kasus dalam sebuah tabel kontingensi tiga dimensi, penduga maksimum

likelihood darieijk, yang akan dinotasikan dengan

^

e ijk harus memenuhi kondisi:

(ẽ111221)/(ẽ121211)= (ẽ112222)/(ẽ122212)

Dengan batasan bahwa

^

e ijk harus juga jumlah untuk total marginal yang diamati

setiap akhiran. Pada umumnya, penduga maksimum likelihood hanya dapat diperoleh

dengan metode yang berulang-ulang( salah satunya dikenal dengan iterative scaling

procedure); akan tetapi dalam kasus khusus dari tabel tiga dimensi dengan model

interaksi orde pertama, perhitungan pertama adalah langsung. Sekali

^

e ijk telah

dihitung, statistik T atau T1untuk tabel tiga dimensi digunakan untuk pengujian nyata.

T1sering lebih disukai karena dari sifat aditif tertentu yang memungkinkan terbagi

kedalam komponen-komponen, analog dengan cara yang dilakukan untuk jumlah

kuadrat orthogonal dalam analisis varians.

Suatu penelitian yang meneliti tiga faktor ( X, Y dan Z ) yang masing-masing

(31)

tingkatan dan faktor Z dalam z tingkatan. Percobaan tersebut merupakan percobaan

faktorial xxyxz. Dengan demikian banyak perlakuan yang dicobakan adalah t=xyz.

Andaikan bahwa tiap perlakuan diulang dengan ulangan yang sama sebanyak n

(ukuran contohnya n). tentu saja pada percobaan demikian, data yang diperoleh akan

beragam yang dapat dikaitkan dengan tingkat masing-masing faktornya. Dengan

demikian dapat dituliskan:

ijkl

X pengamatan ke 1 (1=1,2,…,n) untuk faktor X yang ke i (i=1,2,…,n), faktor Y

yang ke j (j=1,2,…,b), dan faktor z yang ke k (k=1,2,…,c)

ε sesatan pengamatan yang bersangkutan

Penduga masing-masing komponen dalam model di atas diduga dengan cara yang

sama seperti yang sudah biasa dilakukan. Penduga yang didapat adalah:

(32)

( )ij =

Berbagai penduga ini dengan mudah dapat kita peroleh apabila kita lihat pola untuk

mendapatkannya. Penduga pengaruh suatu tingkat suatu faktor merupakan selisih

antara rerata tingkat faktor tersebut dengan rata-rata keseluruhan data. Perhatikan

notasinya yang ternyata berupa satu indeks saja yang lainnya titik ( i atau j atau k saja,

yang lainnya berupa titik) dan pengurangnya mempunyai indeks yang berupa titik

semua. Pada interaksi dua faktor, penduganya didapat dengan jalan mengurangi

rata-rata gabungan tingkat kedua faktornya dengan rata-rata-rata-rata tingkat masing-masing faktor

dan kemudian ditambah dengan rata-rata keseluruhan data. Menyimak indeksnya,

penduga interaksi dua faktor ini didapat dengan jalan mengurangi rata-rata yang

berindeks dua ( i dan j, i dan k, atau j dan k sedangkan lainnya berupa titik) dengan

rata-rata yang berindeks satu yang persis dengan indeks duanya dan kemudian

ditambah rata-rata keseluruhan data yang semua indeksnya berupa titik.

Seperti halnya dengan analisis varian yang terdahulu, berbagai jumlah kuadrat didapat

tidak dengan menggunakan berbagai penduga diatas tetapi dalam bentuk yang telah

disederhanakan terlebih dahulu. Untuk jumlah kuadrat X

(33)

Karena ...

perhatikan bahwa JKX didapat dengan menjumlahkan kuadrat jumlah masing-masing

tingkat faktor X (dijumlah terhadap i) yang dibagi dengan sesuatu yang besarnya

sama dengan batas indeks yang berubah menjadi titik. Dalam hal ini indeks yang

berubah menjadi titik adalah j, k, dan l yang mempunyai batas nilai y, z dan n.

perhatikan bahwa rumus untuk jumlah kuadrat ini bertalian dengan rumus untuk

penduganya. Penduga untuk pengaruh X yang ke i adalah rata-rata dengan indeks i (

yang lainnya berupa titik) dikurangi dengan rata-rata dengan semua indeksnya berupa

titik rumus JKX juga mempunyai indeks i yang dikurangi dengan sesuatu yang tanpa

indeks, yaitu FK. Maka dengan mudah diperoleh JKY dan JKZ, sebagai berikut:

JKY = FK

Sekarang akan kita lihat bagaimana penyederhanaan jumlah kuadrat interaksi dua

faktor. Kita akan simak terlebih untuk interaksi antara X dan Y:

JKXY = 2

Yang apabila disederhanakan akan diperoleh:

(34)

Dalam kaitannya dengan rumus untuk penduganya, lihat keterkaitan antara rumus

penduga dan jumlah kuadrat suatu komponen. Rumus penduga komponen interaksi

XY didapat dengan mengurangi rata-rata berindeks dua ( yaitu i dan j untuk X dan Y)

dengan rata-rata berindeks satu untuk X dan berideks satu untuk Y, dan akhirnya

ditambah dengan rata-rata yang semua indeksnya berupa titik ( tidak berindeks).

Penyederhanaan lebih lanjut akan menghasilkan:

JKXY = FK JKX JKY

Perhatikan bahwa jumlah kuadrat interaksi X dan Y didapat dengan menjumlahkan

semua jumlah pada kombinasi X dan Y yang dibagi dengan sesuatu yang merupakan

nilai batas indeks yang berupa titik dalam hal ini indeks yang berupa titik adalah

untuk k dan l yang mempunyai batas z dan n sehingga sebagai pembagi adalah zn,

dikurangi dengan faktor koreksi dan dikurangi lagi dengan jumlah kuadrat

faktor-faktor yang menyusun interaksinya.

Jumlah kuadrat interaksi tiga faktornya didapat dari:

JKXYZ = 2

Yang apabila disederhanakan akan menghasilkan:

JKXYZ =

Derajat bebas berbagai jumlah kuadrat diatas dapat dengan mudah diperoleh dengan

memperhatikan beberapa kali pengkuadratan yang kita jumlahkan dan kurangkan.

(35)

sekali untuk memperoleh faktor koreksi yang kemudian kita gunakan untuk

mengurangi. Dengan demikian derajat bebas X adalah ( x-1). Analogi dengan X

adalah untuk Y dan Z.

Untuk interaksi dua faktor, XY misalnya kita mengkuadratkan sebanyak xy kali yang

kemudian kita jumlahkan, kemudian dikurangi dengan FK (yang diperoleh dengan

sekali mengkuadratkan) dan dikurangi lagi dengan JKX dan JKB yang mempunyai

derajat bebas (x-1) dan (y-1). Dengan demikian derajat bebas XY adalah:

xy-1-(x-1)-(y-1)=(x-1)(y-1)

dengan cara yang sama kita dapatkan bahwa interaksi XZ mempunyai derajat bebas

(x-1)(z-1) dan interaksi YZ mempunyai derajat bebas (y-1)(z-1). Derajat bebas

interaksi tiga faktor XY pun diperoleh dengan cara yang sama. Suku pertama pada

rumus jumlah kuadrat XYZ menunjukkan bahwa kita harus mengkuadratkan xyz kali,

sedangkan derajat bebas suku-suku pengurangannya telah kita ketahui. Dengan

demikian derajat bebas untuk interaksi XYZ adalah:

xyz-1-(x-1)(y-1)-(x-1)(z-1)-(y-1)(z-1)-(x-1)-(y-1)-(z-1) yang telah disederhanakan

akan berubah menjadi (x-1)(y-1)(z-1)

(36)

BAB III

PEMBAHASAN

Suatu penelitian yang meneliti tiga faktor ( X, Y dan Z ) yang masing-masing

dicobakan dalam berbagai tingkatan. Faktor X dalam x tingkatan, faktor Y dalam y

tingkatan dan faktor Z dalam z tingkatan. Percobaan tersebut merupakan percobaan

faktorial xxyxz. Dengan demikian banyak perlakuan yang dicobakan adalah t=xyz.

Andaikan bahwa tiap perlakuan diulang dengan ulangan yang sama sebanyak n

(ukuran contohnya n). tentu saja pada percobaan demikian, data yang diperoleh akan

beragam yang dapat dikaitkan dengan tingkat masing-masing faktornya.

3.1 Kasus

Tabel 3.1 Hasil pengujian efisiensi pemakaian insektisida dan herbisida pada

daerah pertanaman tomat.

PENGULANGAN PENANAMAN TOMAT Insektisida

X

Herbisida Y

Daerah

Tomat Z 1 2 3 4 5 Jumlah

1 1 1 67 66 62 71 69 335

2 72 67 75 70 71 335

3 78 81 67 76 75 377

1 2 1 67 71 72 70 81 361

2 79 80 81 80 85 405

3 78 78 77 83 79 395

2 1 1 54 51 47 51 59 262

2 52 56 52 52 53 265

3 63 54 65 62 60 304

2 2 1 54 56 58 51 57 276

2 57 58 61 59 55 290

3 60 68 61 61 67 317

(37)

3.2 Pembahasan Contoh Kasus

Dengan menggunakan tabel anava maka dapat dilihat model log linier dengan

menggunakan langkah-langkah perhitungan sbb:

Menentukan hipotesis:

k

Dengan tingkat signifikansi 5%

H0 ditolak jika Fhit > F0,05;k1,K(b1)

Kemudian pecahlah JK sesatan ini atas berbagai jumlah kuadrat faktor-faktornya dan

interaksi-interaksinya. Untuk keperluan ini buatlah tabel penolong, yaitu tabel

klassifikasi dua arah: insektisida dan herbisida , insektisida dengan daerah tomat, dan

herbisida dengan daerah tomat. Mulailah dengan membuat tabel klasifikasi dua arah

insektisida dengan herbisida dengan jalan menjumlah semua data yang berada pada

masing-masing kombinasi tingkatan insektisida dan herbisida.

(38)

Tabel 3.2 Klasifikasi dua arah Antara Insektisida dengan Herbisida

Insektisida Herbisida (Y) Jumlah

(X) 1 2 Xi...

1 1067 1161 2228

2 831 883 1714

Jumlah X. j.. 1898 2044 3942

Kemudian hitung JK masing-masing faktor dan JK interaksinya.

JKX = + −FK

) 5 )( 3 ( 2

1714

22282 2

= 263392,7-258989,4

= 4403,3

JKY = + −FK

) 5 )( 3 ( 2

2044

18982 2

= 259344,7-258989,4

= 355,3

Sedangkan jumlah kuadrat interaksinya:

JKXY = + + + −FKJKXJKY

) 5 )( 3 (

883 831

1161

10672 2 2 2

= 263777,3- 258989,4- 4403,3-355,3

= 29,3

Karena tabel penolong berbentuk tabel 2x2, maka dapat dihitung berbagai jumlah

(39)

JKX =

Sedangkan jumlah kuadrat interaksinya:

JKXY =

Yang bertindak sebagai pembagi untuk berbagai jumlah kuadrat di atas, baik suatu

faktor maupun interaksi, selalu sama ialah banyak data yang ada. Kemudian bentuklah

tabel dua klasifikasi antara insektisida dan herbisida dengan daerah tomat.

Tabel 3.3 Klasifikasi antara insektisida dan Herbisida dengan Daerah Tomat

Insektisida Daerah Tomat (Z) Jumlah

(X) 1 2 3 X i..

1 696 760 772 2228

2 538 555 621 1714

Jumlah X..k. 1234 1315 1393 3942

Seperti halnya dengan tabel penolong sebelumnya, maka akan diperoleh jumlah

kuadrat faktor-faktor klasifikasi ( insektisida pada daerah Tomat) dan interaksinya.

(40)

sebelumnya, maka yang dihitung hanya jumlah kuadrat daerah tomat dan jumlah

kuadrat interaksi saja.

JKZ = + + −FK

) 5 )( 2 ( 2

1393 1315

12342 2 2

= 259621,5 – 258989,4

= 632

Sedangkan jumlah kuadrat interaksinya:

JKXZ = + + + −FKJKXJKZ

) 5 )( 2 (

621 ... 760

6922 2 2

= 264111,0- 258989,4- 4403,0- 632,1

= 86,2

Yang terakhir buatlah tabel penolong yang merupakan klasifikasi dua arah, yaitu

berdasarkan herbisida dan daerah tomat.

Tabel 3.4 Klasifikasi Dua Arah Berdasarkan Herbisida dan Daerah Tomat

Herbisida (Y) Daerah Tomat (Z) Jumlah

1 2 3 Xj..

1 597 620 681 1898

2 637 695 712 2044

Jumlah X..k. 1234 1315 1393 3942

Karena jumlah kuadrat untuk herbisida dan jumlah kuadrat daerah tomat sudah

dihitung dengan menggunakan dua tabel penolong sebelumnya, maka dari tabel ini

(41)

JKYZ = + + + −FKJKYJKC

) 5 )( 2 (

712 ... 620

5972 2 2

= 260030,8- 258989,4- 355,3- 632,1

=54,0

Dengan demikian jumlah kuadrat interaksi tiga faktor dapat dihitung dengan jalan

mengurangkan semua jumlah kuadrat masing-masing faktor jumlah kuadrat interaksi

dua faktor ke jumlah kuadrat perlakuan:\

JKXYZ = JK Perlakuan- JKX- JKY- JKZ-JKXY- JKXZ-JKYZ

= 5570,6- 4403,3- 355,3- 632,1-86,2-293- 54,0

= 10,4

Dengan demikian dapat juga kita susun tabel anavanya:

Tabel 3.5 Tabel Anava

Sumber Ragam db JK KT FHit FTab

Perlakuan 11 5570,6

X 1 4403,30 44,30 344,01 4,04

Y 1 355,3 355,3 27,76 4,04

Z 2 632,1 316,05 24,69 3,19

XY 1 29,3 29,30 2,29 4,04

XZ 2 86,2 43,10 3,37 3,19

YZ 2 54,0 27,00 2,11 3,19

XYZ 2 10,4 5,20 0,41 3,19

Sesatan 48 614,0 12,80

(42)

BAB IV

PENUTUP

4.1 Kesimpulan

1. Perhitungan-perhitungan dalam tabel anava dengan jelas menunjukkan

model log linier yaitu hubungan antar variabel yang satu dengan variabel

lainnya.

2. Untuk menyelesaikan persoalan dalam bentuk data, penggunaan tabel

kontingensi akan sangat membantu karena dari tabel tersebut dapat dilihat

hubungan antar variabel-variabelnya.

3. Hasil analisis menunjukkan herbisida tidak berinteraksi baik dengan

insektisida maupun dengan daerah pertanaman tomat dan menunjukkan

pengaruh yang nyata. Jadi di daerah pertanaman tomat mana saja,

herbisida 2 menunjukkan efisiensi yang lebih tinggi dibandingkan dengan

herbisida 1, baik dengan insektisida 1 maupun insektisida 2. Sedangkan

insektisida berinteraksi dengan daerah pertanaman tomat. Ini berarti bahwa

efisiensi insektisida tergantung pada daerah pertanaman tomatnya.

Pengujian pengaruh insektisida menunjukkan hasil yang signifikan

4. Penggunaan insektisida 1 memberikan hasil yang kurang lebih setara pada

daerah pertanaman Tomat 2 dan 3, yang lebih baik daripada daerah hasil

pertanaman tomat 3. namun dengan insektisida 2, hasilnya pada daerah

pertanaman 1 dan 2 kurang lebih serupa, tetapi lebih rendah dari hasil pada

daerah pertanaman 3. Seandainya pengujian pengaruh insektisida

menunjukkan hasil yang tidak nyata, interaksi insektisida dengan daerah

pertanaman tomat merupakan petunjuk bahwa penggunaan insektisida

memberikan pengaruh, hanya pengaruhnya tergantung pada daerah

pertanaman tomatnya seperti yang telah diuraikan. Jadi, apabila interaksi

menunjukkan hasil yang nyata, tidak perlu melihat pada hasil pengujian

(43)

4.2 Saran

1. Untuk menggunakan insektisida dan herbisida petani hendaknya terlebih

dahulu melihat keadaan lahan apakah cocok digunakan insektisida maupun

herbisida.

2. Petani lebih baik menggunakan insektisida daripada herbisida karena

(44)

DAFTAR PUSTAKA

Agresti, Alan (1990), Categorical Data Analysis, John Wiley & Sons, Inc.,

Canada

Adbul Syani. 1995. Pengantar Metode Statistik Non Parametrik. Jakarta:

Pustaka Jaya

Pearson E.S dan H.O. Hartley. 1970. Biometrical Tables for Statisticians.

Vol. I. Cambridge University Press.

Pollet. A, Nasrullah. Penggunaan Statistika Untuk Ilmu Hayati.

Yogyakarta: UGM-Press

Rahman Ritonga. A. 1997. Statistika Untuk Penelitian Psikologi dan

Pendidikan. FE-UI

Saleh Samsubar. 1990. Statistik Non Parametrik. Jakarta

Sprent. P. 1991. Metode Statistik Nonparametrik Terapan.

Jakarta:UI-Press.

Sudjana.1992. Metoda Statistika. Bandung: Tarsito

Suparman, I.A., M.Sc.1990. Statistik Sosial. Jakarta: Rajawali Press

Figur

Tabel 1.1 Tabel Kontingensi b x k

Tabel 1.1

Tabel Kontingensi b x k p.13
Tabel 2.1 Tabel Data Untuk Lapis Pertama

Tabel 2.1

Tabel Data Untuk Lapis Pertama p.21
Tabel 2.2 Tabel Data Untuk Lapis Kedua

Tabel 2.2

Tabel Data Untuk Lapis Kedua p.22
Tabel 2.3 Banyaknya Responden Menurut Variabel X 1, X 2  dan X 3

Tabel 2.3

Banyaknya Responden Menurut Variabel X 1, X 2 dan X 3 p.24
Tabel 3.1 Hasil pengujian efisiensi pemakaian insektisida dan herbisida pada

Tabel 3.1

Hasil pengujian efisiensi pemakaian insektisida dan herbisida pada p.36
Tabel 3.2 Klasifikasi dua arah Antara Insektisida dengan Herbisida

Tabel 3.2

Klasifikasi dua arah Antara Insektisida dengan Herbisida p.38
Tabel 3.3 Klasifikasi antara insektisida dan Herbisida dengan Daerah Tomat

Tabel 3.3

Klasifikasi antara insektisida dan Herbisida dengan Daerah Tomat p.39
Tabel 3.4 Klasifikasi Dua Arah Berdasarkan Herbisida dan Daerah Tomat

Tabel 3.4

Klasifikasi Dua Arah Berdasarkan Herbisida dan Daerah Tomat p.40
Tabel 3.5 Tabel Anava

Tabel 3.5

Tabel Anava p.41

Referensi

Memperbarui...