• Tidak ada hasil yang ditemukan

Pendekatan Baru untuk Verifikasi Integritas Peta Digital Berbasis Fitur Menggunakan Fragile Watermark

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pendekatan Baru untuk Verifikasi Integritas Peta Digital Berbasis Fitur Menggunakan Fragile Watermark"

Copied!
33
0
0

Teks penuh

(1)

PENDEKATAN BARU UNTUK VERIFIKASI INTEGRITAS

PETA DIGITAL BERBASIS FITUR MENGGUNAKAN

FRAGILE

WATERMARK

YUDHY HARYANTO WIJAYA

DEPARTEMEN ILMU KOMPUTER

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

(2)
(3)

PERNYATAAN MENGENAI SKRIPSI DAN

SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA

Dengan ini saya menyatakan bahwa skripsi berjudul Pendekatan Baru untuk Verifikasi Integritas Peta Digital Berbasis Fitur Menggunakan FragileWatermark

adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor.

Bogor, April 2014

Yudhy Haryanto Wijaya

(4)

ABSTRAK

YUDHY HARYANTO WIJAYA. Pendekatan Baru untuk Verifikasi Integritas Peta Digital Berbasis Fitur Menggunakan Fragile Watermark. Dibimbing oleh SHELVIE NIDYA NEYMAN.

Penerapan watermark dapat mengubah koordinat fitur dalam peta vektor. Teknik fragile watermarking diterapkan untuk menjaga keaslian peta dan mengetahui fitur yang mengalami perubahan. Teknik fragile watermarking yang dikembangkan memberikan watermark ke setiap fitur peta. Pengujian kualitas dilakukan dengan menghitung distorsi (RMSE) tiap titik koordinat akibat penyisipan watermark, tiap titik koordinat diproyeksikan untuk mengetahui pergeseran di dunia nyata. Pengujian integritas peta terhadap serangan dilakukan dengan perbandingan nilai watermark tersimpan dan yang dibangkitkan kembali. Serangan dilakukan dengan memanipulasi peta dengan menggeser, menambah dan menghapus koordinat peta. Teknik ini menghasilkan distorsi pada skala 10-4 dan 10-7 meter pada pergeseran di dunia nyata sehingga sangat sulit untuk dideteksi secara visual hingga skala peta 1:1. Teknik ini memberikan koordinat tambahan untuk penyisipan watermark sehingga ukuran berkas menjadi bertambah.

Kata kunci: distorsi, fragilewatermarking, integritas, watermark

ABSTRACT

YUDHY HARYANTO WIJAYA. New Approach To Verify Integrity of Digital Map Based Features Using Fragile Watermarking. Supervised by SHELVIE NIDYA NEYMAN.

Watermarking can change the coordinates of features in map vector. Fragile watermarking technique is implemented to maintain the authenticity of the map and determine which features have been changed. Fragile watermarking technique was developed to giving watermark to each map feature. Quality testing was conducted by calculating the coordinates of each point of distortion due to watermark embedding, and the coordinates of each point are projected to calculate the shift in the real world. Testing the integrity of a map of the attack is done by comparing the value of the stored watermark and regenerated watermark. The attacks is done by manipulating the map by moving, adding and deleting map coordinates. This technique produces distortion on a scale of 10-4 and 10-7 meters distortion in the real world, so it is very difficult to detect visually to scale 1:1 map. This technique gives an additional coordinate for embedding watermark so consequently is berkas size be increased.

(5)

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer

pada

Departemen Ilmu Komputer

PENDEKATAN BARU UNTUK VERIFIKASI INTEGRITAS

PETA DIGITAL BERBASIS FITUR MENGGUNAKAN

FRAGILE

WATERMARK

YUDHY HARYANTO WIJAYA

DEPARTEMEN ILMU KOMPUTER

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

(6)
(7)

Judul Skripsi : Pendekatan Baru untuk Verifikasi Integritas Peta Digital Berbasis Fitur Menggunakan FragileWatermark

Nama : Yudhy Haryanto Wijaya

NIM : G64104026

Disetujui oleh

Shelvie Nidya Neyman, SKom MSi Pembimbing

Diketahui oleh

Dr Ir Agus Buono, MSi MKom Ketua Departemen

(8)

PRAKATA

Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta’ala atas segala karunia-Nya sehingga karya ilmiah ini berhasil diselesaikan. Tema yang dipilih dalam penelitian yang dilaksanakan sejak bulan September 2012 ini ialah keamanan peta digital, dengan judul Pendekatan Baru untuk Verifikasi Integritas Peta Digital Berbasis Fitur Menggunakan Fragile Watermark. Tak lupa penulis sampaikan ucapan terima kasih kepada:

1. Ibu saya Husnawa binti Busri dan ayah saya Xaveer Uslan Bin Mohctar atas dukungan dan doa.

2. Ibu Shelvie Nidya Neyman, Skom MSi selaku pembimbing yang memberikan saran, arahan selama penelitian berlangsung.

3. Endang Purnama Giri, SKom MKom dan Karlisa Priandana, ST MEng selaku dosen penguji.

4. Ucapan terimakasih juga penulis sampaikan kepada teman-teman mahasiswa jurusan Ilmu Komputer Alih Jenis angkatan 5 serta teman-teman yang turut memberikan dukungan kepada penulis dalam menyelesaikan penelitian.

Penulis menyadari tulisan skripsi ini masih jauh dari kata sempurna. Semoga karya ilmiah ini bermanfaat.

Bogor, April 2014

(9)
(10)

DAFTAR TABEL

1 Data pengujian 10

2 RMSE peta setelah penyisipan watermark 12

3 Perubahan ukuran berkas 13

4 Pergeseran objek 13

5 Penambahan objek 13

6 Penghapusan objek 14

DAFTAR GAMBAR

1 Skema proses penyisipan watermark 3

2 Skema proses verifikasi integeritas watermark 4

3 Pembangkitan watermark 5

4 Fitur dengan 2 titik koordinat asli dan penambahan koordinat baru 7 5 Fitur dengan 4 titik koordinat dan penambahan koordinat baru 7

6 Penghapusan koordinat tambahan 9

7 Atribut peta BGR_ROAD 11

8 Koordinat asli 11

9 Koordinat setelah penyisipan watermark 11

10 Hasil uji integritas satu fitur 12

11 Hasil verifikasi fitur 14

DAFTAR LAMPIRAN

1 Posisi koordinat tambahan 17

(11)

PENDAHULUAN

Latar Belakang

Peta digital merupakan peta yang digambar dan diolah dengan bantuan komputer. Menurut Peraturan Pemerintah Republik Indonesia Nomor 8 Tahun 2013 tentang Ketelitian Peta Rencana Tata Ruang, peta adalah gambaran dari unsur alam dan atau unsur buatan manusia yang berada di atas maupun di bawah permukaan bumi yang digambar pada bidang datar dengan suatu skala. Peta digital memiliki akurasi tinggi dan penskalaan yang lebih baik daripada peta yang tercetak. Peta digital tidak hanya lebih mudah disimpan dan dipublikasikan tapi juga lebih mudah dimodifikasi (Zheng dan You 2009). Untuk itu, diperlukan cara untuk memeriksa integritas dari peta apakah sudah dimodifikasi dan bagian mana yang dimodifikasi.

Digital Watermarking merupakan salah satu teknik yang dapat digunakan untuk melindungi data digital sekaligus memeriksa keaslian data digital tersebut. Neyman et al. (2013) menyebut ada 4 karakteristik utama digital watermark yang harus dimiliki, yaitu: fidelity (tidak banyak menurunkan kualitas data), invisibility

(secara persepsi tidak terlihat), robustness (kuat terhadap serangan namun karakteristik ini tidak digunakan pada integritas data),blind (proses ekstraksi tidak membutuhkan media digital maupun watermark asli). Zheng dan You (2009) membagi digital watermarking dalam 2 tipe yaitu robust digital watermark dan

fragile digital watermarking. Robust digital watermark adalah watermark yang sulit untuk dihapus, tahan terhadap berbagai serangan, digunakan sebagai sebagai perlindungan hak cipta. Fragile digital watermarking adalah watermark yang tidak tahan terhadap serangan. Sedikit serangan pada data akan mengakibatkan perbedaan antara watermark yang tersimpan dan watermark yang asli dapat digunakan untuk mengidentifikasi apakah data telah mengalami perubahan sehingga fragile digital watermark dapat digunakan untuk verifikasi integritas data digital.

Fragile digital watermark tidak membutuhkan penambahan informasi autentikasi pada akhir data digital karena nilai watermark dapat disisipkan secara merata pada seluruh bagian data digital sehingga meningkatkan keamanan data (Zheng dan You 2009). Serangan pada data digital dapat diketahui dengan mudah menggunakan kriptografi fungsi hash, namun teknik ini tidak memiliki kemampuan untuk menujukkan di mana perubahan yang terjadi pada data digital.

Fragile watermark dapat digunakan untuk mengetahui bagian data yang mengalami perubahan dan sejauh mana perubahan terjadi. Teknik ini bahkan mampu memulihkan data yang telah mengalami perubahan (Zheng dan You 2009).

(12)

2

dengan toleransi kesalahan. Untuk itu, diperlukan teknik khusus untuk menanamkan watermark ke dalam peta vektor (Zheng dan You 2009).

Perumusan Masalah

Penelitian ini merupakan pengembangan dari penelitian yang dilakukan Zheng dan You (2009). Penelitian tersebut adalah dengan membagi peta ke dalam blok dan menyisipkan watermak dalam blok-blok. Pembagian blok didasarkan atas jumlah titik yang ada dalam peta, jika titik dalam blok tidak mencukupi blok tersebut tidak dapat disisipkan watermark sehingga pembagian tidak dapat dilanjutkan. Verifikasi watermark dilakukan untuk mengetahui integritas peta dan indetifikasi lokasi yang mengalami perubahan dengan membandingkan nilai hash watermark. Identifikasi bagian yang mengalami perubahan akan lebih sulit karena hanya menampilkan blok titik yang bermasalah.

Penelitian ini memodifikasi penelitian yang dilakukan Zheng dan You (2009) dengan melakukan penyisipan watermark bukan pada blok-blok koordinat titik tetapi pada fitur peta, sehingga pemberian watermark dapat dilakukan pada semua titik yang ada di dalam peta. Hal tersebut dilakukan agar proses verifikasi integritas data dapat dilakukan pada setiap fitur di peta dan mempermudah indentifkasi lokasi bila terjadi perubahan data.

Tujuan Penelitian

Tujuan dari penelitian ini adalah menerapkan teknik fragile watermarking

berbasis fitur yang dapat menjaga integritas data setiap fitur pada peta. Teknik yang dikembangkan diuji dengan kriteria teknik watermarking yang baik, yaitu

fidelity, robustness, dan recovery (Munir 2004) serta blind. Manfaat Penelitian

Manfaat dari penelitian ini ialah memberikan alternatif pilihan teknik untuk menjaga integritas peta setiap fitur dan dapat mengembalikan peta ke bentuk aslinya.

Ruang Lingkup Penelitian

Ruang lingkup penelitian ini adalah:

1 Peta yang digunakan adalah peta digital berformat shapefile standar ESRI.

2 Data yang digunakan adalah data koordinat vektor yang diperoleh dari fitur yang menyusun peta, dengan tipe geometri PolyLine dan Polygon,

dantidak bisa diterapkan pada tipe titik.

3 Integritas data dihasilkan dari perhitungan fungsi hash MD5 dari koordinat titik setiap fitur.

(13)

3

METODE

Penelitian ini menggunakan teknik fragile watermark untuk penyisipan

watermark dan penanda integritas dalam peta digital serta fungsi hash MD5 sebagai penghasil watermark yang integritas peta. Skema proses penyisipan

watermark dapat dilihat pada Gambar 1 dan proses verifikasi integritas watermark

pada Gambar 2.

Gambar 1 Skema proses penyisipan watermark Mulai Peta Vektor

(P)

Ekstraksi Fitur (F1,F2....Fn)

loop = total fitur

Pembuatan Watermark

(14)

4

Gambar 2 Skema proses verifikasi integeritas watermark

Peta Vektor

Peta vektor merupakan peta yang menyimpan informasi geografis berbentuk koordinat yang dibentuk menjadi titik, garis atau area. Titik merupakan bentuk terbawah yang merupakan representasi koordinat X dan Y. Garis atau polyline

(15)

5 mempunyai sifat yang sama dengan garis, namun polanya tertutup yang terdiri atas 3 titik atau lebih (ESRI 2004).

Ekstraksi Fitur

Ekstraksi fitur dilakukan dengan membaca berkas database (dbf). Data yang didapat dari berkas database merupakan data atribut fitur. Jumlah fitur yang tersimpan di berkas database dibandingkan dengan informasi banyak fitur yang tersimpan di berkas indeks (shx). Proses perbandingan dilakukan untuk validasi awal keabsahan peta. Banyak fitur yang tersimpan di dalam berkas indeks didapat dengan membaca header berkas. Banyak fitur dalam header di simpan dalam bentuk objek integer pada byte ke 24 sampai 27. Banyak fitur yang disimpan dikalikan 2 dikurang panjang header dibagi 8.

Ekstraksi Koordinat

Ekstraksi koordinat dilakukan dengan membaca byte yang tersimpan di dalam berkas shapefile (shp) berdasarkan urutan yang tersimpan di berkas indeks (shx). Koordinat disimpan dalam bentuk object double yang tiap absisnya terdiri atas 8 byte (64-bit). Koordinat yang disimpan memiliki presisi hingga 10 satuan, namun pada penelitian ini presisi tersebut diturunkan menjadi 8 satuan.

Pembuatan Watermark

Penjagaan integritas peta pada penelitian ini dilakukan melalui verifikasi nilai keabsahan peta yang digunakan sebagai watermark. Nilai watermark

didapatkan dari nilai hash. Ada dua tipe fungsi hash yaitu unkeyed hash function

yang hanya menghitung input data, dan keyed hash function yang menghitung

input serta kuncinya (Menezes et al. 1996). Penelitian ini menggunakan fungsi

hash MD5 sebagai watermark yang merupakan unkeyed hash function. Watermark yang terbentuk memiliki panjang 128 bit.

Penyisipan Koordinat Baru

Menurut Munir (2004), kriteria penyisipan data yang harus diperhatikan ialah: (1) Fidelity yaitu kualitas data yang telah disisipi tidak jauh berbeda, sehingga pengguna tidak mengetahui adanya data rahasia didalam media tersebut, (2) Robustness yaitu apabila dilakukan manipulasi pada data utama, data yang disimpan tidak mengalami kerusakan, (3) Recovery yaitu, karena tujuan

(16)

6

steganografi menyembunyikan data, data yang disimpan harus dapat diungkap atau diambil kembali.

Watermark pada penelitian ini mempunyai sifat fragile karena perubahan koordinat akan menghilangkan watermark yang ada. Watermark tidak disisipkan dalam koordinat asli, melainkan dalam koordinat tambahan yang dibangkitkan pada saat penyisipan koordinat baru. Tujuannnya adalah menjaga agar koordinat asli tidak mengalami perubahan. Jumlah koordinat yang ditambah disesuaikan dengan panjang bit watermark. Watermark disisipkan dengan menggati bit-bit akhir koordinat, sehingga banyak koordinat yang diperlukan dapat dihitung dengan menggunakan persamaan (1).

Dimana :

Lw(mod Lb) = 0

Koordinat tambahan ditambahkan di antara koordinat lama yang polanya dibentuk dan hitung dengan persamaan (2).

Contoh perhitungan penambahan koordinat baru dengan panjang watermark

128 bit dan penyisipan dilakukan pada 8 bit akhir koordinat dan banyak titik koordinat asli pada fitur adalah 4.

Koordinat tambahan yang diperlukan: 128 modulo 8 = 0

Syarat Lw mod Lb = 0 terpenuhi,

K

= 8

sehingga banyak koordinat tambahan antar ruas koordinat asli adalah:

K ⌊ - ⌋ - K’1 = 3

K = banyak koordinat tambahan ruas ke-i

(17)

7 Pola koordinat tambahan dapat dilihat di Lampiran 1. Gambar 4 dan Gambar 5 adalah contoh posisi koordinat tambahan untuk fitur yang memiliki 2 dan 4 titik.

Koordinat tambahan besarannya dihitung menggunakan persamaan (3) persamaan (4) ....

Gambar 4 Fitur dengan 2 titik koordinat asli dan penambahan koordinat baru

Gambar 5 Fitur dengan 4 titik koordinat dan penambahan koordinat baru

K K

,

,

Keterangan:

i : ruas koordinat asli

j : ruas koordinat tambahan

rx, ry : jarak antara titik koordinat

V : koordinat asli

: koordinat tambahan

(3)

(18)

8

Contoh perhitungan besaran koordinat tambahan pada contoh sebelumnya dengan dengan contoh nilai koordinat asli: V1(2,4), V2(10,20), V3(8,16), V2(10,24)

Watermark yang telah terbentuk disisipkan dalam LSB koordinat tambahan untuk setiap ordinat X dan ordinat Y. Sebelum penyisipan dilakukan, koordinat dikonversi menjadi bilangan bulat dengan cara mengalikan koordinat dengan banyak angka pecahan (Wang dan Men 2011) menggunakan persamaan (5).

Watermark dalam bentuk objek integer dikonversi menjadi bilangan biner, selanjutnya disisipkan kedalam ordinat X dan ordinat Y koordinat tambahan. Penyisipan dilakukan dengan mengganti LSB koordinat baru dengan bit

watermark yang panjangnya sama dengan Lb. Koordinat yang telah disisipkan

watermark dikonversi kembali dari bentuk objek biner menjadi bentuk objek

integer. Koordinat baru dalam bentuk objek integer dikonversi kembali dalam bentuk objek double.

Pengujian Kualitas Peta

Pengujian kualitas peta dilakukan untuk mengetahui apakah teknik ini memenuhi dari sifat fidelity. Koordinat peta yang telah disisipkan watermark

perlu dihitung besaran distorsinya. Distorsi merupakan pergeseran antara titik koordinat awal dan koordinat hasil yang dapat dihitung menggunakan rumus Root Mean Square Error (RMSE) persamaan (6) (Niu et al. 2006).

, , , a

Keterangan:

qmax : banyak angka satuan di belakang koma

x,y : koordinat asli

xi,yi : koordinat integer

(19)

9

Ekstraksi Watermark

Ekstraksi watermark dilakukan untuk melakukan verifikasi integritas peta dan menunjukkan sifat recovery. Ekstraksi watermark merupakan kebalikan dari proses penyisipan watermark. Watermark diekstraksi dari LSB koordinat tambahan sepanjang Lb. Urutan koordinat tambahan dapat dilihat pada Lampiran 1. Bit-bit hasil ekstraksi kemudian disusun menjadi barisan biner sepanjang Lw (128 bit). Barisan biner ini kemudian dikonversi menjadi bilangan heksadesimal yang merupakan format nilai hash MD5 (H’). Proses ekstraksi watermark tidak memerlukan peta asli maupun watermark asli sehingga teknik ini memenuhi kriteria blind.

Penghapusan Koordinat

Penghapusan koordinat tambahan dilakukan untuk mendapatkan koordinat asli untuk dihitung kembali nilai watermark-nya. Koordinat yang dihapus (Gambar 6) adalah koordinat tambahan yang polanya dapat dilihat di Lampiran 1.

Gambar 6 Penghapusan koordinat tambahan

Koordinat yang tersisa kemudian dihitung nilai hash-nya (H) dengan menggunakan algoritme hash MD5.

Verifikasi Integritas Peta

Verifikasi integritas peta dilakukan dengan membandingkan nilai hash yang tersimpan pada peta hasil (H’) dengan nilai hash yang dihitung kembali setelah koordinat dihapus (H). Apabila nilainya sama = ′ artinya koordinat pada fitur tidak mengalami perubahan, dan koordinat peta dapat dikembalikan kebentuk

√∑( , , )

( , )

Keterangan:

: koordinat sebelum penyisipan : koordinat setelah penyisipan

(6)

(20)

10

aslinya. Jika nilainya berbeda ≠ ′ artinya koordinat pada fitur tersebut ada yang mengalami perubahan, dan koordinat aslinya tidak dapat dikembalikan.

Lingkungan Pengembangan Sistem

Perangkat keras:

 Prosesor: Intel® Pentium i5 650 3.20GHz  RAM: 4.0 GB

Input: mouse dan keyboard Perangkat Lunak:

 Sistem operasi: Microsoft Windows 7 Ultimate 64 bit  Quantum GIS v2.0.1 wroclaw

 Microsoft Visual Studio 2010

HASIL DAN PEMBAHASAN

Hasil Pengujian

Penelitian ini menggunakan teknik fragile watermark dan algoritme hash

MD5 sebagai penjaga integritas peta. Data yang digunakan adalah peta vektor 2D berformat shapefile dengan sistem referensi koordinat (datum) yang tersimpan berformat WGS84, proyeksi Universal Transverse Mercator (UTM). Proyeksi UTM adalah suatu sistem proyeksi ortometrik dengan satuan panjang (m) berdasarkan bidang silinder (Mercator), bersifat konform, kedudukan bidang proyeksi melintang (Tranversal), menggunakan zona (Universal) dengan interval 6o meridian dikenalkan oleh Mercator (BIG 2012).

Hasil pembacaan pada header berkas memuat informasi yang dapat dilihat pada Tabel 1. Panjang berkas adalah banyak byte yang tersimpan di dalam berkas. Tipe fitur adalah bentuk dasar spasial peta yang tersimpan. Sebuah fitur memiliki atribut yang menyimpan informasi tentang fitur. Fitur juga tersusun atas satu atau beberapa titik, namun ada fitur yang tidak memiliki titik (ESRI 1998). Gambar 7 adalah attribut peta yang dimiliki pada peta BOGOR_ROAD.

Tabel 1 Data pengujian Nama Berkas Panjang Berkas

(byte) Tipe Fitur Jumlah Fitur

BGR_ROAD 2 065 612 PolyLine 7 095

(21)

11

Pengujian Implementasi

Pengujian ini bertujuan untuk mengetahui apakah teknik ini dapat memenuhi kriteria recovery, yaitu watermark yang disimpan dapat diungkap atau diambil kembali. Pengujian dilakukan dengan melakukan penyisipan koordinat tambahan ke dalam koordinat asli (Gambar 8) dan dilanjutkan dengan penyisipan

watermark ke dalam koordinat tambahan (Gambar 9). Peta yang telah disisipkan

watermark kemudian diperiksa dengan melakukan ekstraksi watermark dan uji integritas (Gambar 10).

Gambar 7 Atribut Peta BGR_ROAD

Gambar 8 Koordinat asli

(22)

12

Analisis Kualitas Hasil

Pengujian kualitas peta hasil dilakukan dengan menghitung distorsi menggunakan rumus RMSE. Perhitungan pergeseran pada dunia nyata dihitung dengan memproyeksikan koordinat UTM menjadi koordinat geografis menggunakan perhitungan Tranverse Mercator. Perhitungan proyeksi UTM menjadi koordinat geografis dapat dilakukan dengan menghitung lintang titik kaki dengan persamaan (7) (GGCS 2005).

Nilai lintang titik kaki digunakan untuk menghitung koordinat geografis secara langsung. Perhitungan secara lengkap dapat dilihat pada Lampiran 3. Hasil perhitungan RMSE rata-rata dan rata-rata pergeseran koordinat di dunia nyata hasil penyisipan watermark dapat dilihat pada Tabel 2.

Distorsi peta yang dihasilkan untuk setiap titik berada pada 10-4 dan pergeseran pada dunia nyata berada pada skala 10-7 meter atau berada di bawah 1 milimeter sangat sulit dideteksi secara visual, bahkan dalam skala peta 1:1 sehingga pergeseran yang terjadi dapat diabaikan.

Gambar 10 Hasil uji integritas 1 fitur

: koordinat lintang titik kaki : Koordinat lintang

: Panjang garis tengah

Tabel 2 RMSE peta setelah penyisipan watermark

Nama Berkas Jumlah

Fitur Rata-Rata RMSE

Rata-Rata Pergeseran (meter)

BGR_ROAD 7 095 7.33622204 x10-4 7.28874151 x10-7

ko_bogor 68 5.26415959 x10-5 5.2301325 x10-8

(23)

13 Teknik watermark ini menambahkan titik baru sebagai tempat menyimpan

watermark sehingga konsekuensi dari menggunakan teknik ini mengakibatkan perubahan ukuran berkas menjadi lebih besar dari ukuran sebelum penyisipan

watermark. Perubahan ukuran berkas dapat dilihat pada Tabel 3.

Dari Tabel 3 terlihat bahwa perubahan ukuran berkas dipengaruhi oleh banyak bit yang disisipkan pada koordinat. Semakin banyak bit yang disisipkan pada koordinat, maka semakin sedikit koordinat yang ditambahkan.

Pengujian Integritas Peta

Pengujian integritas dilakukan dengan melakukan manipulasi terhadap koordinat peta yang telah disisipkan watermark. Manipulasi yang dilakukan diantaranya pergeseran, penambahan dan penghapusan pada titik maupun fitur peta.

Tabel 3 Perubahan ukuran berkas

Nama Berkas Sebelum

Tabel 4 Pergeseran objek

Nama Berkas Objek yang diubah Fitur yang

terpengaruh Hasil Akhir

Tabel 5 Penambahan objek

(24)

14

Tabel 4 menunjukkan hasil pergeseran terhadap beberapa titik koordinat pada fitur peta. Pergeseran koordinat akan menyebabkan peta tidak asli. Peta tidak asli disebabkan oleh 2 hal. Pertama, pergeseran yang terjadi pada koordinat asli akan mengubah nilai watermark saat pembangkitan kembali nilai watermark. Kedua, pergeseran yang terjadi pada koordinat tambahan akan mengubah bit

watermark yang tersimpan didalam koordinat tambahan.

Penambahan objek berupa titik (Tabel 5) ke dalam fitur akan mengubah urutan koordinat yang tersimpan sehingga nilai hash watermak dan nilai bit

watermark akan berbeda. Penambahan fitur baru dengan jumlah titik koordinat kurang dari Ks + 2 akan langsung menunjukkan fitur peta tidak asli, karena proses ekstraksi watermark tidak dilakukan oleh sistem. Penambahan fitur dengan titik sebanyak Ks + 2 atau lebih, sistem melakukan proses ekstraksi watermark, namun karena nilai watermark yang tersimpan berbeda maka fitur tambahan tidak asli.

Tabel 6 adalah hasil manipulasi dengan melakukan pengapusan objek. Penghapusan titik koordinat akan mengubah urutan koordinat yang berakibat pada perubahan nilai hash maupun informasi watermark yang tersimpan. Teknik ini tidak mampu mendeteksi apabila penghapusan dilakukan pada satu fitur. Hal ini dikarenakan informasi watermark tidak menyertakan informasi banyaknya fitur sebelum penghapusan terjadi.

Koordinat fitur yang mengalami perubahan ditampilkan di akhir proses pengujian integritas watermark. Hasil yang ditampilkan (Gambar 11) adalah nomor indeks fitur dan penyebab yang membuat integritas fitur tersebut tidak valid.

Tabel 6 Penghapusan objek

Nama Berkas Objek yang dihapus

(25)

15

SIMPULAN DAN SARAN

Simpulan

Dari penelitian yang dilakukan, dapat ditarik beberapa kesimpulan, Pertama teknik fragile watermarking dapat diterapkan pada peta vektor. Hasil implementasi berhasil melakukan penyisipan dan melakukan verifikasi integritas peta. Pemeriksaan integritas dilakukan pada setiap fitur dengan membandingkan nilai watermark yang tersimpan dan nilai hash fitur peta asli.

Kedua, teknik ini memenuhi kriteria yang menjadi tujuan penelitian dimana teknik ini menghasilkan distorsi (RMSE) rata-rata pada skala 10-4 dan 10-7 meter pergeseran di dunia nyata. Distorsi yang terjadi sangat kecil, dan sangat sulit untuk dideteksi secara visual bahkan pada skala peta 1:1 sehingga perubahan yang terjadi dapat diabaikan dan memenuhi sifat fidelity. Integritas peta dilakukan dengan membandingkan watermark yang tersimpan dan watermark yang dibangkitkan kembali pada setiap fitur peta sehingga sifat recovery tercapai. Perubahan yang terjadi pada koordinat peta akan menghilangkan watermark yang tersimpan, sehingga sifat robustness yang digunakan pada teknik watermark ini bersifat fragile. Proses ektraksi watermark tidak memerlukan watermark asli maupun media lain sehingga teknik watermark ini bersifat blind.

Ketiga, watermark disisipkan ke dalam koordinat tambahan. Banyak koordinat tambahan berdasarkan panjang bit watermark yang disisipkan ke setiap absis koordinat. Penambahan koordinat ini mengakibatkan panjang berkas bertambah sehingga ukuran berkas akan bertambah besar.

Saran

Teknik ini tidak mampu mendeteksi apabila penghapusan terjadi pada fitur, oleh karena itu diperlukan penyimpanan nomor fitur sehingga dapat mendeteksi fitur yang dihapus maupun fitur yang baru yang ditambahkan. Untuk itu diperlukan pengembangan teknik untuk mengetahui penghapusan fitur, serta pengembangan teknik untuk menjaga ukuran berkas agar tidak terlalu besar. Selain itu juga diperlukan analisis pada teknik untuk membuat rumusan besaran perubahan ukuran berkas akibat penggunaan teknik watermark ini.

DAFTAR PUSTAKA

[BIG] Badan Informasi Geospasial, 2012, Pengukuran Titik Kontrol Post Marking. Di dalam: Standard Operating Procedur[internet]. Bogor(ID): Badan Informasi Geospasial [diunduh tanggal 2014 Feb 23]. Tersedia pada : http://jdih.big.go.id/resources/files/law/LAM_2_NO._B.81-BIG-DIGD-HK-08-2012.pdf

(26)

16

[GGCS] GS521 Geodetic Control Surveying. 2005. The Transverse Mercator Projection. Columbus (US): GS521 Geodetic Control Surveying.

Menezes AJ, van Oorschot PC, Vanstone SA. 1996. Handbook of Applied Cryptography. Boca Raton(US): CRC Press.

Munir R. 2004. Steganografi dan Watermarking pada citra digital. Bandung (ID): ITB.

Neyman SN, Sitohang B, Sutisna S. 2013. Kajian Metode Penjamin Integritas Data Pada Peta Digital. Di dalam: SNAKOM, editor. Menjawab Tantangan Dunia dengan Ilmu Komputasi; 2012 Sep 22; Bandung, Indonesia. Bandung (ID): IT Telkom.

Niu XM, Shao CY, Wang XT. 2006. A Survey of Digital Vector Map Watermarking. International Journal of Innovative Computing, Information and Control. 2(6):1301-1316.

Peraturan Pemerintah Republik Indonesia Nomor 8 Tahun 2013 Tentang Ketelitian Peta Rencana Tata Ruang.

Wang N, Men C. 2011. Reversible fragile watermarking for 2-D vector map authentication with localization. Computer-Aided Design. 44(4):320-330.doi: 10.1016/j.cad.2011.11.001.

(27)

17 Lampiran 1 Posisi koordinat tambahan

Fitur dengan 2 titik koordinat

Fitur dengan 3 titik koordinat

(28)

18

Lanjutan Lampiran 1 Posisi koordinat tambahan

Fitur dengan 5 titik koordinat

Fitur dengan 6 titik koordinat

(29)

19 Lanjutan Lampiran 1 Posisi koordinat tambahan

Fitur dengan 8 titik koordinat

(30)

20

Lampiran 2 Proyeksi koordinat lintang bujur (Geografis) ke grid (UTM)

Perhitungan proyeksi koordinat geografis menjadi koordinat Grid(UTM) dapat dilakukan dengan menghitung lintang titik kaki(GGCS, 2005).

Timur (Easting, X)

Utara (Northing, Y)

Konvergensi Grid (dalam radian)

Faktor skala

dengan:

E0 adalah offset dari meridian tengah. Nilai E0 untuk Indonesia = 500.000 meter N0 adalah offset dari lintang. Nilai E0 untuk Indonesia = 100.000.000 meter

(31)

-21 Lanjutan Lampiran 2 Proyeksi koordinat lintang bujur (Geografis) ke grid (UTM)

=

adalah meridian tengah Zona nol

adalah Bujur Meridian Tengah zona 1. Untuk Indonesia adalah -177o

adalah lebar zona. Untuk UTM selalu 6o

adalah radius kelengkungan vertikal. Dihitung dengan

a

adalah radius kelengkungan meridian. Dihitung dengan

a e

( e )

adalah rasio jari – jari kelengkungan t = tan

m adalah jarak meridian dari garis khatulistiwa, dihitung dengan rumus =

(koordinat Lintang) dalam radian (koordinat Bujur) dalam radian

a adalah setengah sumbu utama. Untuk WGS84 = 6.378.137 m 1/f adalah penggepengan, untuk WGS84 = 298,257223563 b adalah sumbu pendek didapat dari a (

-f

⁄)

e2 adalah eksentrisitas pertama untuk WGS84 = 0,006694380 didapat dari f(2-f) k0 adalah faktor skala meridian tengah. Untuk seluruh wilayah UTM = 0,9996

(32)

22

Lampiran 3 Proyeksi koordinat grid (UTM) ke lintang bujur (Geografis)

Perhitungan proyeksi UTM menjadi koordinat geografis dapat dilakukan dengan menghitung lintang titik kaki(GGCS, 2005).

dengan:

Koordinat Lintang (dalam derajat radian)

( t ) ( )

( t ) [ t t ]

( t ) [ ( t ) ( t ) ( t t )

t t t ]

( t ) ( t t t )

Koordinat Bujur (dalam derajat radian)

ec

(33)

23

RIWAYAT HIDUP

Gambar

Gambar 1  Skema proses penyisipan watermark
Gambar 2  Skema proses verifikasi integeritas watermark
Gambar 5 adalah contoh posisi koordinat tambahan untuk fitur yang memiliki 2 Pola koordinat tambahan dapat dilihat di Lampiran 1
Gambar 9 Koordinat setelah penyisipan watermark
+4

Referensi

Dokumen terkait

Langkah-langkah keselamatan ini telah dibahagikan kepada tiga perkara utama yang dijadikan sebagai objektif iaitu, pengetahuan bakal guru sains mengenai peraturan am di dalam

Dalam strategi pendistribusian, BAZNAS Kota Tangerang selatan melakukan penetapan strategi dengan menyusun kekuatan dan kelemahan internal melalui RAKER, Implementasi

Berdasarkan data dari studi pendahuluan yang di dapatkan peneliti di puskesmas pulorejo dari 8.123 pasangan usia subur hanya 13 pasangan usia subur yang melakukan

Prinsip impedansi listrik berdasarkan pada variasi impedansi yang dihasilkan oleh sel-sel darah di dalam mikrooperture (celah chamber mikro ) yang mana sampel darah yang

Saat atom bebas membentuk logam, semua electron valensi menjadi electron kondusi dalam logam. Electron konduksi bergerak bebas diantara ion, sehingga keadaannya berubah

halnya dalam melarutkan aquades.untuk cairan cairan yang saling melarutkan,konsentrasinya akan saling berlawanan karena larutantersebut akan membentuk daerah

Meninjau sangat pentingnya peranan kurikulum, pemahaman dan pengembangannya dalam menentukan kualitas lulusan suatu program studi, maka kegiatan workshop kurikulum berbasis

Komponen alat X menghemat $300 pertahunnya dan komponen Y menghemat $400 di tahun pertama dan menurun $50 di tahun berikutnya. Jika suku bunga 7% komponen mana yang akan di