• Tidak ada hasil yang ditemukan

Application of Homotopy and Variational Iteration Methods to the Atmospheric Internal Waves Model

N/A
N/A
Protected

Academic year: 2017

Membagikan "Application of Homotopy and Variational Iteration Methods to the Atmospheric Internal Waves Model"

Copied!
14
0
0

Teks penuh

(1)

ISSN: 2319-765X

セHH}ᄃセ@

- - - -

セᄋMᄋMMᄋᄋMᄋᄋᄋ@ MMᄋMMᄋMMMMセMMMM

Journal of

Mathematics

Volume 10. Issue 5. Version 5

September-October 2014

(2)

IOSR Journal of Mathematics (IOSR-JM)

is

a

douhll' blind p<•f'r re,·iew<·d international journal

that provides publication of articles in all areas of mathematics and its applications. The journal

welcomes publications of high quality papers on theoretical de,·elopments and practical applications

in mathematics. Original research papers, state-of-the-art re,·iews, and high quality technical notes

are imited for publications.

Executive Editor

e-ISSN

Habibah Al-Husain, Egypt

2278-5728

p-ISSN

2319-765X

Publication Frequency

Publisher

6 issue per year

International Organization of Scientific Research (IOSR)

iosrjm@gmail.com

Paper Submission

Managing Editorial Board

Alok Darshan Kothiyal,

H.N.B. Grahwal Central, University Srinagar, India

Maryam Talib Aldossary,

University of Dammam, Saudi Arabia

Hasibun Naher,

Universiti Sains Malaysia, Malaysia

Md. Abu! Kalam Azad,

University of Rajshahi, Bangladesh

International Editorial Board

Uttam Kumar Khedlekar,

Sagar Central University MP, India

Gauri Shanker Sao,

Central University of Bilaspur, India

B. Selvaraj,

Periyar University, India

Kishor R. Gaikwad,

N.E.S.,

Science

College ofNanded, India

M. Ali Akbar,

University of Rajshahi, Bangladesh

Kuldeep Narain Mathur,

l!niversiti Utam Malaysia, Malaysia

Mahana Sundaram Muthuvalu,

Universiti Tekno/ngi Petronas, Malaysia

Ram Naresh,

Harcourt Butler Technological Institute, Kanpur, India

Basant Kumar Jha,

Ahmadu Bello University, Nigeria

Jitendra Kumar Soni,

Bundelkhand University, Jhansi,

India

M.K. Mishra,

EGS PEC Nagapattnam, Anna University,

Chermai,

India

Manoj Kumar Patel,

NIT, Nagaland, Dimapw-, India

Sunil Kumar,

NIT, Jamshedpur, India

Suresh Kumar Sharma,

Punjab University, Chandigarh,

India

Pradeep J. Jha,

L.J. Institute of Engineering and Technology,

India

Xueyong Zhou,

Xinyang Normal University, China

IOSR Journals

International Organization of Scientific Re...;;.carch (lOSR) is a registered independent Organi7.ation.

a unit of CSJR deli\"cring supports and scniccs to education profcssionuls and researchers around

\\·orld, especially those from the dc\"eloping countries. TOSR is the as.c;oci:J.tion of ウ」ゥ・セエゥウエウL⦅@ イ」ウ」。セ」ィ@

scholars, professors, directors, munagers, 」ョァセョ」」イウN⦅ーィ。イュ。ゥNZケL@ and ー・イウッョセ@ of \·anous hclds hkc

engineering, management. phnrmilcy, apphcd ウセQ」ョ」」⦅N@ and ュ。エセ」ュ。エゥ」ウN@ iosセ@ helps セィ・@

researcher.; free of cost by ーイッ|ゥ、ゥョセ@ イゥセィエ@ dircclion 1n their rcscan:h \\"Ith the help of Its wnrld\,·1dc

research association members.

(3)

I

I

\

I

l

IOSR Journal of Mathematics

IOSR Journals is a self-supporting organization and does not recei,·e funding from any institution/

government. Hence, the operation of the journal is solely financed by the processing fees received

from authors. The processing fees are required to meet operations expenses such as employees,

salaries, internet services, electricity, etc. Being an Open Access Journal, IOSR Journals does not

receive payment for subscription as the journals are freely accessible over the internet.

It

costs money

to produce a peer-reviewed, edited, and formatted article that is ready for online publication, and to

host it on a server that is freely accessible without barriers around the clock. We ask that-as a small

part of the cost of doing the research-the author, institution, or funding agency pays a modest fee to

help co\·er the actual cost of the essential final step, the publication. The manuscript handling charges

is INR3200 or equh·alcntly USD75. If author wants to lwrd copy of .Journal, they required to pay extra

charges INR6oo or USD45. The fee includes all review. publieation, inc!Pxing and l't'rtifi<'atcs hard

copy charges. There are no any other hidden extra charges.

How to deposit fees? If you belong to China/India/ Australia/New Zealand/Thailand, you can deposit

fees by choosing anyone of following options:

(1)

Depositing fees directly by near bank branch to the

account given in acceptance letter by your net-banking a/c to the account gh·cn in acceptance letter.

Authors from Australia/China/India/New Zealand/Thailand cannot pay by PayPal. (2) Online

Registration Payment: Authors from all other the countries rnn pay hy their credit rards.

Manuscript preparation guidelines: http://www.iosrjournals.org/doc/Paper Template.doc.

Indexed/ Abstracted:

(

The SAO/NASA Astrophysics Data System {ADS) is a Digital Library portal

, for researchers in Astronomy and Physics, operated by the Smithsonian

Astrophysical Observatory {SAO) under a NASA grant. Now all published

paper in IOSR .Journals ,,·jlJ •n·:dlnhlP on !'l'AS:\ セ@ .'\strophysirs Data SystC'Jll

{ADS) Digital Library.

I

Cross Ref@IOSR Journals

·r

, DOI : 10.9790

,1·

· '.

arxiv.org

.

· IOSR

Jco,INis

O"'""

Dr1vt

• Com•Hlmrs<ylbsy

\ ... ---·

CrossRefis a not-for-profit membership association whose m1ss1on is to

enable easy identification and use of trustworthy electronic content by

promoting the cooperative de\·elopment and application of a sustainable infrastructure.

The arXh· (arXh·.org), a project by Cornell linh·ersity Library. pro,·iclC's open access to o\'er a third of a n1illion e-prints in physics, n1athe1natics_, con1puter

(4)

I

I

I

1

i

I

I

l

'

'

f Cabcll's @ IOSR Journals

INDex@' COPER:SICl''

1 ' 1 1 1 ' \ f l • • ' ' I

!

J-Gate@ IOSR Journals

,--·---··

---·-·--Cabell Publishing, Inc., was founded in 1978. our goal is to help professors. graduate students and researchers to publish tlll•ir nH11n1stTipts in acadt•rnil' journals. ·ro achie,·e this objecth·e the co1npany strives to 111aintain current contact infonnation and \\'ebsites for a largl' nun1bt•r of journals.

IC Journals is a journal indt•xing. イ。ョォゥョセ@ and t1bstrncting site. ·rhis srr\"icr helps a journal to gro,,· fron1 a local Jr,·rl to a global ont• as ,,·ell as pro,·iding complete web-based solution for small editorial teams. IC Journals helps to professionally n1anage your journal from your location.

J-Gate is an electronic gate,,·ay to global c-journal literature. Launched in

2001 by Informatics India Lin1ited, J-Gate provides sea1nless access to

millions of journal articles a\'ailable online offered by 11,428 publishers. It presently has a n1assive database of journal literature, indexed front 36,987 e· journals with links to full text at publisher sites. J-Gate also plans to support on line subscription to journals, electronic docun1ent delivery, archiving and other related services.

i

Ulrich Web@ IOSR Journals

I

Ebsco Host@ IOSR Journals

e

.

Ulrich'sT)I! is the authoritative source of bibliographic and publisher information on more than 300,00 periodicals of all types academic and scholarly journals, Open Access publications, peer-revie\ved titles, popular magazines, newspapers, newsletters and n1ore fron1 around the world.

As the world's largest intermediary between publishers and

libraries, EBSCO offers many benefits to publisher partners. EBSCO is the only database aggregator that is also a subscription agent. As a result, the company has a unique understanding of the needs and concerns of publishers, and offers ,·arious '''ays for publishers to gain exposure for their publications.

(5)

i ANED @ IOSR Journals

IOSR journals are 1nen1ber of An1erican National Engineering l)ntahasr

(ANED). All published papers will index in this database and

will

get permanent ANED-DDL (Digital Data Link) to indh·idnal article.

I

JOUR Informatics @ IOSR Journals

.JOI H

JOUR Informatics is a non-profitable organization. It is a n1ediun1 for introducing the Journals to the researchers. This ser.-ice helps researchers to

finding appropriate Journal for referencing and publishing their quality paper. In this global world, there are lots of Journals. So it is ven> difficult to find best relevant Journal which can be useful for us. Here anybody can find and also check the quality of particular Journal by Jour Informatics Rating, decided based on the different critical anal)1ical parameters.

Journal Hard Copy Subscription

No Name of Journal

r

Periodicity Annual Subscription

per year charges

l IOSR Journal of Computer Enginl'Cring ( IOSR-.JCE} 6 3600 ャセr@ RセP@ t.:SlJ

i

:

MMMセMN@

2 IOSR Journal of Electrical and Ek'Ctronics Engineering (IOSR-JEEE) 6 3600 INR 250 USO

3 IOSR Journal. of Mechanical and Chi I Engineering (IOSR-.JMCE) 6 3600 INR 250 L"SD

4 IOSR Journal of Electronics and Communication Engineering (IOSR- 6 3600 INR 250 USD

JECE)

5 JOSRJournal of VJ.SJ and Signal Processing (IOSR,JVSP) 6 3600 JNR 250 USO

·

-6 IOSR Journal of En\ironmcntal Science, Toxicology <.ind Food 6 3600 INR 250 USD

Technology (JOSR-,JESTFT)

7 IOSR Journal of Humanities and Social Science (IOSR-JHSS) 6 3600 INR 250 USD

8 lOSRJoumal of Pharmacy and Biological Sciences (IOSR-JPBS) 6 3600 INR 250 USD

9 IOSR Journal of Business and Management (IOSR-.JBM) 6 3600 INR 250 USO

10 IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) 6 3600 INR 250 USD

11 IOSR Journal of Agriculture and veterinary Science (IOSR-.JAVS) 6 3600 INR 250 USD

12 IOSR.Journal of Applied pィIセゥ」ウ@ (IOSR-.JAP) 6 3600 INR 250 USD

13 IOSR Journal of Applied Chemistry (JOSR-.IAC) 6 3600 INR 250 USO

14 IOSR Journal of Mathematics (JOSR-.JM) 6 3600 INR 250 L"SD

'

15 IOSR Journal of Nursing and Health Science (IOSR-JNHS) 6 3600 INR 250USD

16 IOSRJournal of Research & Methods in Education (JOSR-JRME) 6 3600 INR 250 USO

17 IOSRJoumal of Applied Geology and g・ッーィIセゥ」ウ@ (JOSR-JAGG) 6 3600 INR 250USD

18 IOSR Journal of Economics and Finance (IOSR-JEF) 6 3600 INR 250 tiSD

The subscribers from India ha,·e to pay fees by demand draft or cheque in the farnr of "International Organization of Scientific Research" payable at Ghaziabad along with following subscription form (http://www.iosrjournals.org/doc/Form for indian subscriber.pd!). The subscribers from other than India can deposit fees by PayPal, Western Union Transfer or net banking option. For more detail of account information of Journal, mail us at iosrjournals@gmail.com.

(c) 2014 IOSR Journal of Mathematics

www.iosrjournals.org/iosr-jm.html

(6)

IOSR Journal.of Mathematics f/OSR-.IM;

e-ISSN: 2278-5728. p-ISSN: 2319- 765X Volume Ill, issue 5 Ver. I' !Sep-Oct. 2111-11. pp -16-53

H'll'H'.

iosrjourna/s_ org

Application of Homotopy and Variational Iteration Methods to

the Atmospheric Internal Waves Model

Zulfiqar Busrah

1,

Jaharuddin

2,

Toni Bakhtiar

3

J.J.J (Department o/A1athenuuics, Bogur Agricultural Unb·ersil\'.

JI. A4eranti, Kan1pus /PB Darmaga, Bogor 16680, Indonesia)

Abstract: Atmospheric intl!rna/ ll'tn•es c:un be represented by a nonline(lr ZLセ|ᄋウエ・ゥョ@ o(partial clUJ'i!renrial equation

(PDE) under shalloH':fluid ass111np1ion. Jn thi.\· pafh'r. \I'(.' (.'Xploitecl the hon101opy una(i·si.\' 1111.•thod tl!A.\IJ and

variational iteration n1ethud (VJ,\/) ro vb1ui11,111 approxin1ate ana(rth:ul solution.\ t!lthe .\r.-;11.•111. 7J1,· rc:.,11/1., 1!f

both methods are then con1paretl u·ith n11n1erical n1etht)(/. It is shou·n that hoth HAJJ and VIA'1 an..' セᄋOスィᄋエャGョエ@ in

approxin1ating the numerical solutions. ·

Keywords: Atmospheric internal u·aves. ho11101opy 。ョ。セエGN|ᄋゥウ@ 111e1hod. nonlinear Pf)E .\ysfl•111. rariational iteration n1ethod

I.

Introduction

Internal \vaves. also called internal gravity \vaves. is a nalural phenon1enon \\'hose existence cannol he seen because it propagates in the interior of a nuid. rather than on its surf.1ce. Other than belO\\. of the ocean surface, there are also internal \vaves in the upper atmosphere. The propagation of internal \Vaves can he recognized by changes in temperature which occurs through the fluid in three dimensions. So. the wavelength consists of three spatial components. Internal \Vaves may also transfer their momentum and energy to the tlo\v with which they interact. such as winds or other \vaves [I]. Atmospheric internal \vaves can be visualized by wave clouds. In Australia, internal waves in the 。エュッセーィ・イ・@ result in Morning Glory clouds. Many researchers have used propagation and interaction of internal \vaves in the atmosphere to 111athen1atical models and numerical simulations [1,2.3.4].

Internal waves in the atmosphere can be represented by a mathematical equation under the shallow fluid assumption. The name "shallow fluid" refers to the fact that the depth of the fluid layer is small compared to the horizootal scale of the perturbation [4]. Shallow fluid assumption has been applied to climate modeling [5), Kelvin waves [6), Rossby waves [7] and tsunami models [8]. Basically, the mathematical model of internal waves in the atmosphere is represented by a system of partial differential equations system (PDE). In many cases, these equations cannot be solved analytically. So. they must be converted to a tbrm that can provide an approximate solution. Liao in 1992 was introduced Homotopy Analysis Method (HAM) as an anal)tical approach [9]. The HAM is rather general and valid tbr nonlinear ordinary and partial ditl'erential equations in many types [10). It has been applied in a variety of nonlinear problems such as Klein-Gordon equation

I

11 ]. generalized Huxley equation [12), Zakharov-Kuznetsov equation [13]. and a single species population model (14). The advantage of HAM method is presence of auxiliary parameter that allows us to fine-tune the region and rate of convergence of a solution [15].

Another analytical approach that can be used in solving the nonlinear system of PDE is Variational Iteration Method (VIM). It was first introduced by He in 1997 [16]. VIM is a powerful tool which is capable of solving linear/nonlinear partial differential equation. The VIM has been successfully applied to nonlinear thermoelasticity (17]. Sawada-Kotera equation [18]. nonlinear Whitham-Breer-Kaup equation [ 19]. KdV-Burgers-Kuramoto equation [20]. and reaction-diffi.1ssion-convection prohlerns [::!:!). The \11\f has 111any

。、カ。ョエ。ァ・ウセ@ such as it avoids linerization and perturbation in order to find solutions of a given nonlinear equatioos. In addition, the VIM provides explicit and numerical solutions with high accuracy [22].

In this paper, we focused on solving the mathematical model of atmospheric internal waves by implementing HAM and VIM as analytical approaches. Solutions by both methods were then compared with the solution by numerical method (NUM) of mathematical models of internal waves in the atmospheric problem.

II.

Atmospheric Internal WaHs Models

Models of internal waves in the atmosphere are represented b) a sys1en1 of nonlinear PDE. This 111odel was developed from the basic equations of fluid under shallo\v-tluid assun1ption. The fundamental equations of fluid motion in differential from are derived by conservation of mass and momentum. Shallo\v fluid refers to the fact that the depth of the fluid layer is the small compared with the wavelength. Here. the atmosphere is assumed to be fluid homogeneous (condition of fluid means that density does not vary in space). autobarotropic. and hydrostatic. The system is

(7)

.4pplication uj.Ho111utop)' anti Variational lter"tion .\letluuls tu till· .·lt1nos1J/Jeric Internal .

iJu iJu i)h

-+u--fv+g-=0

ilt iJx iJx ·

av

av

-+u-+fu+gll = 0

at ax ·

ah i)h au ll)

-+u-+vH +h-= 0

at ax a x ·

f_ H

=

--U.

g

\\'here xis a space coordinat, tis time. the independent variables u and v are the cartesian velocity. h is depth of a_ fluid, f represent the Coriolis parameter. g is acceleration of gra\'it).

H

represen1 111ean depth 0f a fluid. and U is the specified, constant mean geostrophic speed on \\·hich the u perturbation is superi1npused (..t].

Ill. Analysis of Method

3.1 Homotopy Analysis Method (HA:vt)

The principles of the Homotopy Analysis \1ethod (H . .\7\·1) an! gh-en in [9]. In this section

''e

ilu::itrate of the concept of HAM based on [ 10-14). V./e considered the follo,ving nonlinear equation in a general tbrm

N[u(x. t)J = 0, (2)

\vhere N is a nonlinear operator. u(x, t) is an unkno\vn function. x and t denote independent variables. Furthermore, \Ve defined a linear operator l \\'hich sati3tit!3

L[f(x. t)) = 0. when f(x. t) = 0. (:l)

Let u0(x, t) denotes an initial guess of the exact solution u(x, t). \'v'e constructed ho111otop) tJ>(x. t; q) ::::

n

x [0,1] __, Ill!. which satisfies

Jf[<l>(x, t; q), Uo(X, t), h .. q]

=

(1 - q)L[<l>(x, t; q) - Uo(X, t)) - qhN(<l>(x, t; q)J. (4) where q E [0,1] is the embedding parameter, h

*

0 is an auxiliary parameter. By the means of generalizing the traditional HAM. Liao constructed the zero-detbrmation equation

(1-q)L[<l>(x. t; q) - Uo(X, t))

=

qhN[<l>(x. t; q)]. (5)

Setting q

=

O. the zero-order deforn1ation equation (5) beco1ncs

• L[<l>(x,t; O) - u0(x, t)) = 0, (6)

which gives. using the equation (2)

<l>(x, t; O) = u0(x, t), (7)

when q

=

1, since h

*

O. the zero-order deformation equation (5) becomes

nセセエャI}]セ@ Hセ@

which is exactly the same as the original equation (2). provided

<l>(x. t; 1)

=

u(x. t). !9)

Thus according to (7) and (9). as q increase from 0 to I. the solution <l>(x, t; q) deforms continousl)' from the initial approximation u0(x, t) to the exact solution u(x, t) of the original equati1Jn HセIN@ Liao 161 expanded <l>(x, t; q) in term of a power series of q as follows:

+oo

<l>(x, t; q)

=

u0(x, t)

+

L

um (x, t)qm, ( 10)

m=I with

( ) _ 1 amq,cx. t; q)I

Um X,t - I

a

m .

m. q q=O

( 11)

Assume that auxiliary linear operator £. the initial aproximation u0(x, t). the auxiliary paran1eter h. and the auxiliary function 1l(x, t) are properly chosen such that the series ( 10) is converges at q = 1.

Then we have the aproximate solution of equation (2), i.e.

+oo

u(x,t)

=

u0(x,t)

+

L

um(x,t). (12)

m=l

Define the vectors,

Um-I = ( Uo(X, t), u1 (x, t), u, (x, t), .... Um (x, t) ), ( 13)

Differentiating the zeroth-order deforn1ation equation (5) ni tin1es \Vith respect to the embedding paran1eter q. then setting q :::: 0 and finally dividing them by m!. \\"C ha,·e the ni-order detOnnation equation.

L[um(X,t)-xmum-1(x,t)) = h:Rrn[Urn_iJ, (14)

\vhere,

( 15)

and

(8)

Application of Ho111otop_v a1u.I Variational /terution AlethoJs to the .·ltnUJSfJheric: /ntl'rnal ...

(0, m S I

Xm=

l,m>l' (16)

The right hand sidt! of equation ( 1-t) depends onl) on the 1crrn"> li:u-: Thu'-. \\I..' t'a") h) nbtain th1..•

series of Um,nl

=

1,2,3, ... by solving the linear high-order defonnation equation <I>) オセゥョァ@ セケイョ「ッャゥセ@ computation sofhvare such as Maple. tv1atlab or \<1athen1atica.

3.2. Variational Iteration Method (YIM)

Jn this section we ilustrate the basic ideas of variational iteration 1nethod (\'l\t) based on [ 15-20]. \\"c

consider the following partial deferential equation.

l[u(x, t)]

+

N[u(x, t)] = :J'(x, t), ( 17)

\vhere L is a linear differential operator, N is a nonlinear operator and 'F is

an

inho1nogencous tern1s. A.ccording to the VIM. \Ve constructed a correction functional

as

tbllo\\S [ 16-20].

'

uk+, (x, t)

=

uk(x, t)

+

J

aHセI{ャ{オォHクL@

OJ

+

N[uk (x.

OJ -

:J'(x. <J)

、セN@

( 18!

0

where A is a general Lagrange n1ultiplier. \vhose optin1al value can be identitie<l b) using the セhョゥッョ。イI@

conditions of the variational theory. The second terms

on

the the right-hand side t 18) is called 」ッイイセ」エゥッョ@ and Uk

is considered as a restricted variation, i.e 5i.ik = 0. The subscript k for k

=

0,1,2 ... , indicates the k'11-order approximation. As k tends to infinity. then iteration leads to the exact solution of ( 17). Consi:quently. the solution

u(x, t)

=

Jim uk(x, t).

ォMセ@ ( 19)

IV.

Aplication of HAM and VIM Methods

4. I Aplication of Homotopy Analysis Method

In this section. the homotopy analysis method is applied to solve the problem of internal \\'aves in the atmospheric. where system (I) will be solved by generalizing the described homotopy analysis me1hod. By

means of the homotopy analysis rnethocl. the linear operator can be defined as bclo\I,.,

l ; 'I'; X, ["' ( t )] ,q acp,(x,t,q) . at ,I

=

123 ' ' . (20)

According to system (I), nonlinear operators N1 ,N2 and

N

3 can be defined as follows:

acp,

acp,

acp,

.Nj[cp,,cp,.cp,] =--at+cp,

ax

-rcp,+g

ax'

[

l

acp,

acp,

r

H (21 >

. N,

cp,,cp,.cp3 =--at+cp,ai(+ cp, +g ·

acp,

acp,

acp,

N,[cp,,cp,.cp,] =--at+cp,

iix

+<p,H+<h

clx.

We construct the zeroth-order deformation equation

(1 -

q)£1 [ cjJ1 (x, t; q) - u0(x, t)]

=

qh1 .Nj

[cp,, cp,. cp,J,

(1 - q)£2 [ cjJ2 (x, t; q) - v0(x, t)] = qh 2

N, [

cjJ1, cp,. cjJ3], (22) (1 - q)£3[cjJ3(x, t; q) - h0(x, t)]

=

qh3N3[cjJ,,cjJ,. cjJ3 ].

According to equation (22). when q

=

0 we can write and when q

=

1,

we have

cjJ1 (x, t, 0)

=

u0(x, t)

=

u(x, 0), cjJ2(x,t,O) = v0(x,t) = v(x,O), cjJ3(x,t,O) = h0(x,t) = h(x,O),

cjJ1 (x, t, 0)

=

u(x, t), cjJ 2 (x, t, 0)

= v(x, t),

cjJ3 (x, t, O)

=

h(x, t). Thus, we obtain the mth _order deformation equation

£1 [um (x, t) - Xm Um-1 (x, t)]

=

h1 .'.R1,m (Um-I• vm-1 • hm-1 ).

£2[Vm (x, t) - Xm Vm-1 (x, t)] ;::;::. hi.'.R2.m

(rrm-1 •

v:n-1 • h:n-1 ).

£,[hm (x, t) - Xmhm-1 (x, t)]

=

h3'.R3.m (iim-1 • Ym-1 • hm-1 ). Now, the solution of the m'h-order deformation equation (25) form? I becomes.

'

Um (X, t)

=

Xm Um-I

(x,

t)

+

h1

f

'.R1.m (iim-1• Ym-1• h"'_,) ds

0

\\'\\" .iosrjournalS.llrg

(24)

(9)

rl.pplicutiun oj.J-/unzotup,r anti J ·ariutional li!!ru1iun .\h!tho<I ... to thL' .·ltnu1s1>l1L·ric /ntt'rnal

Where,

'

vm (x. t) ;;;; Xm vm-1 (x, t)

+

h2

f

'R.2.m (um-I• vm-1 • hm-1) ds

0

'

hm(x,t) = Xmh111 _1(x.t)

+

h:i

f

.'.R:i.:11(Um-J•V:u-i•hm-l)ds

u

m-1

セ@

(- - -h ) aum-1 "\' aum-i-..

AJ,m Um-1• Vm-1• m-1

="at+

L

Un

ax

n=O

m-1

- - ... avm-1

I

avm-1 am-1

'R.2m(um-t•Ym-1•hm-1)

=-,-+

un-a-+fu0

+-

; : : i

-1gH,

· vt X

vqm-n=O m-1

(-

_ -

i

ahm-1

I

ahm-1-n 。オュMQMセL@

.'.R3.m Um-I• Ym-1• hm-1 = -iJ-

+

Lin iJ

+

hn J

+

V:11-1 II.

t

x

c.x

n=O

According to equation ( 12), the results of system (I) can be obtained by sol\'ing the following series: +oo

u(x, t)

=

u0 (x, t) +

L

Um (x, t),

m=I

+oo

v(x. t) = v0 (x, t)

+

L

v,,, (x, t),

m= I

h(x, t) = h0(x, t) +

L

hm(x, t).

m=I

4.2 Aplication of Variational Iteration Method ,

(27)

t28)

In this section, we implement VIM for obtaining the analytical approximate solution of system (I}. By means of the variational iteration method refers to system (I), we construct correction functionals as follow

'

uk+l (x, t)

=

u, +

J

'-1 co ( (u,J( + ii,(ii,), -

rv,

+ gii,(ii,)J

、セN@

0

t

Vk+I (x, t)

=

v,

+

J

Az(O(

(v,)( +ii, (v,), +

ru,

+ gH) d<. (29)

0 t

h,+ 1 (x, t)

=

h, +

J

A.3(0 ( (h,J< + ii, (fi,J_ + Hv, + fi, (u, J,) d<.

0

where A.1,A.2 and A.3are general Lagrange muhipliers which their optimal values can be found by

variational theory. Now, taking variation with respect to indepent variables ilk, Vk and ilk \Ve have

t .

ou,+l (x, t)

=

ou, + 0

J

A.,

co (

(u,)( + ii,(ii,J, -

rv,

+ gii,(ii,),) d<. 0

t

OVk+l (x, t)

=

ov,

+ 0

J

A.,(O( (v, )( +ii, (v,), +

ru,

+ gH) d<. 0

t

oh,+l(x.tl

=ov,

+o

J

A.,co(ch,)<+u,(fi,), +Hv, +ii,(u,J,)d<.

0

To find the optimal value ofA.1, A.2 and A.3 , we employ oii, = 0,

ov,

= 0, oii, = 0, from which we ha,·e

t

ou,+1 (x, t)

=

ou, (x, t) + o

J

A.1 ( (u,h) d<. 0

'

OVk+l (x, t)

=

ov,(x, t) + 6

J

A.,( (v,)d d<.

0

using

(30)

(31)

(10)

A{Jp!icutiun \セャャ@ fu111oto/>Y Ulltl 1 ·ariutiu11u/ /1i.:ratio11 .\h,thud.' /u lhl' .-l11nu.\j>hl'ric /111ernul

'

oh•+• (x, t)

= liv• (x, t)

+

Ii

f

).

3 ( (h,

Jd

di;, 0

The considered stationary conditions are then obtained in tbllo\ving ti-0111:

1

+

;i.,

m

=

a.

;i. ,

m

=

a

l+l.2(0=0. t.,(O =O

I

+

t.,

(0 = 0, !.', (\) = 0 Thus, the Lagrange multipliers are defined as follow:

エNLHセI]MQL@ t.,(0=-1, t.,(0=-1. Substituting Lagrange multipliers in (33) into the correction functional

ヲッイュオャ。セ@

03)

in equation (28) givl!s the itl!ration

u,+1 (x, t) = u, - f ( (uk)( + u,(u,J., - fv, + g(h,)J

、セN@

v,+,(x.t) =v• - fccv,J< +u,(v,J., +fu,

KァャャI、セN@

1.;41

h,+1 (x, t) = hk -

f

((hk)( + uk(h,), + Hv, + h,(u.JJ

、セN@

Using the initial conditions u0 (x, t), v0(x, t) and h0(x, t) into (34) we obtain ihe following successive

approximations:

u(x, t)

=

lim "• (x, t), k-oo v(x, t) = lim vk (x, t),

k-oo

h(x. t)

=

lim

h,

(x. t).

ォセカZ@

V.

Results

and

Discussions

In this section we compare solutions obtained by HAM and YIM with one obtained by numerical methods (NUM) toward system (I) through graphical representation. Suppose the following parameters are

given for numerical simulation: coriolis parameter f

=

2!lsinu. \vhere

n

=

7.29 x 10-s rad's and n:::::: :!. •

..

constant of gravity g = 9.8 ュゥウセ@ and constant of pressure gradient of desired nlagnitude H = - ; D. \\·here

U

= 2.5 mis is specified. To get solutions of HAM, VIM and NUM, we start the procedures with the given

initial aproximation:

u(x, 0) = e' sech2 x.

v(x,O) = 2xsech22x, (36)

h(x, O) = x2 sech2 2x.

By means of the solution of the m"-order deformation equation (26) and the initial conditions (36) we obtain a number of terms as parts of series solution as follow:

u0(x, t) = e' sech2 x

Ut (x, t) = h(e' sech2 x (e' sech2 x - 2 · e' sech2 x tanhx)t + 19.5997474 xt sech2 2x - 39.2 x2tsech2 2x tanh2x)

v0(x, t)

=

2xsech2(2x)

v1 (x, t) = h(-0.0003156662596! + e' sech2 x (2 sech2 2x - 8x sech2 2x tanh2x)t + 0.0001266509 e'tsech2 2x)

h0 (x, t) = x2 sech 2 2x

h1 (x, t) = h( e' sech2 x (2x sech2 2x - 4x2 sech2 2x tanh2x)t + x2 sech2 2x (e' sech2 x - 2 e' sech2 x tanhx)t

- 0.00006442168564xtsech2 2x)

(37)

The rest of the components of the iteration formulas by HAM can easily be obtained by symbolic computation

software. Thus, we obtain the following aproximate solution in term of a series up to S1h -order:

u(x, t)"' u0(x, t) + u1 (x, t) + u2(x. t) +

u,(x.

t) + u.1(x, t) +

u,(x.

t},

v(x, t) • v0 (x, t) + v 1 (x, t) + v2 (x, t) + v3 (x, t) + v 4 (x, t) + v5 (x, t),

ィセPィッセPKセセPKセセPKセセPKセセPKセセセ@

'"'"''v.i

osrj ournals.org

138)

(11)

.-l.pp/icalion uj"//01110/ufJ)' un,J l'uriatiu11ul lt1.•ratio11 ;\/f!tluJ£l'i tu tht: ..t1111us1Jh1!ri1.· hlli!rnal .

Furthermore. by means of the iteration ti.lrn1ula equation (.l..J) 111 lht.• \ J\I and lht.• initial .... tlndititlfl l..'qu;111t1n ( .161. \Ve obtain the approxin1ations by symbolic computation sofl\,·arc.

In Fig. I, Fig. 2 and Fig. 3. we draw graphical solutions of u(x, t), v(x. t), h(x, t). where for I !.·\\I. we use auxiliary parameter h = -0.825 and a series up to S1

h-ordcr. and tOr YJ\t, \\"C use iteration until -tc11-order.

By those figures, we can see that NL''.\1, HA'.\1 and viセA@ solutions are similar.

"II

:;J.c

MセヲGャGMMNN⦅i@

iヲMiMセMKMKM

- .[

.'::..>/ ... -.., •) セ@ NjヲMMエMMMKMMセ@ r - --Mセ@ .

i

Mセセ@

t·--·· :.-...

...

.,

I/

·-.

..

·-1--.

-.

0

,

,;

0

.,

••

.,

OS I J 1 4 1 6 1 8

L

_

⦅ゥN]sエmセ@

-

セ]セセZM

ᄋセZAAセセMMZ⦅セセZMセセセmm@

I

Figure I NUM. HAM and VIM solutions u(x, t), v(x. t), h(x, t). fort= 0.1 and 0 $ x $ 2.

'

·-

.

.

セKMKG@

.

イMMセZ@ .

.

. . : .

1 ᄋᄋᄋᄋᄋᄋᄋᄋセᄋᄋᄋ@

.•

i

OS .

••

j I ' I

0.02 0.04 0 06 0 08 0.1

-

.

url.t!,!

'·.11,1

·'IUt.l

NMZNセNQ@

1-.·:.1: "'Ill'.'

..,.:.·.·

;

I - ;

[image:11.595.66.549.66.786.2]

012 014 0.16

Figure 2 NUM, HAM and VIM solutions u(x, t), v(x, t), h(x, t), for x

=

1 and 0 $ t $ 0.15.

a.

ZsセエオオッZQセセセオᄋ@

ィセエャtAm@

Solution uNuM

ANセ|ᄋ@ .... セセ@ ·f•u.• 1 . .,IJAM

b. Solution uHAM

\V\.\·\1,·. i osrj ourn als. org

c.

セョセZャNL」N@ "!'·•<."

ᄋMセZNZ@

Solution UviM

[image:11.595.88.536.466.773.2]
(12)

.4pplication oj.Ho111oto/JY and Variational Iteration AletluJ£1s tu the ..J.111uJst>he1·ic Internal ...

d,

g,

Solution VNuM

ャLセBBBGG@ ,(liU•

\y:•UM

So_tution hNuM

e.

h.

,.,.

Solution vHAM "'·b ... ,_.., • NヲQLセᄋ@

セケQQ@ ... 1.1

Solution h11AM

'••

f.

i.

...

セ@

Solution vv1M

l Nセ@ ... 1. ,.,;

セャセGゥANャ@

[image:12.608.80.524.102.422.2]

Solution hviM

Figure 3 NUM, HAM and VIM solutions u(x, t), v(x, t), h(x, t). for 0 $ x $ 2 and O $ t $ 0.1.

VI.

Conclusion

Homotopy analysis method and variational iteration method has been succesfully applied in finding the approximate solution of the atmospheric internal waves model, Solutions by those methods are then compared with one of numerical method. It is shown that all solutions are in excellent agreement. It means that both HAM and VIM are efficient in approximating the numerical solution.

References

{I) J.W. Rottman. D. Brottman and S.D. Eckermann. A fort."Cas1 model for <Hmosphcru: mtcrnal \\il\'CS produced l\y a mnunt:un lf•'

Australian Fluid Mechanics Confrence Cron11 Pla1.a. Goal Coast. All. 2007

[2) R.S. Lindzen, Internal gravity waves in a1mosphcrcs wilh realisuc d1ss1pa1ion and ti.:mpera1urc Pan I mathema11cal dc,·dopmcnt and propagation of waves into the thermosphcre. Geophysical Fluid Dynam1i.:s. I. 1 ')70. 303-355

[3) B.P. Cassady, Numerical simulations of aimospheric internal \\il\'CS \\llh ume-dcpcndcnt crit1i.:al levels and turning points.

Departinent of Mechanical Engineering. thesis. Brigham Young University. Ha\\nii. USA. 2010

[4) T.T. Warner, Numerical weather and climate predic11on. (New York. l !SA C:unhndgc uュLᄋ」イウQQセ@ l,rcss. 2011 l I セMQ@ .J

[5] D.L. Williamson. J.B. Drake. J J llack. R Jacoh R. and P N A''anraubcr. A srnndard test for numerical appro\1mat1lm shallo\\· ''nter equations in spherical geometry. Journal of Computation Phys1c. 102. J 9'J2. 211-22.J

[6] C. Clancy and P.Lynch. Laplace transform 1ntcgra11on or lhc shallo\\ \\atcr co..tu<it1ons part 1 Eukrian fonnulatwn anJ Kchrn wave, Quarterly Journal of Royal Meteorological Society. 137 (656) . .'.!011. 79.'.!-799

[7] C.T. Duba and J.F. McKenzie. Propagation properties of Rosby,\nvcs for latitudinal セ@ - plane varia1ions off and 7onal ,·anauons of the shallow water speed, Annales Geophysicae, 30. 2012, 849-855.

[8] Blaise S, St-Cyr A. 2012. A dynamic hp-Adapth'e disconlinuous Galerkin method for shallow-water !lows on the sphere with application to a global tsunami simulation . .\mcni.:an セォャ」ッイッャッァゥゥNZ。ャ@ sイQ」Q」エセ@ 1-10 978-996

{9) SJ.Liao. The proposed homotopy analysis technique for the solu11on nonlinear problem. PhD thesis. Shanghai Jiao Tong University. Sanghai. CN. 1992

{I

OJ

SJ.Liao, Beyond penurbation Introduction to the ィッュッエッーセ@ analysis mc1hod. ヲセc||@ York. l 'S A CRC Press C ッュー。ョセN@ 200.i 1 {I I J A.K . .-\lomari. N.S Nooram. and セi@ '.".; RoslmJa :\ppro'l.Hnatc 。ョ。ャセ@ \lea! Z^ッャオエオュセ@ 11!' th..: Kk111-liurJ1111 ..:i.1uat11111 「セ@ rn..:an:. \lt' lh\.'

homotopy analysis method. Journal of qオ。ゥョセ@ セォ。ウオイゥNZュ・ュ@ anJ aョ。ャセ@ :.1:.. -1! l ) . .'.!llll8. -l:'-57

[12) M. Usman, T. Zubair. I Rashid. I Rashid. A Yildirim and S.T. Mohyud-Din. !v!od11icd Homotopy Analysis Mc1hod for lakharo'· Kuznetsov. Walailak. 10(5). 2013. 467-478

[13} K.H. Hemida and M.S. Mohamed. Numerical simulation oflhe generalized Hu ... lcy equa1ion hy homotopy 。ョ。ャセ@ sis mclhnd. Journal of Applied Functional Analysis. 5(4). 2010. 3-14-350

[14] Jaharuddin. A single species population model in pollult.'<i cn,·iromi.:nt soh·cd i|セ@ homntop> 。ョ。ャセウQウ@ method. Appl1ed :i.1:11hi:ma11o.: Sciences. 8(20). 201-1. 951-961.

[15) B. Froese. hッュッQッーセ@ analysis melhod lhr セクQウケュュ」Qイjc@ tlO\\ of a p1n\i:r la\\ 1h11d p;.1:>1 a s1ri:1d11ng セィ・NZQN@ tイュョセ@ \\'c:.tcrn University. Kanada. CA. 2007

(13)

. I

I

i

!

I

I

I

.4pplication \セャhPQョッエッーIG@ anll J,.ariationul iteration .\lctho1I.\· to the At11111sr'heric lntcrnu/

[ 16) J H lie, Vana11onal 1tcra1m11 method a J..111d of nonlmcar 。ョ。ャセ@ 11..;;1l 11:J...h111qu.: セゥNゥュNZ@ c|N\ゥューャ」セ@ Jni.:rn.itrun;il Jour11;1I 111 '0111 QQQ」セオ@

Mechanics. 34(-1), i 999, b99-708

( 17] N H. Swe1lam and セQ@セi@ Khadcr, Vana11onal 11crauon mc1hod !Or one d1mcns1on.it nonlrnc.ir エィ」イュッ、。ウオNNZQQセN@ Chao ... Sol1101h 1111J

Fracuils, 32(2007). 2007, 145-1..19

[18) H Jafan. A Yazdani, J Vah1d1 and DD GanJt. Appl1r.:.i11on of !k's Var1a11vnal licraln•n \1cthui.l ti•r -.11J,1ng \\.'\cnth vr1k1 Sawada-Kotera Equauons, Appl1.:d M.ithcma1u:al Sc1cm:c. 21 IU), 2UU8, -!71-177

(19] \·t Maunfar. A h:rc1doon. A Nᄋ|ィ。ウァィ。ョQQセQNGィN@ and \I Ghanhan, \'a11atwnal 1h:ra11on mctl111J lur セオィュァ@ ョオョィョセMNh@ \\Bh.

セG|ェオ。ャQッョウN@ Jn1crnmlllnal Journal オヲGNG|ッョャュセセェイ@ Snl.'ncl.', 81-l;, 2Ull'l. -119--123

[201 セ@ Satan.DI> Gan.11. and \1 |ィIセᄋウォュゥN@ Appl11:a11nn ot'lk's \'arwtwnal 1tcr;it1un QQQセᄋQィQQj@ anJ ·\Jom1a1f-. i.kn1mpos1110n rm:1h1iJ tu

1hc tfac.:11om1I Kd\. Burgl.'rs Kur;imolo l.'ljuauo11. t'ompu!l.'r' ,1nJ N|ャ[オィセᄋュ。ャイャᄋ[、@ n 1!h ·\pplrl'.Llwn .. 'Si ,'.'.1irN1 ,'.'.1irl'J 2'"' ! . .;'"'':'

(21] S DuangpuaJ.. and セi@ tッョ。QQ。ョ。セョN@ yar1a11onal 11cra1mn ma1huJ for セッャLイョァ@ nonl1ncar イセᄋ[ゥイNZオオQQNjQイャゥNjZNQPョᄋNNZオョ|ャG|ZャQオョ@ prubkn1:>. Applh.'<l Ma1hema11cal Sc.:1ences, b(l7). 2012. 8-13-8-!9

[22) MU セQQ。ョウ。イゥL@ ME !l-1iansao, A Baran and DD GanJ1. Apph:alion of lle's \'iHJUl1unal 111:1a1mn mc1hoJ lo nunlml.'at lklmhull.t.

and lill·order KdV equauons. Journal of 1he aーーィセG\ャ@ t..ta1hema1ics. 5( I). 2009, S-20

(14)

IOSR Journal of Mathematics

Volume

10,

Issue 5, Version 5

September-October 2014

ISSN: 2319-765X

Contents

1

Existence of Solution of Antiperiodic Boundal)· Value Problems of Fractional Order

1 -

9

0

<

a

<

3,

R.P. Pathak, P.S. Somvanshi

DOI:

10.9790/5728-10550109

2

Combinatorial Theo!)· of

a Cnmplete Graph KS.

N.K.

Geethll

10 -

IC!

DOI:

10.9790/5728-10551012

3

Analytical Solution of Dynamic Thermo Elasticity Problem for the FGM Thick-walled

13 -

セZャ@

Sphere,

S.M. Bashusqeh

,

A.S. Miavaghi

,

M.A. Khameslou

DOI:

10.9790/5728-10551323

4

Pebbling Graphs of Various Diameter,

B. Tamilselvi, R.Sowentharyt1

24 -

;J8

DOI: 10.9790/5728-105524

5

Dynamics of Allelopathic Two Species Model Having Delay in Predation,

39 -

45

M.A.S. Srinivas, B.S.N. Murthy, A.Prasanthi

DOI: 10.9790/5728-10553945

6

Application of Homotopy and Variational Iteration Methods to the Atmospheric

46 - 53

Internal Waves Model,

Z.

Busrah, Jaharuddin, T. Bakhtiar

DOI: 10.9790/5728-10554653

7

Non-Static Plane Symmetric Massive String Magnetized Perfect Fluid Cosmological

54 - 59

Models in Bimetric Theory of Gra\itation,

R.C. Sahu, B. Behera, S.P. Misra

DOI: 10.9790/5728-10555459

8

Adomain Decomposition Method for Solving Non Linear Partial Differential

60 - 66

Equations,

F.H. Easif

DOI:

10.9790/5728-10556066

9

Wiener Index of Directed and Weighted Graphs by MATLAB Program,

K. Thilakam,

67 - 71

A.Sumathi

DOI: 10.9790/5728-10556771

10 Modification Adomian Decomposition Method for Sohing Seventh Order

Integro-differential Equations,

S.M. Yassien

DOI:

10.9790/5728-10557277

72-77

11

Occurrence of Naked Singularities in Higher Dimensional Dust Collapse,

K.D. Patil,

78 - 88

M.S.Patil

DOI:

10.9790/5728-10557888

12 Strong Equality of MAJORITY Domination Parameters,

J.J. Manora, B. John

DOI:

10.9790/5728-10558995

.

Gambar

Figure 2 NUM, HAM and VIM solutions u(x, t), v(x, t), h(x, t), for x = 1 and 0 $ t $ 0.15
Figure 3 NUM, HAM and VIM solutions u(x, t), v(x, t), h(x, t). for 0 $ x $ 2 and O $ t $ 0.1

Referensi

Dokumen terkait

Selanjutnya bagi pihak-pihak yang merasa berkeberatan atas penetapan pemenang lelang diberi kesempatan untuk menyampaikan sanggahan kepada Pokja Konstruksi ULP

PENATAAN BATAS KAWASAN HUTAN PROV MALUKU SAMPAI DENGAN TAHUN

Berdasarkan data Badan Pusat Statistik, bahwa sektor perikanan (termasuk didalamnya adalah subsektor pertanian, peternakan, dan kehutanan) merupakan sektor industri yang

Ketiga JCG Octagon Managerial Competency Visioning Suksesor memiliki visi bagi perusahaan Sudah membangun visi dan sudah dikomunikasikan Semua karyawan mengetahui

Meskipun belum semua prinsip yang diterapkan di dalam perusahaan, dan beberapa prinsip yang sudah diterapkan tersebut juga masih belum sempurna, perusahaan ini terus

մարդը պետք է մտածի Նրա մասին՝ որպես մարդու։ Այս զանազան գաղափարները հիվանդագին կերպով ակտիվ երևակայության արդյունք չեն։ Մարդը, գոմեշն ու ձուկը

[r]

Pada minggu selanjutnya dimana infeksi Focal Intestinal terjadi dengan tanda-tanda suhu tubuh masih tetap tinggi, tetapi nilainya lebih rendah dari fase bakterimia dan