• Tidak ada hasil yang ditemukan

Pengembangan Fuzzy Inferensi Sistem Untuk Seleksi Metode Peningkatan Perolehan Minyak Tingkat Lanjut

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pengembangan Fuzzy Inferensi Sistem Untuk Seleksi Metode Peningkatan Perolehan Minyak Tingkat Lanjut"

Copied!
178
0
0

Teks penuh

(1)

INDAH MUSI INDRIA DEWI

G651034074

SEKOLAH PASCASARJANA

INSTITUT PERTANIAN BOGOR

(2)

Sistem Untuk Seleksi Metode Peningkatan Perolehan Minyak Tingkat Lanjut adalah merupakan hasil penelitian saya dengan arahan komisi pembimbing. Tesis ini belum pernah diajukan untuk memperoleh gelar atau capaian akademik lainnya pada perguruan tinggi lain. Sumber informasi dicantumkan dengan jelas dalam Daftar Pustaka.

Jakarta, Juni 2009

Indah Musi Indria Dewi

(3)

INDAH MUSI INDRIA DEWI. Pengembangan Fuzzy Inferensi Sistem Untuk Seleksi Metode Peningkatan Perolehan Minyak Tingkat Lanjut. Dibimbing oleh Agus Buono dan Sugi Guritman.

Proses pengurasan minyak dari suatu reservoar umumnya dapat dibagi dalam tiga tahap: primer, sekunder, dan tertier. Pengurasan minyak tahap primer mengandalkan energi alami reservoar sebagai sumber energi utama pendorong minyak ke sumur-sumur produksi. Pengurasan minyak tahap sekunder hasil kombinasi energi alami reservoar dan energi dari luar yang disuplai lewat injeksi air atau gas, sedangkan Tahap tertier dilakukan setelah implementasi tahap kedua. Proses tertier secara garis besar terdiri atas injeksi gas yang dapat larut dengan minyak reservoar, injeksi kemikal, injeksi energi panas, dan menggunakan bantuan mikroba.

Proyek EOR hanya akan dimulai jika proyek tersebut dapat menghasilkan profit. Tingginya ketergantungan terhadap pakar reservoar minyak atau lebih spesifik pakar EOR dalam proses seleksi metode-metode EOR yang tepat buat suatu reservoar minyak dan fakta bahwa proses seleksi tersebut memerlukan proses waktu yang panjang dan biaya mahal mendorong dan perlunya mengembangkan sistem berbasis fuzzy sehingga proses seleksi EOR tahap pertama dapat dilakukan secara otomatis. Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR dapat digunakan oleh engineer reservoar yang memiliki pengetahuan teknologi EOR terbatas, memungkinkannya menarik kesimpulan berdasarkan input data, dan menjelaskan logika kesimpulan tersebut. Karakteristik masukan datanya dengan menggunakan data-data lapangan yang diperoleh di PPPTMGB LEMIGAS dan Kriteria Taber digunakan sebagai acuan seleksi metode EOR.

Proses yang dilakukan dalam Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR adalah dengan memasukkan data karakteristik minyak dan batuan. Kemudian dilakukan pembentukan himpunan fuzzy dengan pemetaan titik-titik input data kedalam nilai keanggotaan himpunan fuzzy memiliki interval 0 – 1. Setelah terbentuk himpunan fuzzy dicari nilai minimum masing masing metode berdasarkan aturan-aturan. Nilai kurva minimum di agregasi untuk menentukan nilai kurva maksimum. Dari nilai kurva maksimum dapat ditentukan defuzzifikasi. Metode defuzzifikasi pada komposisi aturan Mamdani yang digunakan adalah metode centroid. Pada variabel yang memenuhi kriteria Taber, konsekuensinya adalah metode EOR yang sedang dievaluasi dikatakan layak relatif terhadap data tersebut. Sebaliknya bila data tidak memenuhi kriteria maka metode tersebut dikatakan tidak layak. Output yang dihasilkan berisi informasi mengenai Seleksi Metode EOR yang disarankan dan hasil defuzzifikasinya dengan derajat keanggotaannya.

(4)

manusia dan waktu untuk proses seleksi EOR akan dapat dikurangi signifikan. Kesimpulan yang dapat diambil bahwa Algoritma Fuzzy telah dikembangkan untuk Seleksi metode EOR terhadap sejumlah set data menunjukkan hasil yang sesuai dengan analisa pakar.

(5)

INDAH MUSI INDRIA DEWI. The Develop Fuzzy Inference System, written in MATLAB 7.1 for running on personal computers, to assist petroleum engineers in screening candidate processes for enhanced oil recovery (EOR) has been developed. Rather than having to glean information and data from graphs or table in technical papers, the user and the system work interactively to obtain the needed information. The system automatically selects the optimal EOR method based on the input oil and reservoir properties data and is easily updated as new data of reservoirs become available.

The Mamdani fuzzy interference system has been implemented in the system and has been tested through evaluation of five oil fields consist of forty three reservoirs. Both accuracy and efficiency have been confirmed favorably. High accuracy of the system was observed through comparison between the proposed EOR method for various set data by a human expert and the developed system.

(6)

@ Hak Cipta milik IPB, tahun 2009 Hak Cipta dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan

atau menyebutkan sumber

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu

masalah

b. Pengutipan tidak merugikan kepentingan yang wajar IPB

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya

(7)

INDAH MUSI INDRIA DEWI

Tesis

Merupakan salah satu syarat untuk memperoleh gelar Magister Sains Pada

Program Studi Ilmu Komputer

SEKOLAH PASCASARJANA

INSTITUT PERTANIAN BOGOR

(8)

Peningkatan Perolehan Minyak Tingkat Lanjut Nama : Indah Musi Indria Dewi

NRP : G651034074

Program Studi : Ilmu Komputer

Disetujui, Komisi Pembimbing

Dr. Ir. Agus Buono, M.Si., M.Kom Dr. Sugi Guritman

Ketua Anggota

Diketahui,

Ketua Program Studi Dekan Sekolah Pascasarjana IPB Ilmu Komputer

Dr. Sugi Guritman Prof. Dr. Ir. Khairil Anwar Notodiputro, M.S.

(9)
(10)

Alhamdulillah, puji syukur penulis panjatkan kehadirat ALLAH SWT atas rahmat dan hidayahnya sehingga dapat menyelesaikan tesis ini. Adapun judul dari tesis ini adalah Pengembangan Fuzzy Inferensi Sistem Untuk Seleksi Metode Peningkatan Perolehan Minyak Tingkat Lanjut.

Banyak pihak yang telah membantu untuk itu penulis ingin mengucapkan terima kasih kepada :

1. Bapak Dr. Ir. Agus Buono, M.Si., M.Kom dan Bapak Dr. Sugi Guritman, selaku pembimbing yang telah banyak memberikan bimbingan dan saran. 2. Bapak Aziz Kustiyo, S.Si., M.Kom selaku penguji luar komisi.

3. Bapak Irman Hermadi, S.Kom., MS., yang telah memberikan saran-saran dan masukannya.

4. Staff pengajar dan karyawan Program Studi Ilmu Komputer, Sekolah Pascasarjana IPB, yang telah banyak mendukung.

5. Bapak Agus Salim SH, M.H. dan Bapak Sangkam Tambunan MSc., yang telah memberikan dukungannnya.

6. Rekan-rekan mahasiswa yang telah memberikan banyak masukan. 7. Kepada kedua orang tua yang selalu memberikan semangat.

8. Suamiku Usman Pasarai, anak-anakku Adelia Usi Lauditta dan Rizka Usi Nadhifa yang selalu memberikan doa, semangat dan dukungan.

9. Semua pihak yang telah banyak membantu yang tidak dapat disebutkan satu persatu.

Jakarta, Agustus 2009

(11)

INDAH MUSI INDRIA DEWI

G651034074

SEKOLAH PASCASARJANA

INSTITUT PERTANIAN BOGOR

(12)

Sistem Untuk Seleksi Metode Peningkatan Perolehan Minyak Tingkat Lanjut adalah merupakan hasil penelitian saya dengan arahan komisi pembimbing. Tesis ini belum pernah diajukan untuk memperoleh gelar atau capaian akademik lainnya pada perguruan tinggi lain. Sumber informasi dicantumkan dengan jelas dalam Daftar Pustaka.

Jakarta, Juni 2009

Indah Musi Indria Dewi

(13)

INDAH MUSI INDRIA DEWI. Pengembangan Fuzzy Inferensi Sistem Untuk Seleksi Metode Peningkatan Perolehan Minyak Tingkat Lanjut. Dibimbing oleh Agus Buono dan Sugi Guritman.

Proses pengurasan minyak dari suatu reservoar umumnya dapat dibagi dalam tiga tahap: primer, sekunder, dan tertier. Pengurasan minyak tahap primer mengandalkan energi alami reservoar sebagai sumber energi utama pendorong minyak ke sumur-sumur produksi. Pengurasan minyak tahap sekunder hasil kombinasi energi alami reservoar dan energi dari luar yang disuplai lewat injeksi air atau gas, sedangkan Tahap tertier dilakukan setelah implementasi tahap kedua. Proses tertier secara garis besar terdiri atas injeksi gas yang dapat larut dengan minyak reservoar, injeksi kemikal, injeksi energi panas, dan menggunakan bantuan mikroba.

Proyek EOR hanya akan dimulai jika proyek tersebut dapat menghasilkan profit. Tingginya ketergantungan terhadap pakar reservoar minyak atau lebih spesifik pakar EOR dalam proses seleksi metode-metode EOR yang tepat buat suatu reservoar minyak dan fakta bahwa proses seleksi tersebut memerlukan proses waktu yang panjang dan biaya mahal mendorong dan perlunya mengembangkan sistem berbasis fuzzy sehingga proses seleksi EOR tahap pertama dapat dilakukan secara otomatis. Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR dapat digunakan oleh engineer reservoar yang memiliki pengetahuan teknologi EOR terbatas, memungkinkannya menarik kesimpulan berdasarkan input data, dan menjelaskan logika kesimpulan tersebut. Karakteristik masukan datanya dengan menggunakan data-data lapangan yang diperoleh di PPPTMGB LEMIGAS dan Kriteria Taber digunakan sebagai acuan seleksi metode EOR.

Proses yang dilakukan dalam Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR adalah dengan memasukkan data karakteristik minyak dan batuan. Kemudian dilakukan pembentukan himpunan fuzzy dengan pemetaan titik-titik input data kedalam nilai keanggotaan himpunan fuzzy memiliki interval 0 – 1. Setelah terbentuk himpunan fuzzy dicari nilai minimum masing masing metode berdasarkan aturan-aturan. Nilai kurva minimum di agregasi untuk menentukan nilai kurva maksimum. Dari nilai kurva maksimum dapat ditentukan defuzzifikasi. Metode defuzzifikasi pada komposisi aturan Mamdani yang digunakan adalah metode centroid. Pada variabel yang memenuhi kriteria Taber, konsekuensinya adalah metode EOR yang sedang dievaluasi dikatakan layak relatif terhadap data tersebut. Sebaliknya bila data tidak memenuhi kriteria maka metode tersebut dikatakan tidak layak. Output yang dihasilkan berisi informasi mengenai Seleksi Metode EOR yang disarankan dan hasil defuzzifikasinya dengan derajat keanggotaannya.

(14)

manusia dan waktu untuk proses seleksi EOR akan dapat dikurangi signifikan. Kesimpulan yang dapat diambil bahwa Algoritma Fuzzy telah dikembangkan untuk Seleksi metode EOR terhadap sejumlah set data menunjukkan hasil yang sesuai dengan analisa pakar.

(15)

INDAH MUSI INDRIA DEWI. The Develop Fuzzy Inference System, written in MATLAB 7.1 for running on personal computers, to assist petroleum engineers in screening candidate processes for enhanced oil recovery (EOR) has been developed. Rather than having to glean information and data from graphs or table in technical papers, the user and the system work interactively to obtain the needed information. The system automatically selects the optimal EOR method based on the input oil and reservoir properties data and is easily updated as new data of reservoirs become available.

The Mamdani fuzzy interference system has been implemented in the system and has been tested through evaluation of five oil fields consist of forty three reservoirs. Both accuracy and efficiency have been confirmed favorably. High accuracy of the system was observed through comparison between the proposed EOR method for various set data by a human expert and the developed system.

(16)

@ Hak Cipta milik IPB, tahun 2009 Hak Cipta dilindungi Undang-undang

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan

atau menyebutkan sumber

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu

masalah

b. Pengutipan tidak merugikan kepentingan yang wajar IPB

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya

(17)

INDAH MUSI INDRIA DEWI

Tesis

Merupakan salah satu syarat untuk memperoleh gelar Magister Sains Pada

Program Studi Ilmu Komputer

SEKOLAH PASCASARJANA

INSTITUT PERTANIAN BOGOR

(18)

Peningkatan Perolehan Minyak Tingkat Lanjut Nama : Indah Musi Indria Dewi

NRP : G651034074

Program Studi : Ilmu Komputer

Disetujui, Komisi Pembimbing

Dr. Ir. Agus Buono, M.Si., M.Kom Dr. Sugi Guritman

Ketua Anggota

Diketahui,

Ketua Program Studi Dekan Sekolah Pascasarjana IPB Ilmu Komputer

Dr. Sugi Guritman Prof. Dr. Ir. Khairil Anwar Notodiputro, M.S.

(19)
(20)

Alhamdulillah, puji syukur penulis panjatkan kehadirat ALLAH SWT atas rahmat dan hidayahnya sehingga dapat menyelesaikan tesis ini. Adapun judul dari tesis ini adalah Pengembangan Fuzzy Inferensi Sistem Untuk Seleksi Metode Peningkatan Perolehan Minyak Tingkat Lanjut.

Banyak pihak yang telah membantu untuk itu penulis ingin mengucapkan terima kasih kepada :

1. Bapak Dr. Ir. Agus Buono, M.Si., M.Kom dan Bapak Dr. Sugi Guritman, selaku pembimbing yang telah banyak memberikan bimbingan dan saran. 2. Bapak Aziz Kustiyo, S.Si., M.Kom selaku penguji luar komisi.

3. Bapak Irman Hermadi, S.Kom., MS., yang telah memberikan saran-saran dan masukannya.

4. Staff pengajar dan karyawan Program Studi Ilmu Komputer, Sekolah Pascasarjana IPB, yang telah banyak mendukung.

5. Bapak Agus Salim SH, M.H. dan Bapak Sangkam Tambunan MSc., yang telah memberikan dukungannnya.

6. Rekan-rekan mahasiswa yang telah memberikan banyak masukan. 7. Kepada kedua orang tua yang selalu memberikan semangat.

8. Suamiku Usman Pasarai, anak-anakku Adelia Usi Lauditta dan Rizka Usi Nadhifa yang selalu memberikan doa, semangat dan dukungan.

9. Semua pihak yang telah banyak membantu yang tidak dapat disebutkan satu persatu.

Jakarta, Agustus 2009

(21)

KATA PENGANTAR……….. i

DAFTAR ISI ………...

ii

DAFTAR TABEL ………....

iii

DAFTAR GAMBAR ………..

iv

I PENDAHULUAN

1.1 Latar Belakang ………..

1

1.2

Tujuan Penelitian ………...

2

1.3

Batasan Masalah ………

3

1.5 Manfaat Penelitian ……….

3

II TINJAUAN

PUSTAKA

2.1

Klasifikasi Metode EOR ………...

4

2.2

Seleksi Metode EOR ……….

5

2.3 Teori

Fuzzy

……… 7

2.4

Metode Mamdani ………..

7

2.5

Pembentukan Himpunan Fuzzy ………

9

2.6

Aplikasi Fungsi Implikasi ……….

9

2.7 Komposisi

Aturan

………. 9

2.8 Penegasan

………. 10

2.9

Fuzzy Inferensi Sistem ……….

11

III METODOLOGI

3.1

Kerangka Pemikiran ……….

13

3.2

Tata Laksana ……….

13

(22)

4.4 Proses

……… 20

4.5 Output

……….. 25

V IMPLEMENTASI

5.1

Interface Masukan Data ………

26

5.2 Pembentukan

variable

……….. 28

5.3

Kenggotaan Himpunan Fuzzy ………..

28

5.4 Output

……….. 30

VI

PEMBAHASAN

6.1

6.2

Pengujian ……….

Analisa ……….

32

36

VII KESIMPULAN

7.1

Kesimpulan ………

37

7.2

Saran ………..

38

DAFTAR PUSTAKA

……….

40

(23)

Halaman

Gambar 2.1 Diagram kategorisasi EOR ………...

5

Gambar 2.2 Metode EOR berdasarkan selang gravity minyak ………....

6

Gambar 2.3 Fungsi keanggotaan untuk bilangan fuzzy “sekitar 10” ………...

9

Gambar 2.4 Diagram blok Fuzzy Inferensi Sistem ………...

12

Gambar 3.1 Kerangka penelitian ……….

14

Gambar 4.1 Diagram pengembangan FIS untuk seleksi metode EOR .………

10

Gambar 4.2 Masukan data untuk seleksi metode EOR ………

18

Gambar 4.3 Himpunan fuzzy Pengembangan Sistem Fuzzy Inferensi Sistem Metode

EOR………. 12

Gambar 4.4 Rule editor Pengembangan Fuzzy Inferensi system seleksi Metode

EOR………

12

Gambar 4.5 Output Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode

EOR……… 13

Gambar 5.1 Interface masukan data untuk seleksi metode EOR ………..

13

Gambar 5.2 FIS editor untuk Seleksi Metode EOR ………..

10

Gambar 5.3 Himpunan fuzzy Pengembangan Fuzzy Inferensi Sistem Untuk Seleksi

Metode EOR………..

11

Gambar 5.4 Rule Viewer Pengembangan Fuzzy Inferensi Sistem utuk Seleksi

Metode EOR………..

12

Gambar 5.5 Rule Editor Pengembangan Fuzzy Inferensi Sistem untuk Seleksi

Metode EOR………..

12

Gambar 5.6 Output Pengembangan Fuzzy Inferensi Sistem Untuk Seleksi Metode

EOR………

13

Gambar 5.7 Representasi output Pengembangan Fuzzy Inferensi Sistem untuk

Seleksi Metode EOR………..

13

Gambar 5.8 Surface Viewer Pengembangan Fuzzy Inferensi Sistem untuk Seleksi

(24)

Tabel 2.1

Data seleksi metode EOR………...

6

Tabel 2.2

Kriteria seleksi metode EOR berdasarkan Taber dkk………...

8

Tabel 4.1

Tabel input dan output FIS untuk seleksi metode EOR………

18

Tabel 4.2

Karakteristik variabel metode injeksi gas hydrocarbon (M1)……...

20

Tabel 5.1

Input dan output sistem ………...

27

Tabel 6.1

Representasi output seleksi metode EOR……….

33

Tabel 6.2.

Seleksi metode EOR secara manual untuk reservoar A1

Lapangan A ………...

34

(25)

Halaman

5

Lampiran

(26)

1.1. Latar Belakang

Proses pengurasan minyak dari suatu reservoar umumnya dapat dibagi dalam tiga tahap: primer, sekunder, dan tertier. Pengurasan minyak tahap primer mengandalkan energi alami reservoir sebagai sumber energi utama pendorong minyak ke sumur-sumur produksi. Energi alami ini terutama berasal dari ekspansi gas dan atau air karena ada beda tekanan dalam reservoar atau juga dapat berasal dari gravitasi. Pengurasan minyak tahap sekunder hasil kombinasi energi alami reservoar dan energi dari luar yang disuplai lewat injeksi air atau gas. Gas injeksi adalah gas yang tidak larut dengan minyak reservoar. Air atau gas injeksi akan membantu mendorong minyak ke sumur produksi dan mempertahankan tekanan reservoar. Tahap tertier dilakukan setelah implementasi tahap kedua. Proses tertier secara garis besar terdiri atas injeksi gas yang dapat larut dengan minyak reservoar, injeksi kemikal, injeksi energi panas, dan menggunakan bantuan mikroba. Proses ini akan mendorong minyak yang masih tersisa setelah proses sekunder ke sumur-sumur produksi. Dalam literatur teknik perminyakan, tahap tertier ini populer dengan istilah proses EOR (Enhanced Oil Recovery) atau proses peningkatan perolehan minyak tingkat lanjut.

Minyak yang dapat diperoleh dari produksi primer diikuti sekunder untuk tipikal reservoar minyak Indonesia umumnya berkisar 35 sampai 40% dari isi awal minyak ditempat atau Original Oil in Place (OOIP). Data produksi minyak Indonesia menunjukkan bahwa hanya 32% dari OOIP atau jumlah minyak yang telah ditemukan telah diproduksi. Sekitar 8% dari minyak yang tersisa dapat diproduksi secara ekonomis dengan teknologi yang ada saat ini. Jadi tersisa 60% sebagai target potensial untuk EOR atau ekivalen dengan 36.5 miliar barel. Angka ini indikasi bahwa riset tentang metode EOR akan mendapat apresiasi karena punya nilai ekonomis tinggi.

(27)

menjadi subjek studi simulasi reservoar menggunakan software komersial. Dari hasil studi ini dapat diketahui kelayakan tiap teknik EOR tersebut. Proyek EOR hanya akan dimulai jika proyek tersebut dapat menghasilkan profit.

Tingginya ketergantungan terhadap pakar reservoar minyak atau lebih spesifik pakar EOR dalam proses seleksi metode-metode EOR yang tepat buat suatu reservoar minyak dan fakta bahwa proses seleksi tersebut memerlukan proses waktu yang panjang dan biaya mahal mendorong perlunya mengembangkan sistem berbasis komputer sehingga proses seleksi EOR tahap pertama dapat dilakukan secara otomatis. Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR memungkinkan menghimpun semua pengetahuan yang dimiliki pakar EOR dan menggunakan pengetahuan tersebut untuk identifikasi satu atau lebih metode EOR yang tepat untuk suatu kandidat reservoar berdasarkan karakteristik minyak dan batuannya.

Pengembangan Sistem Inferensi Fuzzy untuk seleksi metode EOR memiliki beberapa keuntungan, diantaranya sangat fleksibel dan memiliki toleransi terhadap data-data yang tidak tepat. Dapat membangun dan mengaplikasikan pengalaman pakar secara langsung tanpa harus melalui proses pelatihan. Sistem ini relatif permanen dan mudah didokumentasi dibandingkan keahlian yang dimiliki manusia. Transfer keahlian dari seorang pakar ke yang lain memerlukan waktu lama dan mahal, kontras dengan pakar artifisial yang ringkas dan murah. Pakar yang dimaksud adalah seorang pakar yang memiliki keahlian dalam bidang ilmu Perminyakan, Geologi, Geofisika, Tehnik Kimia. Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR dapat digunakan oleh reservoir engineer yang memiliki pengetahuan teknologi EOR terbatas, memungkinkannya menarik kesimpulan berdasarkan input data, dan menjelaskan logika kesimpulan tersebut. Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR identifikasinya diharapkan berguna buat institusi pemerintah dan perusahaan perminyakan yang berkecimpung dengan operasi EOR karena biaya yang terkait dengan sumber daya manusia dan waktu untuk proses seleksi EOR akan dapat dikurangi signifikan.

1.2. Tujuan Penelitian

Tujuan penelitian ini adalah mengembangkan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR.

(28)

1. Seleksi metode EOR yang akan dibahas dalam penelitian ini dibatasi hanya pada kriteria teknis, yaitu sifat minyak dan sifat reservoir.

2. Pengembangan Sistem yang akan dirancang menggunakan teknik penalaran fuzzy.

1.4. Manfaat Penelitian

Manfaat penelitian ini adalah:

1. Memudahkan proses seleksi metode EOR untuk kandidat-kandidat reservoar minyak. 2. Meningkatkan efisiensi waktu dan biaya proses seleksi metode EOR untuk suatu kandidat

reservoar.

(29)

2.1. Klasifikasi Metode EOR

Metode peningkatan perolehan minyak tingkat lanjut atau

Enhanced Oil Recovery

(EOR) adalah suatu teknik peningkatan produksi minyak setelah tahapan produksi primer

dan sekunder. Teknologi EOR adalah suatu proses menginjeksikan material selain air

kedalam reservoar minyak untuk mendesak minyak yang masih tersisa di dalam reservoar

ke sumur-sumur produksi. Prosesnya dapat berlangsung secara kimia dan atau fisika.

Metode-metode EOR secara umum dapat dikelompokkan kedalam empat kategori

yaitu: metode panas (

thermal

), injeksi gas bercampur minyak (

miscible

gas injection

),

pendesakan dengan kimia (

chemical flooding

), dan proses menggunakan bantuan mikroba

(

microbial

). Metode thermal dibagi kedalam sub kategori pendesakan dengan uap (

steam

flooding

), pendesakan dengan air panas (hot waterflooding), dan proses pembakaran dalam

reservoar (

in-situ combustion

) [2]. Agar fisibel secara teknis dan ekonomis, metode panas

umumnya diterapkan pada reservoar-reservoar yang memiliki permeabilitas tinggi dan

relatif dangkal. Steam flooding adalah metode yang paling banyak diterapkan. Metode ini

secara tradisional digunakan pada reservoar-reservoar yang memiliki kekentalan atau

viskositas minyak tinggi dengan tujuan mengurangi viskositas minyak sehingga minyak

dapat lebih mudah mengalir. Sedangkan In-situ combustion adalah suatu proses

pendesakan dimana gas berisi oksigen dinjeksikan kedalam suatu reservoar. Gas tersebut

kemudian bereaksi dengan minyak reservoar sehingga terjadi pembakaran dan

menghasilkan temperatur tinggi. Temperatur ini selanjutnya akan mereduksi viskositas

minyak sehingga minyak lebih mudah mengalir. Studi terbaru menunjukkan bahwa uap

bertemperatur tinggi juga dapat mempengaruhi sifat-sifat minyak yang lain.

Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR dapat dengan mudah

dirubah untuk mengadopsi penemuan-penemuan terbaru dalam teknologi EOR.

(30)

Chemical flooding terdiri atas pendesakan dengan polymer, surfactant-polymer, dan

pendesakan dengan alkaline. Parameter yang paling berpengaruh dalam proses ini adalah

parameter yang mempengaruhi stabilitas kimiawi, seperti temperatur, komposisi batuan

reservoar, salinitas air reservoar.

Pemanfaatan mikroba untuk pendesakan minyak tingkat lanjut relatif baru. Proses

ini dilakukan dengan menginjeksikan nutrisi atau media yang dapat memacu pertumbuhan

bakteri yang ada untuk menghasilkan bioproduk yang dapat bermanfaat untuk proses

pendesakan minyak. Jenis mikroba yang digunakan adalah mikroba indigenus/ eksogenus.

Metode microbial tidak memiliki subkategori. Keempat kategori utama dan

metode-metode EOR yang berasosiasi pada masing-masing kategori ditampilkan dalam

Gambar 2.1.

EOR Chemical Flooding Thermal Gas Injection Microbial In-situ Combustion Steam Flooding Polymer Surfactant/ Polymer Alkaline Hydro carbon Nitrogen & Flue gas Carbon Dioxide

Gambar 2.1 Diagram kategorisasi EOR

2.2. Seleksi Metode EOR

Seleksi metode EOR berdasarkan pada data geologi atau reservoar, sifat minyak dan

sifat batuan. Sejumlah tabel dan grafik telah disusun berdasarkan data-data tersebut untuk

mempermudah dan mempercepat proses seleksi ini. Tabel 2.1 menampilkan secara umum

data yang diperlukan. Tabel ini disusun berdasarkan studi literatur.

(31)

Jenis Formasi

Gravity

Ketebalan Viskositas

Permeabilitas

Komposisi

Kedalaman Salinitas

Temperatur Saturasi

Porositas

Taber, dkk. telah menyusun kriteria seleksi metode EOR berdasarakan data sifat

minyak dan karaktersitik reservoar. Kriteria tersebut disusun dalam suatu matriks seperti

ditunjukkan pada Tabel 2.2. Pengembangan fuzzy inferensi sistem untuk seleksi metode

EOR yang akan dikembangkan dalam penelitian ini mengacu pada kriteria Taber, dkk.

Gambar 2.2 Metode EOR berdasarkan selang gravity minyak

Ukuran grafik menunjukkan kontribusi masing-masing metode terhadap total

tambahan produksi minyak dari metode EOR [9]. Gambar 2.2 menunjukkan suatu

10

0 20 30 40 50 60

Gravity minyak,oAPI

5 15 25 35 45 55

In-situ combustion

CO

2

- Miscible

Hydrocarbon

N2& Flue gas

Alkaline; Surfactant dan polymer

Immiscible gas

Polymer flooding

Gel treatments

Steam

(32)

dalam unit

o

API, yaitu perbandingan densitas minyak relatif terhadap densitas air reservoar.

Grafik ini hasil kompilasi data proyek-proyek EOR dari berbagai lokasi di seluruh dunia.

Ukuran masing-masing metode menunjukkan kontribusi metode tersebut terhadap

tambahan perolehan produksi minyak.

2.3. Teori Fuzzy

Teori fuzzy menyediakan konsep matematis untuk mendasari penalaran terhadap

data dan informasi yang tidak pasti atau fuzzy. Komputasi numerik dilakukan dengan

menggunakan variabel linguistik misalnya “Gravity>35”, “Viscosity<10”, dan lain-lain

yang dinyatakan dalam bilangan fuzzy. Bentuk suatu bilangan fuzzy,

A

, senantiasa

diekspresikan dengan himpunan fuzzy,

( )

{

x, x x X

}

A= µA

dimana

µ

A

( )

x

adalah fungsi keanggotaan merepresentasikan derajat keanggotaan

x

(33)
[image:33.792.57.742.110.506.2]

Tabel 2.2 Kriteria seleksi metode EOR berdasarkan Taber, dkk.

Sifat minyak Sifat reservoar

Tebal Permeabilitas

Tempe-Gravity Viskositas Salinitas Saturasi Jenis Net Rata-rata Kedalaman ratur Poroasitas

(oAPI) (cP) Komposisi (ppm) Minyak Formasi (ft) (mD) (ft) (oF) (%)

Metode

EOR

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Injeksi gas

>35 <10 NC >30% Tipis NC >2000 NC NC

Hydrocarbon (M1) %C2-C7

tinggi

Batupasir,

Karbonat tebal ke <5000

>24 Tipis N2 & Flue gas (M2)

>35 N2

<10 %C1-C7 tinggi

NC >30% Batupasir,

Karbonat tebal

NC >4500 NC NC

Tipis Carbon dioxide (M3) >26 <15

%C5-C12

tinggi

NC >30% Batupasir,

Karbonat tebal

NC >2000 NC NC

Chemical flooding

Light Surfactant/

Polymer (M4) >25 <30 Interme-

diate

<140.000 >30% Batupasir >10 >20 <8000 >175 ≥20

>10% Batupasira, Mobile karbonateb

Polymer (M5) >25 <100 NC <100.100

oil

NC >10 <9000 <200 ≥20

Organik >res. sat. Batupasira

Alkaline (M6) 13-35 <35

asam <100.000 air NC >20 <9000 <200 ≥20

Thermal

In-situ 10-25 <1000 Asphaltic NC >40-50 Pasir/Batu >10 >100 >500 >150a ≥20

Combustion (M7) komponen pasir

c

Pasir/Batu

Steamflood (M8) <25 >20 NC NC >40-50

pasirc >20 >200 300-5000 NC ≥20

Microbial

Microbial Batupasir,

drive (M9)

No toxic

metal Karbonat

>25

No biocide

(34)

2.3.1 Metode Mamdani

Metode Mamdani sering dikenal sebagai metode Max-Min. Metode ini diperkenalkan

oleh Ebrahim Mamdani pada tahun 1975. Untuk mendapatkan output menurut Kusumadewi

(2004), diperlukan 4 tahapan, yaitu:

1. Pembentukan Himpunan Fuzzy

2. Aplikasi Fungsi Implikasi

3. Komposisi Aturan (Metode Max, Metode Additive, Metode Probabilistik OR)

4. Penegasan

1. Pembentukan Himpunan Fuzzy

Pada Metode Mamdani, baik variabel input maupun variable output dibagi menjadi

satu atau lebih himpunan fuzzy. Himpunan fuzzy digunakan untuk mengekspresikan

ketidaktentuan yang disebabkan oleh suatu ekspresi kekaburan. Sebagai contoh, Gambar 2.2

merepresentasikan bilangan fuzzy “sekitar 10”. Gambar tersebut menunjukkan selang

bilangan fuzzy antara 8 dan 12, dimana 10 adalah pusat kurva. Dari gambar dapat diketahui

kemungkinan bilangan fuzzy 9 atau 11 relatif terhadap 10 adalah 0.5. Jadi suatu himpunan

fuzzy dicirikan dengan suatu fungsi keanggotan. Berikut adalah contoh kurva yang

didefinisikan dalam fungsi keanggotaan.

0.0 0.2 0.4 0.6 0.8 1.0

6 7 8 9 10 11 12 13 14

N ilai

De ra ja t k e an gg o ta an

Gambar 2.2 Fungsi keanggotaan untuk bilangan fuzzy “Sekitar 10”

2. Aplikasi Fungsi Implikasi

Pada Metode Mamdani, fungsi implikasi yang digunakan adalah Min. Berdasarkan

(35)

3. Komposisi Aturan

Apabila sistem terdiri dari beberapa aturan, maka inferensi diperoleh dari kumpulan

dan korelasi antar aturan. Ada 3 metode yang digunakan dalam melakukan inferensi sistem

dalam fuzzy, yaitu max, additive dan probabilistik OR.

a. Metode Max

Pada metode ini, solusi himpunan fuzzy diperoleh dengan cara mengambil

nilai maksimum aturan, kemudian menggunakannya untuk memodifikasi daerah

fuzzy dan mengaplikasikannya ke output dengan menggunakan operator OR. Jika

semua proposisi yang telah dievaluasi, maka output akan berisi suatu himpunan

fuzzy yang merefleksikan kontribusi dari tiap-tiap proposisi.

b. Metode Additive

Pada metode ini, solusi himpunan diperoleh dengan cara melakukan

bounded-sum terhadap semua output daerah fuzzy. Secara umum dituliskan:

µsf[xi] = min (1, µsf[xi] + µkf[xi])

c. Metode Probabilistik OR

Pada metode ini, solusi himpunan fuzzy diperoleh dengan cara melakukan

product terhadap semua output daerah fuzzy. Secara umum dituliskan:

µsf[xi] = (µsf[xi] + µkf[xi]) – (µsf[xi]* µkf[xi])

dengan:

µsf[xi] = nilai keanggotaan solusi fuzzy sampai aturan ke – i;

µsf[xi] = nilai keanggotaan konsekuen fuzzy aturan ke – i;

(36)

Input dari proses penegasan adalah suatu himpunan fuzzy yang diperoleh dari

komposisi aturan-aturan fuzzy, sedangkan output yang dihasilkan merupakan suatu bilangan

pada domain himpunan fuzzy tersebut. Sehingga jika diberikan suatu himpunan fuzzy dalam

range tertentu, maka harus dapat diambil suatu nilai crisp tertentu sebagai output. Ada

beberapa metode defuzzy yang bisa dipakai pada komposisi aturan Mamdani, antara lain:

Metode Centroid, pada metode ini solusi crisp diperoleh dengan cara mengambil titik pusat

daerah fuzzy.

2.3.2. Aturan If-Then Fuzzy

Pengembangan Fuzzy Inferensi Sistem terdiri dari kumpulan aturan-aturan if-then.

Bentuk umum aturan if-then fuzzy atau juga dikenal sebagai aturan fuzzy atau implikasi fuzzy

adalah,

if x is A then z is B,

dengan x dan z adalah variabel linguistik, A dan B adalah bilangan fuzzy didefinisikan oleh

himpunan fuzzy. Proposisi yang mengikuti if yaitu “x is A” disebut sebagai anteseden,

sedangkan proposisi setelah then yaitu “z is B”disebut sebagai konsekuen atau kesimpulan.

Proposisi ini dapat diperluas dengan menggunakan operator fuzzy, seperti:

if (x1 is A1) o (x2 is A2) o (x3 is A3) o ……o (xn is An) then z is B,

dengan o adalah operator, misal OR atau AND.

2.4. Fuzzy Inferensi Sistem

Fuzzy Inferensi Sistem adalah sistem komputasi berdasarkan pada konsep teori fuzzy,

aturan if-then fuzzy, dan fuzzy penjelas. Aplikasi sistem ini telah sukses pada beberapa

bidang seperti kontrol otomatik, klasifikasi data, analisa keputusan, sistem pakar, dan pattern

recognition. Struktur dasar Fuzzy Inferensi Sistem terdiri atas tiga komponen yaitu basis aturan

yang berisi pemilihan aturan-aturan fuzzy, database yang mendefinisikan fungsi keanggotaan

dalam aturan-aturan fuzzy, dan mekanisme penjelas yang melakukan prosedur inferensi

berdasarkan aturan dan fakta-fakta untuk merumuskan kesimpulan.

Dalam suatu Fuzzy Inferensi Sistem input dapat berupa nilai fuzzy atau nilai crisp tetapi

(37)

terutama ketika Fuzzy Inferensi Sistem digunakan sebagai kontrol seperti dalam penelitian ini

dimana Fuzzy Inferensi Sistem digunakan untuk menentukan peringkat metode EOR terbaik

berdasarkan data input. Dalam hal ini diperlukan metode defuzzifikasi untuk mengekstrak

suatu nilai crisp yang merepresentasikan kondisi terbaik himpunan fuzzy. Pada Gambar 2.3

[image:37.612.109.535.213.446.2]

menjelaskan Diagram Blok Fuzzy Inferensi Sistem dengan output crisp.

Gambar 2.3 Diagram blok Fuzzy Inferensi Sistem

(Fuzzy)

Defuzzifikasi Aggregator

(Crisp or Fuzzy)

Xϖ

y is B1

xϖis A1 w1

y is B2 xϖis A2 w2

Aturan 1

Aturan n

Aturan 2

y is B3

xϖis A3 w3

(Fuzzy) (Crisp)

(38)

3.1. Kerangka Penelitian

Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR dilakukan melalui

beberapa tahap dapat dilihat skema kerangka penelitian pada Gambar 3.1. Tahap awal

dilakukan studi literatur bertujuan agar peneliti memiliki pengetahuan dasar dalam

melakukan penelitian. Kemudian melakukan identifikasi permasalahan untuk memperjelas

fokus penelitian. Selanjutnya dilakukan pengumpulan data data. Pengembangan sistem

terhadap variabel, pembentukan himpunan fuzzy, pembentukan aturan-aturan.

Pengembangan sistem dengan menggunakan Matlab. Pada tahap akhir dilakukan

pengujian sistem dan mengevaluasi kembali variabel, himpunan fuzzy dan aturan aturan,

proses, output hingga sesuai dan benar. Dari hasil pengujian tersebut dapat memberikan

informasi tingkat akurasi dalam rangka penyempurnaan sistem. Kemudian dilakukan

Kesimpulan dan Saran.

3.2. Tata Laksana

Tahapan pengembangan yang dilakukan pada penelitian ini ada tiga tahap, tahap

pertama pengumpulan data, tahap kedua pengembangan prototipe, tahap ketiga pembuatan

prototipe, tahap keempat pengujian dan impelementasi.

Pengumpulan Data

Pengumpulan data dilakukan melalui studi literatur dan diskusi dengan pakar yang

ahli dibidang perminyakan kususnya teknologi EOR di Pusat Penelitian dan Pengembangan

Teknologi Minyak dan Gas Bumi (PPPTMGB) “LEMIGAS”. Data yang dikumpulkan adalah

data sekunder dari laporan penelitian yang dilakukan oleh peneliti PPPTMGB “LEMIGAS”

pada beberapa lapangan minyak di wilayah Sumatera yang dioperasikan oleh Kontraktor

(39)
[image:39.612.183.399.99.460.2]

Gambar 3.1 Kerangka penelitian

Pengembangan Prototipe

Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR berkaitan dengan

penetapan struktur sistem yaitu subsistem-subsistem serta hubungan antar

komponen-komponen dan interaksinya. Tahap analisa awal merinci spesifikasi kebutuhan

sistem secara detail. Setelah itu dilakukan desain masukan, desain proses dan keluaran. Hasil

desain tersebut dapat digunakan untuk menentukan spesifikasi detail sistem untuk tahap

pengembangan meliputi aspek software dan hardware. Kemudian Menentukan variabel yang

digunakan untuk merepresentasikan setiap nilai. Masing-masing variabel memiliki kriteria

yang berbeda. Karakteristik fungsi bilangan fuzzy dan non fuzzy didefinisikan dalam semesta

pembicaraan setiap variabel. Setelah itu tentukan fungsi keanggotaan dimana pemetaan Mulai

Studi Literatur

Identifikasi Permasalahan

Pengumpulan Data

Pembuatan Prototipe

Pengujian

Selesai Tidak Ya

OK

Kesimpulan dan Saran

Rancangan Prototipe

(40)

titik-titik input data kedalam nilai keanggotaannya yang memiliki interval 0 – 1. Dalam

pembuatan sistem ini untuk menentukan metode yang akan dipilih ada beberapa parameter

karakteristik. Pada pembentukan aturan-aturan antesenden direpresentasikan dengan proposisi

dalam himpunan fuzzy, sedangkan konsekuensi direpresentasikan dengan sebuah konstanta.

Pada penelitian ini metode mamdani yang digunakan dalam melakukan inferensi

menggunakan aturan Max dari nilai fungsi keanggotaan. Pada metode ini solusi himpunan

fuzzy diperoleh dengan cara mengambil nilai maksimum

Tahap berikutnya adalah proses defuzzifikasi dan menentukan peringkat setiap

metode EOR berdasarkan data masukan. Pada proses defuzzifikasi, dihitung nilai rata-rata

konsekuensi dari keseluruhan aturan. Nilai defuzzifikasi dihitung dengan formula berikut:

) ( ) ( ) ( ) ( 1 1 * j n j j n j j Z Z Z Z Z dz Z dz Z Z z

= = ≈ = µ µ µ µ Pembuatan Prototipe

Prototipe adalah pembangunan sistem dengan cara trial and error. Cara ini

memberikan ide bagi penganalisis sistem atau pemrogram untuk menyajikan gambaran yang

lengkap sistem kepada pemakai. Dengan demikian pemakai sistem akan dapat melihat sistem

itu baik dari sisi tampilan maupun teknik prosedural yang akan dibangun.

Pada tahap ini dilakukan pembangunan sistem dengan mengumpulkan informasi

sasaran-sasaran umum, identifikasi kebutuhan yang telah diketahui, dan mencari bidang yang

masih memerlukan pendefinisian. Setelah itu dilakukan perancangan terhadap kebutuhan yang

telah teridentifikasi. Perancangan berfokus pada representasi yang tampak oleh pengguna.

Perancangan ini menuntun pembangunan prototipe perangkat lunak yang akan diberikan

kepada pemakai.

Pengujian

Pada tahap ini sistem dievaluasi oleh pemakai dan digunakan sebagai landasan untuk

memperbaiki spesifikasi kebutuhan. Pengembang mengumpulkan beragam data kuantitatif

(41)

iteratif menggunakan data sampel sampai prototipe yang dikembangkan memenuhi kebutuhan

pemakai, dan pengembang telah memahami permasalahan dengan baik. Bila masih terdapat

kekurangan terhadap prototipe tersebut dilakukan perbaikan-perbaikan.

Implementasi

Tahap ini dilakukan setelah sistem selesai dilakukan tes dan dapat diterima oleh pihak

yang akan menggunakan. Pada tahap ini juga dibuat dokumentasi final tentang semua aspek

fuzzy inferensi sistem untuk seleksi metode peningkatan perolehan minyak tingkat lanjut,

melakukan pelatihan pada calon penguna, dan merancang prosedur-prosedur penggunaan

sistem. Langkah terakhir adalah instalasi sistem tersebut dalam kerangka persiapan pemakaian

sistem oleh pengguna.

Waktu dan Tempat Penelitian

Penelitian dilakukan selama 7 bulan, yaitu pada bulan Agustus 2007 hingga Maret

2008. Verifikasi penelitian dan pengolahan data dilaksanakan di PPPTMGB LEMIGAS,

(42)

4.1. Fuzzy Inferensi Sistem

Tahapan-tahapan yang dilakukan pada Pengembangan Fuzzy Iinferensi Sistem untuk

Seleksi Metode EOR antara lain: mendefinisikan karakteristik sistem, mendefinisikan variabel

kedalam himpunan fuzzy, membentuk aturan if-then, mendefinisikan proses defuzzifikasi,

menjalankan sistem, dan melakukan pengujian. Tahapan ini secara skematis di tampilkan

[image:42.612.238.445.285.580.2]

dalam Gambar 4.1.

Gambar 4.1 Diagram Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR.

4.2. Masukan

Masukan datanya menggunakan data lapangan berdasarkan karakteristik minyak dan

(43)

Pada gambar 4.2 adalah tampilan masukan data yang dipakai untuk dikembangkan pada FIS

untuk Seleksi Metode EOR.

Gambar 4.2 Masukan data untuk seleksi metode EOR

Pada Tabel 4.1 memperlihatkan karakteristik data Lapangan A dalam reservoar A1 – A12, dan

variable-variabel yang digunakan pada pengembangan FIS untuk seleksi metode EOR.

Tabel 4.1 Tabel input dan output Pengembangan Fuzzy Inferensi Sistem untuk seleksi

(44)

Karakteristik Data

Kriteria Taber digunakan sebagai acuan seleksi metode EOR. Metode EOR tersebut

diklasifikasikan menjadi sembilan metode dan tiap-tiap metode dinilai berdasarkan

variabel-variabel. Setiap variabel memiliki kriteria yang berbeda terhadap suatu metode.

Sebagai contoh pada Tabel 4.2 merupakan karakteristik variabel Metode Injeksi Gas

Hydrocarbon (M1) sedangkan untuk metode yang lainnya dapat dilihat pada Lampiran 2.1,

Lampiran 2. Berikut ini adalah gambaran untuk variabel-variabel pada Kriteia Taber untuk

Metode Injeksi Gas Hydrocarbon:

1. Variabel Gravity adalah berat jenis minyak dengan satuan berat American Petroleum

Institute (API). Variabel Gravity pada Metode Injeksi Hydrocarbon memiliki nilai

semesta antara 0 – 100. Nilai yang masuk pada Kriteria Taber menunjukkan

Gravity>35 maksudnya adalah kriteria keanggotaan himpunan fuzzy yang ditampilkan

dalam kurva pada angka lebih besar 35 akan berada pada nilai 1 seperti terlihat pada

lampiran 1.1.1.

2. Variabel Viscosity adalah ukuran kekentalan minyak dalam satuan centi poise.

Variabel Viscosity pada metode injeksi hydrocarbon yang memiliki nilai semesta antara

0.1 – 100000. Nilai yang masuk pada Kriteria Taber menunjukkan Viscosity<10

maksudnya adalah kriteria untuk keanggotaan himpunan fuzzy yang ditampilkan

dalam kurva pada angka lebih kecil 10 akan berada pada nilai 1 seperti terlihat pada

lampiran 1.1.2.

3. Variabel Komposisi adalah prosentase komposisi ukuran minyak. Variabel Komposisi

pada metode injeksi hydrocarbon memiliki nilai semesta antara 0 – 100. Nilai yang

masuk pada Kriteria Taber menunjukkan Komposisi C2-C7<50 merupakan kriteria

dimana dalam keanggotaan himpunan fuzzy yang ditampilkan dalam kurva pada angka

lebih kecil 50 akan berada pada nilai 1 seperti terlihat pada lampiran 1.1.3.

4. Variabel Saturasi adalah prosentase volume minyak dibagi total volume. Variabel

Saturasi pada metode injeksi hydrocarbon memiliki nilai semesta antara 0 – 100. Nilai

yang masuk pada Kriteria Taber menunjukkan Saturasi > 30 maksudnya adalah kriteria

keanggotaan himpunan fuzzy yang ditampilkan dalam kurva pada angka lebih besar 30

akan berada pada nilai 1 seperti terlihat pada lampiran 1.1.5.

5. Variabel Formasi adalah jenis batuan. Variabel Formasi pada metode injeksi

(45)

adalah sandstone/karbonat dan tidak direpresentasikan dalam bentuk kurva.

6. Variabel Ketebalan adalah ketebalan reservoir dalam satuan feet. Variabel Viscosity

pada metode injeksi hydrocarbon memiliki nilai semesta antara 0 – 1000. Nilai yang

yang masuk pada Kriteria Taber pada Ketebalan menunjukkan Ketebalan<100

merupakan kriteria keanggotaan himpunan fuzzy yang ditampilkan dalam kurva pada

angka lebih kecil 100 akan berada pada nilai 1 seperti terlihat pada lampiran 1.1.6.

7. Variabel Kedalaman adalah kedalaman reservoir dalam satuan feet. Variabel

kedalaman pada metode injeksi hydrocarbon memiliki nilai semesta antara 0.1 –

100000. Nilai yang masuk pada Kriteria Taber menunjukkan Kedalaman antara 2000

sampai 5000 merupakan kriteria keanggotaan himpunan fuzzy yang ditampilkan dalam

kurva pada angka antar 2000 sampai 5000 akan berada pada nilai 1 seperti terlihat pada

[image:45.612.140.531.359.598.2]

lampiran 1.1.7.

Tabel 4.2 Karakteristik variabel metode injeksi gas hydrocarbon (M1).

Variabel Semesta Data Kriteria Satuan Keterangan

>35

Gravity (x1) [0, 100] Fuzzy

<=35

o

API

Berat jenis minyak dengan satuan American Petroleum Institute

<10 Viscositas

(x2)

[0.1,

100000] Fuzzy >=10 cP

Ukuran kekentalan minyak dalam satuan centi poise

C2-C7>50 Komposisi

(x3)

[0, 100] Fuzzy

C2-C7<=50 %

Prosentase komposisi minyak

>30 Saturasi

(x5)

[0, 100] Fuzzy

<=30 %

Prosentase volume minyak dibagi total volume Formasi

(x6)

- Non-fuzzy sandstone/karbonat - Jenis batuan

<100 Tebal net

(x7)

[0, 1000] Fuzzy

>=100 ft

Ketebalan reservoir dalam satuan feet

2000 ke 5000 Kedalaman

(x9)

[0,

10000] Fuzzy

<=2000 dan

>=5000

ft Kedalaman reservoar dalam satuan feet

4.3. Proses

Berikut adalah proses yang dikembangkan dalam Fuzzy Inferensi Sistem untuk

seleksi metode EOR:

1. Memasukkan data karakteristik minyak dan batuan. Pada proses input user memberikan

(46)

2. Pembentukan himpunan fuzzy. Pada variabel gravity dibagi menjadi beberapa himpunan

fuzzy yaitu: G1, G2, G3, G4, G5, G6, G7, dengan rentang nilai 100 oAPI. Metode

yang didefinisikan adalah: Metode Gas Hydrocarbon, N2 and Flue Gas, CO2, Surfactant,

Polymer, Alkaline, In Situ Combustion, Steamflood, Microbial. Pada Lampiran 1 dimulai

lampiran 1.1 sampai dengan lampiran 9.7 menunjukkan kurva-kurva representasi

masing-masing kriteria, derajat keanggotannya akan bernilai 1 jika input data memenuhi

kriteria, dan akan bernilai 0 jika input data tidak memenuhi kriteria.

Gambar 4.3 Himpunan Fuzzy Pengembangan Fuzzy Inferensi Sistem untuk seleksi

metode EOR

Selanjutnya menterjemahkan Kriteria Taber dalam bentuk aturan if-then Jika

variabel memenuhi kriteria, konsekuensinya adalah metode EOR yang sedang dievaluasi

dikatakan layak relatif terhadap data tersebut. Sebaliknya bila tidak memenuhi kriteria

maka metode tersebut dikatakan tidak layak. Jumlah aturan dievaluasi untuk tiap metode .

Fungsi konsekuensi dirumuskan sedemikian sehingga dapat mencerminkan pengaruh

relatif masing-masing variabel terhadap kelayakan suatu metode. Berikut ini adalah

aturan-aturan yang dikembangkan pada Fuzzy Inferensi Sistem untuk seleksi metode EOR.

Aturan ke-1

If (Gravity is G1) and (Viscosity is V1) and (Komposisi is K1) and (Saturasi is ST1) and

(47)

Aturan ke-2

If (Gravity is G2) and (Viscosity is V1) and (Komposisi is K1) and (Saturasi is ST1) and

(Tebal is T1) and (Kedalaman is KD2) then (Metode is M2)

Aturan ke-3

If (Gravity is G3) and (Viscosity is V2) and (Komposisi is K1) and (Saturasi is ST1) and

(Tebal is T2) and (Kedalaman is KD2) then (Metode is M3)

Aturan ke-4

If (Gravity is G4) and (Viscosity is V3) and (Komposisi is K1) and (Saturasi is ST1) and

(Tebal is T1) and (Kedalaman is KD2) then (Metode is M4)

Aturan ke-5

If (Gravity is G4) and (Viscosity is V4) and (Salinitas is S2) and (Komposisi is K1) and

(Saturasi is ST2) and (Tebal is T1) and (Kedalaman is KD2) then (Metode is M5)

Aturan ke-6

If (Gravity is G5) and (Viscosity is V5) and (Salinitas is S3) and (Permeabilitas is P1) and

(Kedalaman is KD4) and (Temperatur is TP2) and (Porositas is PR1) then (Metode is M6)

Aturan ke-7

If (Gravity is G6) and (Viscosity is V6) and (Saturasi is ST3) and (Tebal is T2) and

(Permeabilitas is P3) and (Kedalaman is KD5) and (Temperatur is TP3) and (Porositas is

PR1) then (Metode is M7)

Aturan ke-8

If (Gravity is G7) and (Viscosity is V7) and (Saturasi is ST3) and (Tebal is T3) and

(Permeabiliti is P4) and (Kedalaman is KD6) and (Porositas is PR1) then (Metode is M8)

Aturan ke-9

If (Gravity is G4) and (Salinitas is S3) and (Permeabilitas is P5) and (Kedalaman is KD3)

and (Temperatur is TP4) then (Metode is M9)

(48)

If (Gravity is G1) and (Viscosity is V1) and (Komposisi is K1) and (Saturasi is ST1) and

(Tebal is T1) and (Kedalaman is KD1) then (Metode 1)

Aturan 11

If (Gravity is G2) and (Viscosity is V1) and (Komposisi is K1) and (Saturasi is ST1) and

(Tebal is T1) and (Kedalaman is Kd2) then (Metode 2)

Aturan 12

If (Gravity is G3) and (Viscosity is V2) and (Komposisi is K1) and (Saturasi is ST1) and

(Tebal is T1) and (Kedalaman is KD1) then (Metode 3)

Aturan 13

If (Gravity is G4) and (Viscosity is V4) and (Salinity is S2) is (Saturasi is S2) and

(Permeability is P2) and (Kedalaman is KD4) and (Temperatur is TP2) and (Porositas is

PR1) then (Metode 5)

Aturan 14

If (Gravity is G7) and (Viscosity is V7) and (Saturasi is ST3) and (Tebal is T3) and

(Permeability is P4) and (Kedalaman is KD6) and (Porosity is PR1) then (Metode 8)

Aturan 15

If (Gravity is G6) and (Viscosity is V6) and (Saturasi is ST3) and (Tebal is T2) and

(Permeability is P3) and (Kedalaman is KD5) and (Temperatur is TP3) and (Porositas is

PR1) then (Metode 7)

Aturan 16

If (Gravity is G4) and (Salinity is S3) and (Permeability is P5) and (Kedalaman is KD3)

and (Temperatur is TP4) then (Metode 9)

(49)

aturan-aturan pada Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR

dengan menggunakan MATLAB 7.1:

Gambar 4.4 Rule editor pada Pengembangan Fuzzy Inferensi Sistem untuk

seleksi metode EOR

3. Kemudian mencari nilai minimum masing masing metode berdasarkan aturan-aturan yang

telah dibuat. Nilai kurva minimum tersebut di agregasi untuk mendapatkan nilai kurva

maksimum.

4. Dari nilai kurva maksimum dapat ditentukan defuzzifikasi. Metode defuzzifikasi pada

komposisi aturan Mamdani yang digunakan adalah metode centroid. Hasil metode centroid

adalah crisp yaitu angka yang direpresentasikan dengan kurva segitiga untuk

masing-masing metode.

5. Selanjutnya implementasi kedalam suatu program komputer menggunakan MATLAB.

Setelah itu dilakukan uji sistem menggunakan data reservoar.

6. Pada tahapan ini dimungkinkan melakukan revisi fungsi-fungsi bilangan fuzzy dan atau

revisi formula yang merepresentasikan konsekuensi. Revisi ini dilakukan hingga diperoleh

hasil yang konsisten dengan evaluasi pakar.

7. Uji program dilakukan terhadap beberapa variasi input untuk validasi sistem. Apabila hasil

yang diperoleh selama pengujian kurang sesuai dengan yang diharapkan, maka iterasi

proses variabel ke himpunan fuzzy.

(50)

Output yang dihasilkan berisi informasi mengenai Seleksi Metode EOR yang

disarankan serta hasil defuzzifikasi dengan derajat keanggotaannya. Gambar 4.5 adalah

tampilan interface Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR.

(51)

Implementasi pada Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR ini adalah untuk mengetahui metode EOR yang tepat yang dipilih. Spesifikasi perangkat keras yang digunakan pada tahap impelementasi adalah sebagai berikut:

Spesifikasi perangkat keras yang digunakan: • Processor Intel Pentium 5 or higher

• RAM 512 Mb or Higher • Hard Disk 80 GB • Floppy Disk Drive • CD Rom 8x or higher

• Monitor Support for 800 x 600 screen resolution • Keyboard & Mouse

• OS windows 98/2007/Xp • Matlab Versi 7.1

Interface Masukan Data

Tampilan pada Gambar 5.1 digunakan sebagai antar muka masukan data, 12 variabel data masukan yang akan diproses berdasarkan parameter karakteristik minyak, data-data tersebut dimasukkan berdasarkan rentang nilai untuk masing-masing variabel.

(52)

Setelah itu kita dapat melihat himpunan fuzzy yang terbentuk, kemudian masukan rule, sedangkan proses inferensi sistem untuk seleksi metode EOR yang digunakan adalah dengan menggunakan model fuzzy mamdani. Dengan menggunakan perangkat lunak Matlab versi 7.1 aturan fuzzy yang terbentuk dari aturan-aturan yang menggunakan data karakteristik minyak kemudian diubah menjadi suatu harga numerik yang menentukan action dari output,yang dikenal dengan defuzzifikasi. Metode defuzzifikasi yang digunakan adalah metode centroid. Fuzzy inferensi Sistem dibuat dengan menggunakan fuzzy logic toolbox pada Matlab 7.0 melalui FIS Editor.

Masukan

Berikut ini adalah field data masukan dengan masing-masing rentang nilai yang telah ditentukan:

Data sifat minyak: Gravity, Viscosity, Komposisi, Salinitas, Saturasi Minyak.

Data sifat batuan: Jenis Formasi [Batu pasir, Karbonat], tebal, permeabilitas, kedalaman, temperature, porositas.

Berikut ini adalah sebagian data Tabel input dan output sistem untuk seleksi data EOR ditampilkan pada Tabel 5.1., data pengujian dapat dilihat pada lampiran 2.2

Tabel 5.1 Input dan output sistem

(53)

Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR sebagai berikut:

MF Editor, untuk melihat member function Editor Sistem Pakar untuk seleksi metode EOR

Lihat Rule, untuk melihat rule

FIS Editor, untuk melihat fuzzy inferensi system

Rule Editor, untuk mengedit rule

Surface, untuk melihat diagram

Cek, untuk mengecek

Kosongkan, untuk mengosongkan semua field data

Simpan, untuk menyimpan data reservoar

Pembentukan Variabel

Tampilan berikut adalah Pembentukan variabel pada Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR untuk 11 variabel pada masing-masing metode, dapat dilihat pada Gambar 5.2 Pada Fuzzy Inferensi Sistem Editor

Gambar 5.2 FIS Editor Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR

Keanggotaan Himpunan Fuzzy

(54)

Gambar 5.3 Himpunan fuzzy pada Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR

Pada tahap pengecekan yang dilakukan adalah menentukan metode EOR yang paling sesuai didefinisikan kedalam rule. Sedangkan untuk rule viewer pada Pengembangan FIS untuk seleksi metode EOR dapat dilihat pada Gambar 5.4.

Gambar 5.4 Rule Viewer pada Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR

(55)

Gambar 5.5 Rule Editor untuk seleksi metode EOR

Output

Output yang dihasilkan adalah informasi Metode EOR yang disarankan, hasil defuzzifikasi dan derajat keanggotaannya.

Gambar 5.6 Output Pengembangan Fuzzy Inferensi Sistem untuk Seleksi metode EOR

(56)

menunjukkan angka 22.3496 berarti metode yang direpresentasikan dalam rentang kurva segitiga berada pada rentang M6 (Metode Alkaline).

Gambar 5.7 Output Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR

Gambar 5.8 menunjukan Surface Viewer pada Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR.

Gambar 5.8 Surface Viewer untuk seleksi metode EOR

(57)

VI PEMBAHASAN

Pada Bab ini akan dibahas pengujian yang dilakukan dengan menggunakan data minyak dan batuan dari 5 lapangan minyak yang telah berproduksi dan dioperasikan berdasarkan Production Sharing Contract (PSC) dengan Pemerintah Republik Indonesia. Terdapat 46 reservoar dari ke 5 lapangan tersebut, dengan rincian sebagai berikut: Lapangan A mempunyai 15 reservoar, Lapangan B mempunyai 15 reservoar, Lapangan C mempunyai 7 reservoar, Lapangan D mempunyai 4 reservoar, dan Lapangan E mempunyai 5 reservoar. Ke 46 reservoar ini telah dievaluasi oleh Pakar untuk menentukan metode EOR yang paling sesuai berdasarkan data minyak dan batuan masing-masing reservoar tersebut dengan menggunakan kriteria Taber.

Sistem pakar fuzzy yang dikembangkan dalam studi ini telah digunakan untuk seleksi metode EOR dari ke 46 reservoar tersebut. Hasilnya dibandingkan dengan hasil Pakar. Pengembangan fuzzy inferensi sistem untuk seleksi metode EOR yang dibuat berd asarkan pada fuzzy inferensi rule untuk membangkitkan sinyal keluaran. Nilai kebenaran untuk premise dari setiap aturan dihitung dan diterapkan pada bagian conclusion dari setiap aturan. Metode inferensi yang digunakan adalah metode Mamdani, merupakan penggabungan seluruh output gugus fuzzy menjadi sebuah output gugus fuzzy. Metode Mamdani memandang output label sebagai fungsi keanggotaan. Fungsi keanggotaan dari output didapatkan dengan mengerjakan operasi yang disebut agregasi.

Pada proses defuzzifikasi metode yang digunakan adalah Metode Centroid. Hasil akhirnya adalah berupa Crisp (bilangan). Bilangan tersebut dapat merepresentasikan metode yang disarankan oleh sistem. Rentang parameter output himpunan fuzzy dapat dilihat pada Table 6.1.

6.1. Pengujian

(58)
[image:58.612.185.450.113.339.2]

Tabel 6.1 Representasi Output Seleksi Metode EOR Metode Domain/Selang

Nilai Representasi Fuzzy M1 M2 M3 M4 M5 M6 M7 M8 M9 0<N<4 4<N<8 8<N<12 12<N<16 16<N<20 20<N<24 24<N<28 28<N<32 32<N<36 Tr (0,2,4) Tr (4,6,8) Tr (8,10,12) Tr (12,14,16) Tr (16,18,20) Tr (20,22,24) Tr (24,26,28) Tr(28,30,32) Tr(32,34,36)

Berikut adalah pembahasan hasil dari ke 5 lapangan yang digunakan untuk pengujian. Lapangan A terdiri atas 15 reservoar minyak dengan karakteristik batuan adalah karbonat, berat jenis (gravity) minyaknya 31.5 oAPI, viskositas berkisar 0.79 cP, dan tidak terdapat perbedaan temperatur. Permeabilitas bervariasi dari 147 mD hingga 300 mD, sedangkan saturasi antara 11.9% sampai dengan 49.7%. Data Lapangan A ditampilkan dalam Tabel 6.2. Usulan metode EOR dari Pakar untuk ke 15 reservoar tersebut adalah injeksi gas CO2.

Usulan ini diperoleh dari hasil analisa data ke 15 reservoar dengan cara manual menggunakan kriteria Taber. Contoh analisa manual ini ditampilkan dalam Tabel 6.2 untuk reservoar A1. Dari tabel tersebut terlihat bahwa hanya metode injeksi gas CO2 yang memenuhi semua kriteria Taber. Usulan metode EOR dari sistem untuk ke 15 reservoar tersebut sebagian besar injeksi gas CO2 kecuali untuk reservoar A12 dimana sistem merujuk pada metode injeksi polimer. Hal ini disebabkan karena harga saturasi minyak sebesar 11.9 cenderung memberikan nilai fungsi keanggotaan saturasi minyak lebih besar untuk injeksi polimer dari pada injeksi gas CO2. Perbandingan usulan metode EOR oleh Pakar dan Sistem 15 reservoar pada Lapangan A ditampilkan pada Lampiran 2.2. Akurasi prediksi sistem pada Lapangan A ini sebesar 93.3%.

Untuk Lapangan B terdiri atas 15 reservoar minyak dengan jenis batuan adalah karbonat, berat jenis (gravity) minyaknya 37.6 oAPI, viskositas sebesar 1.37 cP kecuali reservoar B1 dan B5 yang memiliki visksoitas 1.67 cP. Temperatur ke 15 reservoar tersebut adalah 182 oF. Permeabilitas bervariasi dari 46 mD hingga 280 mD, sedangkan saturasi minyak dari 19.3% hingga 63%.

Usulan metode EOR dari sistem untuk ke 15 reservoar tersebut sebagian besar injeksi gas CO2 kecuali untuk reservoar B11. Usulan metode EOR dari sistem untuk reservoir B11

(59)

injeksi polimer untuk reservoar ini karena harga viskositas minyak 13.3 cP cenderung memberikan fungsi keanggotaan saturasi minyak yang lebih besar untuk injeksi polimer dibandingkan dengan injeksi gas CO2. Lampiran 2.2 menunjukkan perbandingan usulan

metode EOR oleh Pakar dan Sistem untuk 15 reservoar pada Lapangan B. Perbedaan keduanya hanya terlihat pada reservoar B11 dari 15 reservoar atau akurasi prediksi sistem pada Lapangan B ini sebesar 93.3%.

Tabel 6.2 Seleksi Metode EOR secara Manual untuk Reservoar A1, Lapangan A

Metode Grav Visc Oil Sat Formasi Perm Kedalaman Temp Poro

Hydrocarbon no yes yes yes yes yes yes yes

Nitrogen yes yes yes yes yes no yes yes

Carbon dioxide yes yes yes yes yes yes yes yes

Surfactant/Polymer yes yes yes no yes yes yes yes

Polymer yes yes yes yes yes yes no yes

Alkaline yes yes yes no yes yes no yes

In Situ Combustion no yes yes no yes yes yes yes

Steamflood no no yes no yes yes yes yes

Microbial yes yes yes yes yes yes no yes

Lapangan C terdiri atas 7 reservoar minyak yang kesemuanya merupakan batuan karbonat. Dari data terlihat bahwa ke tujuh reservoir tersebut memiliki karakteristik fluida yang berbeda. Berat jenis (gravty) minyak bervariasi antara 31.6 oAPI sampai dengan 37.3

o

API , dengan viskositas dari 0.82 cP sampai dengan 1.42 cP. Demikian juga temperatur bervariasi dari yang paling dangkal yaitu 197 oC hingga 225 oC pada reservoir C7 yang paling dalam. Saturasi minyak masih sangat tinggi antara 45.3% sampai dengan 60% sehingga applikasi metode EOR untuk ke tujuh reservoir ini sangat potential. Usulan metode EOR dari Pakar untuk ke 7 reservoar tersebut adalah injeksi HC.

Usulan metode EOR dari sistem untuk ke 7 reservoar tersebut adalah injeksi HC kecuali untuk reservoar C7. Sistem mengusulkan metode EOR injeksi gas N2 untuk reservoar ini. Hal

ini disebabkan karena gravity reservoar C7 yaitu 31.6 oAPI cenderung memberikan nilai fungsi keanggotaan gravity yang lebih besar untuk metode injkesi gas N2 dibandingkan dengan

(60)

Lapangan D terdiri atas 4 reservoar minyak yang kesemuanya merupakan batuan batupasir. Dari data terlihat bahwa ke empat reservoar tersebut memiliki karakteristik fluida yang relatif sama. Berat jenis (gravity) minyak antara 22 oAPI sampai dengan 24 oAPI, dengan viskositas yang relatif kental dengan kisaran antara 20 cP sampai dengan 25 cP. Temperatur untuk ke empat reservoar tersebut adalah 167 oF. Saturasi minyak relatif besar antara 53.4% sampai dengan 75.7% sehingga applikasi metode EOR untuk ke empat reservoar ini sangat potential. Usulan metode EOR dari Pakar untuk ke empat reservoar tersebut adalah injeksi kimia alkalin. Usulan metode EOR dari sistem untuk ke 4 reservoar tersebut konsisten dengan usulan Pakar, dimana untuk reservoar D1 hingga reservoir D4 sistem juga mengusulkan injeksi kimia alkalin. Lampiran 2.2 menunjukkan perbandingan usulan metode EOR oleh Pakar dan Sistem untuk 4 reservoar pada Lapangan D. Tidak ada Perbedaan keduanya dari 4 reservoar atau akurasi prediksi sistem pada Lapangan D ini sebesar 100%.

Lapangan E terdiri atas 5 reservoar minyak dengan lingkungan pengendapan batupasir. Dari data terlihat bahwa ke lima reservoar tersebut memiliki karakteristik fluida yang juga relatif sama. Berat jenis (gravity) minyak antara 36 oAPI, dengan viskositas bervariasi dari 0.38 cP hingga 1.38 cP. Temperatur untuk ke lima reservoar tersebut adalah 175 oF kecuali reservoar E2 yang mencapai 192 oF. Saturasi minyak cukup bervariasi dari 34.0% sampai dengan 66.4%. Usulan metode EOR dari Pakar untuk reservoar E1 dan E2 adalah surfactant/polymer. Sedangkan untuk reservoar E3, E4, dan E5 Pakar mengusulkan metode injeksi kimia polymer. Usulan metode EOR dari sistem untuk ke 5 reservoar tersebut konsisten dengan usulan Pakar dimana untuk reservoar E1 dan E2 sistem juga merekomendasikan surfactant/polymer, untuk reservoar E3, E4, dan E5 sistem juga mengsulkan metode injeksi kimia polymer. Lampiran 2.2 menunjukkan perbandingan usulan metode EOR oleh Pakar dan Sistem untuk 5 reservoar pada Lapangan E. Perbedaan pada E1, E2 dengan E3, E4 dan E5 dari 5 reservoar menunjukkan akurasi prediksi sistem pada Lapangan E ini sebesar 100%.

6.2. Analisa

(61)

EOR. Untuk meningkatkan akurasi sistem maka diperlukan evaluasi lebih intensif terhadap fungsi keanggotaan masing-masing parameter untuk mendapatkan fungsi yang lebih representatif.

(62)

Pengembangan Fuzzy Inferensi Sistem untuk seleksi metode EOR dapat memudahkan dan meningkatkan efisiensi proses seleksi metode EOR terhadap kandidat-kandidat reservoar. Sistem ini sangat fleksibel dan memiliki toleransi terhadap data-data yang tidak tepat. Pengembangan sistem ini dapat dimanfaatkan oleh para enjiner yang memiliki keahlian dalam bidang Geologi, Geofisika, Tehnik Kimia dan Tehnik Perminyakan. Pada penerapannya seleksi metode EOR ini mempergunakan variabel masukan yang mengacu pada Tabel Taber. Tabel Taber tersebut dapat direpresentasikan kedalam anggota himpunan fuzzy sehingga dapat diketahui nilai minimum dan maksimum. Sedangkan proses defuzzifikasi yang dilakukan menggunakan aturan yang dibuat sebanyak 16 aturan dengan komposisi Mamdani dan metode Centroid.

Pengembangan Sistem Seleksi Metode EOR ini melakukan uji sistem secara keseluruhan dari 46 reservoar minyak yang berasal dari 5 lapangan menunjukkan tingkat akurasi sistem sebesar 97,3%. Pada lapangan A,B,C,D dan E terhadap variasi data masukan memperlihatkan bahwa tingkat akurasi sistem usulan metode EOR dari sistem cukup tinggi dengan jangka waktu yang diperlukan oleh sistem untuk sampai pada usulan metode EOR jauh lebih singkat dibandingkan dengan waktu yang diperlukan oleh Pakar. Akurasi yang tinggi ini dapat menjadi dasar menggunakan usulan metode EOR dari sistem mewakili usulan Pakar. Tingkat akurasi prediksi sistem pada Lapangan A dan B yang terdiri atas 15 reservoar minyak sebesar 93.3%, hal ini disebabkan karena adanya perbedaan harga saturasi minyak sebesar 11.9 dan 13.3, hal ini cenderung memberikan nilai fungsi keanggotaan saturasi minyak yg lebih besar untuk injeksi polimer dari pada injeksi gas CO2. Sedangkan pada lapangan C,D dan E menunjukkan tingkat akurasi prediksi sistem sebesar 100% hal ini karena tidak adanya perbedaan antara hasil sistem dan pakar keduanya sama-sama menunjuk metode injeksi gas N2 untuk lapangan C, Alkaline untuk lapangan D dan Surfactant/Polymer untuk lapangan E

(63)

Untuk meningkatkan akurasi sistem maka diperlukan evaluasi lebih intensif terhadap fungsi

keanggotaan dari masing-masing parameter sehingga mendapatkan fungsi yang lebih representatif. Hal

(64)
(65)

Lampiran 1.1. Representasi kurva Hydrocarbon (M1)

Lampiran 1.1.1. Representasi kurva variabel gravity (M1)

Lampiran 1.1.2. Representasi kurva variabel viscosity (M1)

Lampiran 1.1.3. Representasi kurva variabel Komposisi (M1)

(66)

Lampiran 1.1.5. Representasi kurva variabel Saturasi (M1)

Lampiran 1.1.6. Representasi kurva variabel Tebal (M1)

Lampiran 1.1.7. Representasi kurva variabel Kedalaman (M1)

Lampiran 1.2. Representasi kurva N2 & Flue Gas (M2)

(67)

Lampiran 1.2.2. Representasi kurva variabel Viscosity (M2)

Lampiran 1.2.3. Representasi kurva variabel Komposisi (M2)

Lampiran 1.2.4. Representasi kurva variabel Salinitas (M2)

Gambar

Tabel 2.2 Kriteria seleksi metode EOR berdasarkan Taber, dkk.
Gambar 2.3 Diagram blok Fuzzy Inferensi Sistem
Gambar 3.1 Kerangka penelitian
Gambar 4.1 Diagram Pengembangan Fuzzy Inferensi Sistem untuk Seleksi Metode EOR.
+7

Referensi

Dokumen terkait