• Tidak ada hasil yang ditemukan

Institutional Repository | Satya Wacana Christian University: Sistem Otomatisasi Pengatur pH Pada Air Penampungan Kolam Renang

N/A
N/A
Protected

Academic year: 2017

Membagikan "Institutional Repository | Satya Wacana Christian University: Sistem Otomatisasi Pengatur pH Pada Air Penampungan Kolam Renang"

Copied!
51
0
0

Teks penuh

(1)

LAMPIRAN

$regfile = "m8535.dat"

$crystal = 4000000

Config Adc = Single , Prescaler = Auto , Reference = Avcc

Config Lcdpin = Pin , Rs = Portb.0 , E = Portb.1 , Db4 = Portb.2 , Db5 = Portb.3 , Db6 = Portb.4 , Db7 = Portb.5

Config Lcd = 20 * 4

Dim Suhulm35 As Word , Probepeha As Word , Suhu As Single , Lm35 As Byte

Dim Samples As Word , Maks As Word , Minm As Word , I As Byte , This_sample As Word , Diff As Word

Dim Pehaakhir As Single , Pengali As Single , Nilaipeha As Byte , Cekph As Single

Dim Karakter1 As String * 6

Dim Karakter2 As String * 6

Dim Detik As Integer , Menit As Integer , Jam As Integer

Dim Hari As Integer , Bulan As Integer , Tahun As Integer

Dim Weekday As Byte

Const Ds1307w = &HD0 ' Addresses of Ds1307 clock

(2)

Config Sda = Portc.1

Config Scl = Portc.0

Config Clock = User

Ddrd.4 = 1

Ddrd.5 = 1

Pompa_asam Alias Portd.4

Pompa_basa Alias Portd.5

Ddrc.2 = 0

Ddrc.3 = 0

Level_asam Alias Pinc.2

Level_basa Alias Pinc.3

Ddrc.4 = 1

Buzzer Alias Portc.4

Ddrc.5 = 1

Ddrc.6 = 1

Led_level_asam Alias Portc.5

Led_level_basa Alias Portc.6

Dim Tampung As Word , Liter As Byte , Limit_put As Word

Dim Tampung2 As Word , Liter2 As Byte , Limit_put2 As Word

(3)

Cursor Off

Cursor Noblink

'default 1 = OFF --> low active

Led_level_asam = 1

Led_level_basa = 0

'default 1 = OFF --> low active

Buzzer = 1

Config Int0 = Rising

Config Int1 = Rising

'Set up timer to track time

Config Timer1 = Timer , Prescale = 256

Stop Timer1

'Preload Timer Constant For 1 Second Duration At 4 Mhz for 256 prescale

Const Timer1pre = 49911

Timer1 = Timer1pre

'Handle time overflow (occurs every second)

On Timer1 Pulse

Start Timer0

Start Timer1

Enable Interrupts

(4)

Enable Timer1

Enable Int0

Enable Int1

On Int0 Hitung

On Int1 Hitung2

Led_level_asam = 1

Led_level_basa = 1

Buzzer = 1

Cls

Cursor Off

Cursor Noblink

Tampung = 0

Tampung2 = 0

Liter = 0

Limit_put = 0

Dim Cek_peha As String * 5

'_sec = 0

'_min = 50

'_hour = 17

(5)

'Wait 1

'Gosub Settime

'_sec = 14

'_min = 59

'_hour = 7

'Gosub Clock_init

'Wait 1

'Gosub Settime

Const 1putaran = 150

Limit_put = 1000

' 1 --> pump OFF

Pompa_asam = 1

Pompa_basa = 1

Dim Mmenit As Byte

Mmenit = 0

Utama:

Do

Locate 1 , 1

Lcd "Monitoring pH System"

(6)

Gosub Disply_seting

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

Locate 3 , 1

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

'Lcd "Count:" ; Tampung ; " " ; "Nilai:" ; Liter ; " "

Gosub Cek_sensor_peha

Gosub Cek_level_liquid

'utk debug saja

Locate 2 , 16

Lcd Mmenit

Locate 4 , 1

'Lcd "pH Real:" ; Pehaakhir

If Mmenit = 2 Then

Mmenit = 0

Gosub Scan_pompa_asam

Cls

End If

If Detik = 0 Then 'realnya detik diganti menit

Wait 1

Incr Mmenit

End If

Waitms 200

(7)

End

Cek_level_liquid:

If Level_asam = 1 Or Level_basa = 1 Then

Buzzer = Not Buzzer

Waitms 500

Buzzer = 1

End If

If Level_asam = 1 Then

Led_level_asam = Not Led_level_asam

Waitms 100

Led_level_asam = 1

Else

Led_level_asam = 1

End If

If Level_basa = 1 Then

Led_level_basa = Not Led_level_basa

Waitms 100

Led_level_basa = 1

Else

Led_level_basa = 1

End If

Return

(8)

Cls

Waitms 100

If Pehaakhir >= 6.79 And Pehaakhir <= 6.95 Then

Buzzer = 0

Waitms 100

Buzzer = 1

Do

Pompa_asam = 0

Locate 1 , 1

Lcd "Monitoring pH System"

Gosub Lm35

Gosub Disply_seting

Gosub Cek_sensor_peha

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

Locate 3 , 1

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

Locate 4 , 1

Lcd "Pulse: " ; Tampung ; " "

Loop Until Tampung >= 4565

Pompa_asam = 1

Tampung = 0

Goto Utama

End If

If Pehaakhir >= 6.59 And Pehaakhir <= 6.78 Then

Buzzer = 0

(9)

Buzzer = 1

Do

Pompa_asam = 0

Locate 1 , 1

Lcd "Monitoring pH System"

Gosub Lm35

Gosub Disply_seting

Gosub Cek_sensor_peha

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

Locate 3 , 1

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

Locate 4 , 1

Lcd "Pulse: " ; Tampung ; " "

Loop Until Tampung >= 5375

Pompa_asam = 1

Tampung = 0

Goto Utama

End If

If Pehaakhir >= 6.39 And Pehaakhir <= 6.58 Then

Buzzer = 0

Waitms 100

Buzzer = 1

Do

Pompa_asam = 0

Locate 1 , 1

(10)

Gosub Lm35

Gosub Disply_seting

Gosub Cek_sensor_peha

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

Locate 3 , 1

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

Locate 4 , 1

Lcd "Pulse: " ; Tampung ; " "

Loop Until Tampung >= 11000

Pompa_asam = 1

Tampung = 0

Goto Utama

End If

If Pehaakhir >= 6.19 And Pehaakhir <= 6.38 Then

Buzzer = 0

Waitms 100

Buzzer = 1

Do

Pompa_asam = 0

Locate 1 , 1

Lcd "Monitoring pH System"

Gosub Lm35

Gosub Disply_seting

Gosub Cek_sensor_peha

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

(11)

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

Locate 4 , 1

Lcd "Pulse: " ; Tampung ; " "

Loop Until Tampung >= 12500

Pompa_asam = 1

Tampung = 0

Goto Utama

End If

'=============================================================

'basa

If Pehaakhir >= 7.5 And Pehaakhir <= 7.6 Then

Buzzer = 0

Waitms 100

Buzzer = 1

Do

Pompa_basa = 0

Locate 1 , 1

Lcd "Monitoring pH System"

Gosub Lm35

Gosub Disply_seting

Gosub Cek_sensor_peha

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

Locate 3 , 1

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

Locate 4 , 1

(12)

Loop Until Tampung2 >= 2000

Pompa_basa = 1

Tampung2 = 0

Goto Utama

End If

If Pehaakhir >= 7.61 And Pehaakhir <= 7.7 Then

Buzzer = 0

Waitms 100

Buzzer = 1

Do

Pompa_basa = 0

Locate 1 , 1

Lcd "Monitoring pH System"

Gosub Lm35

Gosub Disply_seting

Gosub Cek_sensor_peha

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

Locate 3 , 1

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

Locate 4 , 1

Lcd "Pulse: " ; Tampung2 ; " "

Loop Until Tampung2 >= 3000

Pompa_basa = 1

Tampung2 = 0

Goto Utama

(13)

If Pehaakhir >= 7.71 And Pehaakhir <= 7.8 Then

Buzzer = 0

Waitms 100

Buzzer = 1

Do

Pompa_basa = 0

Locate 1 , 1

Lcd "Monitoring pH System"

Gosub Lm35

Gosub Disply_seting

Gosub Cek_sensor_peha

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

Locate 3 , 1

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

Locate 4 , 1

Lcd "Pulse: " ; Tampung2 ; " "

Loop Until Tampung2 >= 4000

Pompa_basa = 1

Tampung2 = 0

Goto Utama

End If

If Pehaakhir >= 7.81 And Pehaakhir <= 7.9 Then

Buzzer = 0

Waitms 100

(14)

Do

Pompa_basa = 0

Locate 1 , 1

Lcd "Monitoring pH System"

Gosub Lm35

Gosub Disply_seting

Gosub Cek_sensor_peha

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

Locate 3 , 1

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

Locate 4 , 1

Lcd "Pulse: " ; Tampung2 ; " "

Loop Until Tampung2 >= 4000

Pompa_basa = 1

Tampung2 = 0

Goto Utama

End If

If Pehaakhir >= 7.91 And Pehaakhir <= 8.0 Then

Buzzer = 0

Waitms 100

Buzzer = 1

Do

Pompa_basa = 0

Locate 1 , 1

Lcd "Monitoring pH System"

(15)

Gosub Disply_seting

Gosub Cek_sensor_peha

Deflcdchar 0 , 6 , 9 , 9 , 6 , 32 , 32 , 32 , 32

Locate 3 , 1

Lcd "LM35:" ; Lm35 ; Chr(0) ; "C " ; "| pH:" ; Karakter2 ; " "

Locate 4 , 1

Lcd "Pulse: " ; Tampung2 ; " "

Loop Until Tampung2 >= 5000

Pompa_basa = 1

Tampung2 = 0

Goto Utama

End If

Cls

Return

Pulse:

Stop Timer0

Stop Timer1

Counter0 = 0

Timer1 = Timer1pre

Start Timer0

Start Timer1

Return

(16)

Incr Tampung

Return

Hitung2:

Incr Tampung2

Return

Lm35:

Suhulm35 = Getadc(0)

Suhu = Suhulm35 * 5

Suhu = Suhu / 1024

Suhu = Suhu * 100

Lm35 = Suhu

Return

Cek_sensor_peha:

Samples = 2000

Maks = 0

Minm = 1024

For I = 0 To Samples Step 1

Probepeha = Getadc(1)

If Probepeha > Maks Then

Maks = Probepeha

Elseif Probepeha < Minm Then

Minm = Probepeha

End If

(17)

Next I

Pehaakhir = -0.029 * Maks

Pehaakhir = Pehaakhir + 21.1

'Pehaakhir = Pehaakhir

Nilaipeha = Pehaakhir

Karakter2 = Fusing(pehaakhir , "#.#") ' y = -0.03x + 22

Return

Disply_seting:

Gosub Getdatetime

Jam = _hour

Menit = _min

Detik = _sec

Locate 2 , 5

If Jam < 10 Then

Lcd "0" ; Jam ; ":" ;

Else

Lcd Jam ; ":" ;

End If

If Menit < 10 Then

(18)

Else

Lcd Menit ; ":" ;

End If

If Detik < 10 Then

Lcd "0" ; Detik

Else

Lcd Detik

End If

Return

Getdatetime:

I2cstart

I2cwbyte Ds1307w

I2cwbyte 0

I2cstart

I2cwbyte Ds1307r

I2crbyte _sec , Ack

I2crbyte _min , Ack

I2crbyte _hour , Ack

I2crbyte Weekday , Ack

I2crbyte _day , Ack

I2crbyte _month , Ack

I2crbyte _year , Nack

I2cstop

_sec = Makedec(_sec) : _min = Makedec(_min) : _hour = Makedec(_hour)

(19)

Return

Settime:

_sec = Makebcd(_sec) : _min = Makebcd(_min) : _hour = Makebcd(_hour)

I2cstart

I2cwbyte Ds1307w

I2cwbyte 0

I2cwbyte _sec

I2cwbyte _min

I2cwbyte _hour

I2cstop

Return

Setdate:

_day = Makebcd(_day) : _month = Makebcd(_month) : _year = Makebcd(_year)

I2cstart

I2cwbyte Ds1307w

I2cwbyte 4

I2cwbyte _day

I2cwbyte _month

I2cwbyte _year

I2cstop

Return

Clock_init:

I2cstart

(20)

I2cwbyte &H00

I2cwbyte &H00 And &B01111111

I2cstop

I2cstart

I2cwbyte Ds1307w

I2cwbyte &H07

I2cwbyte &B10010000

I2cstop

(21)

1/7

®

BTA/BTB12 and T12 Series

SNUBBERLESS™, LOGIC LEVEL & STANDARD

12A TRIAC

S

September 2000 - Ed: 3

MAIN FEATURES:

DESCRIPTION

Available either in through-hole or surface-mount packages, the BTA/BTB12 and T12 triac series is suitable for general purpose AC switching. They can be used as an ON/OFF function in applications such as static relays, heating regulation, induction motor starting circuits... or for phase control operation in light dimmers, motor speed controllers,...

The snubberless versions (BTA/BTB...W and T12 series) are specially recommended for use on inductive loads, thanks to their high commutation performances. By using an internal ceramic pad, the BTA series provides voltage insulated tab (rated at 2500V RMS) complying with UL standards (File ref.: E81734)

Symbol Value Unit

IT(RMS) 12 A

VDRM/VRRM 600 and 800 V

IGT (Q

1) 10 to 50 mA

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

IT(RMS) RMS on-state current (full sine wave) D²PAK/TO-220AB Tc = 105°C

12 A

TO-220AB Ins. Tc = 90°C

ITSM Non repetitive surge peak on-state current (full cycle, Tj initial = 25°C)

F = 50 Hz t = 20 ms 120 A

F = 60 Hz t = 16.7 ms 126

I²t I²t Value for fusing tp = 10 ms 100 A²s

dI/dt Critical rate of rise of on-state current I

G = 2 x IGT , tr ≤ 100 ns F = 120 Hz Tj = 125°C 50 A/µs

VDSM/VRSM Non repetitive surge peak off-state

voltage tp = 10 ms Tj = 25°C

VDRM/VRRM

+ 100 V

IGM Peak gate current tp = 20 µs Tj = 125°C 4 A

PG(AV) Average gate power dissipation Tj = 125°C 1 W

Tstg Tj

Storage junction temperature range Operating junction temperature range

- 40 to + 150

- 40 to + 125 °C

G A2 A1 G A2 A2 A1 A2 A2 A1 G

(22)

BTA/BTB12 and T12 Series

2/7

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise specified)

SNUBBERLESS™ and LOGIC LEVEL (3 Quadrants)

STANDARD (4 Quadrants)

STATIC CHARACTERISTICS

Note 1: minimum IGT is guaranted at 5% of IGT max.

Note 2: for both polarities of A2 referenced to A1

Symbol Test Conditions Quadrant T12 BTA/BTB12

Unit

T1235 SW CW BW

IGT (1)

VD = 12 V RL = 30 Ω I - II - III MAX. 35 10 35 50 mA

VGT I - II - III MAX. 1.3 V

VGD VD = VDRM RL = 3.3 kΩ Tj = 125°C

I - II - III MIN. 0.2

V

IH (2) IT = 100 mA MAX. 35 15 35 50 mA

IL IG = 1.2 IGT I - III MAX. 50 25 50 70 mA

II 60 30 60 80

dV/dt (2) VD = 67 %VDRM gate open

Tj = 125°C MIN. 500 40 500 1000 V/µs

(dI/dt)c (2) (dV/dt)c = 0.1 V/µs Tj = 125°C MIN. - 6.5 - - A/ms

(dV/dt)c = 10 V/µs Tj = 125°C - 2.9 -

-Without snubber Tj = 125°C 6.5 - 6.5 12

Symbol Test Conditions Quadrant BTA/BTB06

Unit

C B

IGT (1)

VD = 12 V RL = 30 Ω

I - II - III

IV MAX. 25 50 50 100 mA

VGT ALL MAX. 1.3 V

VGD VD = VDRM RL = 3.3 kΩ Tj = 125°C ALL MIN. 0.2 V

IH (2) IT = 500 mA MAX. 25 50 mA

IL IG = 1.2 IGT I - III - IV MAX. 40 50 mA

II 80 100

dV/dt (2) VD = 67 %VDRM gate open Tj = 125°C MIN. 200 400 V/µs

(dV/dt)c (2) (dI/dt)c = 5.3 A/ms Tj = 125°C MIN. 5 10 V/µs

Symbol Test Conditions Value Unit

VT (2) ITM = 17 A tp = 380 µs Tj = 25°C MAX. 1.55 V

Vto (2) Threshold voltage Tj = 125°C MAX. 0.85 V

Rd (2) Dynamic resistance Tj = 125°C MAX. 35 mΩ

IDRM IRRM

VDRM = VRRM Tj = 25°C

MAX.

5 µA

(23)

BTA/BTB12 and T12 Series

3/7

THERMAL RESISTANCES

S = Copper surface under tab

PRODUCT SELECTOR

BTB: non insulated TO-220AB package

ORDERING INFORMATION

Symbol Parameter Value Unit

Rth(j-c) Junction to case (AC) D²PAK/TO-220AB 1.4 °C/W

TO-220AB Insulated 2.3

Rth(j-a) Junction to ambient S = 1 cm² D²PAK 45 °C/W

TO-220AB

TO-220AB Insulated 60

Part Number

Voltage (xxx)

Sensitivity Type Package

600 V 800 V

BTA/BTB12-xxxB X X 50 mA Standard TO-220AB

BTA/BTB12-xxxBW X X 50 mA Snubberless TO-220AB

BTA/BTB12-xxxC X X 25 mA Standard TO-220AB

BTA/BTB12-xxxCW X X 35 mA Snubberless TO-220AB

BTA/BTB12-xxxSW X X 10 mA Logic level TO-220AB

T1235-xxxG X X 35 mA Snubberless D²PAK

BT A 12 - 600 BW

TRIAC SERIES

INSULATION: A: insulated B: non insulated

CURRENT: 12A

SENSITIVITY & TYPE B: 50mA STANDARD BW: 50mA SNUBBERLESS C: 25mA STANDARD CW: 35mA SNUBBERLESS SW: 10mA LOGIC LEVEL VOLTAGE:

600: 600V 800: 800V

T 12 35 - 600 G (-TR)

TRIAC

SERIES

SENSITIVITY: 35: 35mA

VOLTAGE: 600: 600V 800: 800V CURRENT: 12A

PACKAGE: G: D PAK2

(24)

BTA/BTB12 and T12 Series

4/7

OTHER INFORMATION

Note: xxx = voltage, yy = sensitivity, z = type

Part Number Marking Weight quantityBase Packingmode

BTA/BTB12-xxxyz BTA/BTB12-xxxyz 2.3 g 250 Bulk

T1235-xxxG T1235xxxG 1.5 g 50 Tube

T1235-xxxG-TR T1235xxxG 1.5 g 1000 Tape & reel

Fig. 1: Maximum power dissipation versus RMS

on-state current (full cycle).

Fig. 2-1: RMS on-state current versus case

temperature (full cycle).

Fig. 2-2: RMS on-state current versus ambient

temperature (printed circuit board FR4, copper thickness: 35µm),full cycle.

Fig. 3: Relative variation of thermal impedance

versus pulse duration.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 2 4 6 8 10 12 14 16 P (W) IT(RMS)(A)

0 25 50 75 100 125

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IT(RMS) (A) BTA BTB/T12 Tc(°C)

0 25 50 75 100 125

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tamb(°C) IT(RMS) (A) D PAK (S=1cm ) 2 2

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 5E+2

(25)

BTA/BTB12 and T12 Series

5/7

Fig. 4: On-state characteristics (maximum

values).

Fig. 5: Surge peak on-state current versus

number of cycles.

Fig. 6: Non-repetitive surge peak on-state

current for a sinusoidal pulse with width tp < 10ms, and corresponding value of I²t.

Fig. 7: Relative variation of gate trigger current,

holding current and latching current versus junction temperature (typical values).

Fig. 8: Relative variation of critical rate of

decrease of main current versus (dV/dt)c (typical values).

Fig. 9: Relative variation of critical rate of

decrease of main current versus junction temperature.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1 10 100 ITM (A) Tj=25°C Tj max Tj max. Vto = 0.85 V Rd = 35 mVTM(V)

1 10 100 1000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 ITSM (A) Non repetitive Tj initial=25°C Repetitive Tc=90°C One cycle t=20ms

Number of cycles

0.01 0.10 1.00 10.00

10 100 1000

ITSM (A), I²t (A²s)

Tj initial=25°C ITSM I²t dI/dt limitation: 50A/µs tp (ms)

-40 -20 0 20 40 60 80 100 120 140

0.0 0.5 1.0 1.5 2.0 2.5

IGT,IH,IL[Tj] / IGT,IH,IL [Tj=25°C]

IGT

IH & IL

Tj(°C)

0.1 1.0 10.0 100.0

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

(dI/dt)c [(dV/dt)c] / Specified (dI/dt)c

BW/CW/T1235 C

B SW

(dV/dt)c (V/µs)

0 25 50 75 100 125

(26)

BTA/BTB12 and T12 Series

6/7

Fig. 10: D²PAK Thermal resistance junction to

ambient versus copper surface under tab (printed circuit board FR4, copper thickness: 35µm).

0 4 8 12 16 20 24 28 32 36 40

0 10 20 30 40 50 60 70 80 S(cm²) Rth(j-a) (°C/W) D²PAK

PACKAGE MECHANICAL DATA

D²PAK (Plastic)

REF.

DIMENSIONS

Millimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 4.30 4.60 0.169 0.181

A1 2.49 2.69 0.098 0.106

A2 0.03 0.23 0.001 0.009

B 0.70 0.93 0.027 0.037

B2 1.25 1.40 0.048 0.055

C 0.45 0.60 0.017 0.024

C2 1.21 1.36 0.047 0.054

D 8.95 9.35 0.352 0.368

E 10.00 10.28 0.393 0.405

G 4.88 5.28 0.192 0.208

L 15.00 15.85 0.590 0.624

L2 1.27 1.40 0.050 0.055

L3 1.40 1.75 0.055 0.069

R 0.40 0.016

V2 0° 8° 0° 8°

A C2 D R 2.0 MIN. FLAT ZONE A2 V2 C A1 G L L3 L2 B B2 E

FOOTPRINT DIMENSIONS (in millimeters)

(27)

BTA/BTB12 and T12 Series

7/7

PACKAGE MECHANICAL DATA

TO-220AB / TO-220AB Ins.

REF.

DIMENSIONS

Millimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 15.20 15.90 0.598 0.625

a1 3.75 0.147

a2 13.00 14.00 0.511 0.551

B 10.00 10.40 0.393 0.409

b1 0.61 0.88 0.024 0.034

b2 1.23 1.32 0.048 0.051

C 4.40 4.60 0.173 0.181

c1 0.49 0.70 0.019 0.027

c2 2.40 2.72 0.094 0.107

e 2.40 2.70 0.094 0.106

F 6.20 6.60 0.244 0.259

I 3.75 3.85 0.147 0.151

I4 15.80 16.40 16.80 0.622 0.646 0.661

L 2.65 2.95 0.104 0.116

l2 1.14 1.70 0.044 0.066

l3 1.14 1.70 0.044 0.066

M 2.60 0.102

M B

l4

C

b2

a2 l2

c2

l3

b1

a1 A

F L

I

e

c1

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom

(28)

TL/H/5516

LM35/LM35A/LM35C/LM35CA/LM35D

Precision

Centigrade

Temperature

Sensors

December 1994

LM35/LM35A/LM35C/LM35CA/LM35D

Precision Centigrade Temperature Sensors

General Description

The LM35 series are precision integrated-circuit tempera-ture sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has

an advantage over linear temperature sensors calibrated in§

Kelvin, as the user is not required to subtract a large con-stant voltage from its output to obtain convenient Centi-grade scaling. The LM35 does not require any external

cali-bration or trimming to provide typical accuracies ofg(/4§C

at room temperature andg*/4§C over a fullb55 toa150§C

temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35’s low output imped-ance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and

minus supplies. As it draws only 60mA from its supply, it has

very low self-heating, less than 0.1§C in still air. The LM35 is

rated to operate over a b55§ to a150§C temperature

range, while the LM35C is rated for a b40§ to a110§C

range (b10§with improved accuracy). The LM35 series is

available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-202 package.

Features

Y Calibrated directly in§Celsius (Centigrade)

Y Lineara10.0 mV/§C scale factor

Y 0.5§C accuracy guaranteeable (ata25§C)

Y Rated for fullb55§toa150§C range

Y Suitable for remote applications

Y Low cost due to wafer-level trimming

Y Operates from 4 to 30 volts

Y Less than 60mA current drain

Y Low self-heating, 0.08§C in still air

Y Nonlinearity onlyg(/4§C typical

Y Low impedance output, 0.1Xfor 1 mA load

Connection Diagrams

TO-46 Metal Can Package*

TL/H/5516 – 1

*Case is connected to negative pin (GND)

Order Number LM35H, LM35AH, LM35CH, LM35CAH or LM35DH See NS Package Number H03H

TO-92 Plastic Package

TL/H/5516 – 2

Order Number LM35CZ, LM35CAZ or LM35DZ See NS Package Number Z03A

SO-8

Small Outline Molded Package

TL/H/5516 – 21

Top View N.C.eNo Connection

Order Number LM35DM See NS Package Number M08A

TO-202 Plastic Package

TL/H/5516 – 24

Order Number LM35DP See NS Package Number P03A

Typical Applications

TL/H/5516 – 3

FIGURE 1. Basic Centigrade Temperature Sensor (a2§C toa150§C)

TL/H/5516 – 4

Choose R1e bVS/50mA

VOUTe a1,500 mV ata150§C

e a250 mV ata25§C

e b550 mV atb55§C FIGURE 2. Full-Range Centigrade

Temperature Sensor

TRI-STATEÉis a registered trademark of National Semiconductor Corporation.

(29)

Absolute Maximum Ratings(Note 10)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage a35V tob0.2V

Output Voltage a6V tob1.0V

Output Current 10 mA

Storage Temp., TO-46 Package, b60§C toa180§C

TO-92 Package, b60§C toa150§C

SO-8 Package, b65§C toa150§C

TO-202 Package, b65§C toa150§C

Lead Temp.:

TO-46 Package, (Soldering, 10 seconds) 300§C

TO-92 Package, (Soldering, 10 seconds) 260§C

TO-202 Package, (Soldering, 10 seconds) a230§C

SO Package (Note 12):

Vapor Phase (60 seconds) 215§C

Infrared (15 seconds) 220§C

ESD Susceptibility (Note 11) 2500V

Specified Operating Temperature Range: TMINto TMAX

(Note 2)

LM35, LM35A b55§C toa150§C

LM35C, LM35CA b40§C toa110§C

LM35D 0§C toa100§C

Electrical Characteristics(Note 1)(Note 6)

LM35A LM35CA

Parameter Conditions Tested Design Tested Design Units

Typical Limit Limit Typical Limit Limit (Max.)

(Note 4) (Note 5) (Note 4) (Note 5)

Accuracy TAe a25§C g0.2 g0.5 g0.2 g0.5 §C

(Note 7) TAeb10§C g0.3 g0.3 g1.0 §C

TAeTMAX g0.4 g1.0 g0.4 g1.0 §C

TAeTMIN g0.4 g1.0 g0.4 g1.5 §C

Nonlinearity TMINsTAsTMAX g0.18 g0.35 g0.15 g0.3 §C

(Note 8)

Sensor Gain TMINsTAsTMAX a10.0 a9.9, a10.0 a9.9, mV/§C

(Average Slope) a10.1 a10.1

Load Regulation TAe a25§C g0.4 g1.0 g0.4 g1.0 mV/mA

(Note 3) 0sILs1 mA TMINsTAsTMAX g0.5 g3.0 g0.5 g3.0 mV/mA

Line Regulation TAe a25§C g0.01 g0.05 g0.01 g0.05 mV/V

(Note 3) 4VsV

Ss30V g0.02 g0.1 g0.02 g0.1 mV/V

Quiescent Current VSe a5V,a25§C 56 67 56 67 mA

(Note 9) VSe a5V 105 131 91 114 mA

VSe a30V,a25§C 56.2 68 56.2 68 mA

VSe a30V 105.5 133 91.5 116 mA

Change of 4VsVSs30V,a25§C 0.2 1.0 0.2 1.0 mA

Quiescent Current 4VsVSs30V 0.5 2.0 0.5 2.0 mA

(Note 3)

Temperature a0.39 a0.5 a0.39 a0.5 mA/§C

Coefficient of Quiescent Current

Minimum Temperature In circuit of a1.5 a2.0 a1.5 a2.0 §C

for Rated Accuracy Figure 1 , ILe0

Long Term Stability TJeTMAX, for g0.08 g0.08 §C

1000 hours

Note 1:Unless otherwise noted, these specifications apply:b55§CsTJsa150§C for the LM35 and LM35A;b40§sTJsa110§C for the LM35C and LM35CA; and

0§sTJsa100§C for the LM35D. VSe a5Vdc and ILOADe50mA, in the circuit ofFigure 2. These specifications also apply froma2§C to TMAXin the circuit of Figure 1 . Specifications inboldfaceapply over the full rated temperature range.

Note 2:Thermal resistance of the TO-46 package is 400§C/W, junction to ambient, and 24§C/W junction to case. Thermal resistance of the TO-92 package is 180§C/W junction to ambient. Thermal resistance of the small outline molded package is 220§C/W junction to ambient. Thermal resistance of the TO-202 package is 85§C/W junction to ambient. For additional thermal resistance information see table in the Applications section.

(30)

Electrical Characteristics(Note 1)(Note 6)(Continued)

LM35 LM35C, LM35D

Parameter Conditions Tested Design Tested Design Units

Typical Limit Limit Typical Limit Limit (Max.)

(Note 4) (Note 5) (Note 4) (Note 5)

Accuracy, TAe a25§C g0.4 g1.0 g0.4 g1.0 §C

LM35, LM35C TAeb10§C g0.5 g0.5 g1.5 §C

(Note 7) TAeTMAX g0.8 g1.5 g0.8 g1.5 §C

TAeTMIN g0.8 g1.5 g0.8 g2.0 §C

Accuracy, TAe a25§C g0.6 g1.5 §C

LM35D TAeTMAX g0.9 g2.0 §C

(Note 7) TAeTMIN g0.9 g2.0 §C

Nonlinearity TMINsTAsTMAX g0.3 g0.5 g0.2 g0.5 §C

(Note 8)

Sensor Gain TMINsTAsTMAX a10.0 a9.8, a10.0 a9.8, mV/§C

(Average Slope) a10.2 a10.2

Load Regulation TAe a25§C g0.4 g2.0 g0.4 g2.0 mV/mA

(Note 3) 0sILs1 mA TMINsTAsTMAX g0.5 g5.0 g0.5 g5.0 mV/mA

Line Regulation TAe a25§C g0.01 g0.1 g0.01 g0.1 mV/V

(Note 3) 4VsVSs30V g0.02 g0.2 g0.02 g0.2 mV/V

Quiescent Current VSe a5V,a25§C 56 80 56 80 mA

(Note 9) VSe a5V 105 158 91 138 mA

VSe a30V,a25§C 56.2 82 56.2 82 mA

VSe a30V 105.5 161 91.5 141 mA

Change of 4VsVSs30V,a25§C 0.2 2.0 0.2 2.0 mA

Quiescent Current 4VsV

Ss30V 0.5 3.0 0.5 3.0 mA

(Note 3)

Temperature a0.39 a0.7 a0.39 a0.7 mA/§C

Coefficient of Quiescent Current

Minimum Temperature In circuit of a1.5 a2.0 a1.5 a2.0 §C

for Rated Accuracy Figure 1 , ILe0

Long Term Stability TJeTMAX, for g0.08 g0.08 §C

1000 hours

Note 3:Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.

Note 4:Tested Limits are guaranteed and 100% tested in production.

Note 5:Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

Note 6:Specifications inboldfaceapply over the full rated temperature range.

Note 7:Accuracy is defined as the error between the output voltage and 10mv/§C times the device’s case temperature, at specified conditions of voltage, current, and temperature (expressed in§C).

Note 8:Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device’s rated temperature range.

Note 9:Quiescent current is defined in the circuit ofFigure 1 .

Note 10:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 1.

Note 11:Human body model, 100 pF discharged through a 1.5 kXresistor.

Note 12:See AN-450 ‘‘Surface Mounting Methods and Their Effect on Product Reliability’’ or the section titled ‘‘Surface Mount’’ found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

[image:30.612.81.533.93.670.2]
(31)

Typical Performance Characteristics

Thermal Resistance

Junction to Air Thermal Time Constant

Thermal Response in Still Air

Thermal Response in Stirred Oil Bath

Minimum Supply Voltage vs. Temperature

Quiescent Current vs. Temperature (In Circuit ofFigure 1 .)

TL/H/5516 – 17

Quiescent Current vs. Temperature (In Circuit ofFigure 2 .)

Accuracy vs. Temperature (Guaranteed)

Accuracy vs. Temperature (Guaranteed)

TL/H/5516 – 18

Start-Up Response Noise Voltage

TL/H/5516 – 22

(32)

Applications

The LM35 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within

about 0.01§C of the surface temperature.

This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM35 die would be at an inter-mediate temperature between the surface temperature and the air temperature. This is expecially true for the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, so its tempera-ture might be closer to the air temperatempera-ture than to the sur-face temperature.

To minimize this problem, be sure that the wiring to the LM35, as it leaves the device, is held at the same tempera-ture as the surface of interest. The easiest way to do this is to cover up these wires with a bead of epoxy which will insure that the leads and wires are all at the same tempera-ture as the surface, and that the LM35 die’s temperatempera-ture will not be affected by the air temperature.

The TO-46 metal package can also be soldered to a metal surface or pipe without damage. Of course, in that case the

Vbterminal of the circuit will be grounded to that metal.

Alternatively, the LM35 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM35 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and var-nishes such as Humiseal and epoxy paints or dips are often used to insure that moisture cannot corrode the LM35 or its connections.

These devices are sometimes soldered to a small light-weight heat fin, to decrease the thermal time constant and speed up the response in slowly-moving air. On the other hand, a small thermal mass may be added to the sensor, to give the steadiest reading despite small deviations in the air temperature.

Temperature Rise of LM35 Due To Self-heating (Thermal Resistance)

TO-46, TO-46, TO-92, TO-92, SO-8 SO-8 TO-202 TO-202*** no heat sink small heat fin* no heat sink small heat fin** no heat sink small heat fin** no heat sink small heat fin Still air 400§C/W 100§C/W 180§C/W 140§C/W 220§C/W 110§C/W 85§C/W 60§C/W Moving air 100§C/W 40§C/W 90§C/W 70§C/W 105§C/W 90§C/W 25§C/W 40§C/W Still oil 100§C/W 40§C/W 90§C/W 70§C/W

Stirred oil 50§C/W 30§C/W 45§C/W 40§C/W (Clamped to metal,

Infinite heat sink) (24§C/W) (55§C/W) (23§C/W)

*Wakefield type 201, or 1×disc of 0.020×sheet brass, soldered to case, or similar.

**TO-92 and SO-8 packages glued and leads soldered to 1×square of(/16×printed circuit board with 2 oz. foil or similar.

Typical Applications(Continued)

TL/H/5516 – 19

FIGURE 3. LM35 with Decoupling from Capacitive Load

TL/H/5516 – 20

FIGURE 4. LM35 with R-C Damper

CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited ability to drive heavy capacitive loads. The LM35 by itself is able to drive 50 pf without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a

resistor; seeFigure 3 . Or you can improve the tolerance of

capacitance with a series R-C damper from output to

ground; seeFigure 4 .

When the LM35 is applied with a 200X load resistor as

shown inFigure 5, 6, or 8, it is relatively immune to wiring

capacitance because the capacitance forms a bypass from ground to input, not on the output. However, as with any linear circuit connected to wires in a hostile environment, its performance can be affected adversely by intense electro-magnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR transients, etc, as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass

capac-itor from VINto ground and a series R-C damper such as

75Xin series with 0.2 or 1mF from output to ground are

often useful. These are shown inFigures 13, 14, and 16.

[image:32.612.83.532.66.692.2]
(33)

Typical Applications(Continued)

TL/H/5516 – 5

FIGURE 5. Two-Wire Remote Temperature Sensor (Grounded Sensor)

TL/H/5516 – 6

FIGURE 6. Two-Wire Remote Temperature Sensor (Output Referred to Ground)

TL/H/5516 – 7

FIGURE 7. Temperature Sensor, Single Supply,b55§to

a150§C

TL/H/5516 – 8

FIGURE 8. Two-Wire Remote Temperature Sensor (Output Referred to Ground)

TL/H/5516 – 9

FIGURE 9. 4-To-20 mA Current Source (0§C toa100§C)

TL/H/5516 – 10

FIGURE 10. Fahrenheit Thermometer

[image:33.612.57.533.67.632.2]
(34)

Typical Applications(Continued)

TL/H/5516 – 11

FIGURE 11. Centigrade Thermometer (Analog Meter)

TL/H/5516 – 12

FIGURE 12. Expanded Scale Thermometer

(50§to 80§Fahrenheit, for Example Shown)

TL/H/5516 – 13

FIGURE 13. Temperature To Digital Converter (Serial Output) (a128§C Full Scale)

TL/H/5516 – 14

FIGURE 14. Temperature To Digital Converter (Parallel TRI-STATEÉOutputs for

Standard Data Bus tomP Interface) (128§C Full Scale)

[image:34.612.85.534.69.655.2]
(35)

Typical Applications(Continued)

TL/H/5516 – 16

*e1% or 2% film resistor -Trim RBfor VBe3.075V

-Trim RCfor VCe1.955V

-Trim RAfor VAe0.075Va100mV/§CcTambient

-Example, VAe2.275V at 22§C

FIGURE 15. Bar-Graph Temperature Display (Dot Mode)

TL/H/5516 – 15

FIGURE 16. LM35 With Voltage-To-Frequency Converter And Isolated Output (2§C toa150§C; 20 Hz to 1500 Hz)

[image:35.612.60.535.71.637.2]
(36)

Block Diagram

TL/H/5516 – 23

(37)

Physical Dimensionsinches (millimeters)

TO-46 Metal Can Package (H) Order Number LM35H, LM35AH, LM35CH,

LM35CAH, or LM35DH NS Package Number H03H

SO-8 Molded Small Outline Package (M) Order Number LM35DM NS Package Number M08A

(38)

Physical Dimensionsinches (millimeters) (Continued)

Power Package TO-202 (P) Order Number LM35DP NS Package Number P03A

(39)

LM35/LM35A/LM35C/LM35CA/LM35D

Precision

Centigrade

Temperature

Sensors

Physical Dimensionsinches (millimeters) (Continued)

TO-92 Plastic Package (Z) Order Number LM35CZ, LM35CAZ or LM35DZ

NS Package Number Z03A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.

2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16 P.O. Box 58090 D-82256 F4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive

Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park

Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999

Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998

Fax: (043) 299-2500

(40)

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

SLVS056J – MAY 1976 – REVISED MAY 2003

1

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

D

3-Terminal Regulators

D

Output Current up to 1.5 A

D

Internal Thermal-Overload Protection

D

High Power-Dissipation Capability

D

Internal Short-Circuit Current Limiting

D

Output Transistor Safe-Area Compensation

KTE PACKAGE (TOP VIEW) OUTPUT COMMON INPUT COMMON OUTPUT

KC (TO-220) PACKAGE (TOP VIEW)

INPUT

COMMON

COMMON OUTPUT

KCS (TO-220) PACKAGE (TOP VIEW)

INPUT

COMMON

COMMON

description/ordering information

This series of fixed-voltage integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 A of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents, and also can be used as the power-pass element in precision regulators.

ORDERING INFORMATION

TJ VO(NOM)(V) PACKAGE† ORDERABLE

PART NUMBER

TOP-SIDE MARKING

POWER-FLEX (KTE) Reel of 2000 µA7805CKTER µA7805C

5 TO-220 (KC) Tube of 50 µA7805CKC

µA7805C

TO-220, short shoulder (KCS) Tube of 20 µA7805CKCS µA7805C

POWER-FLEX (KTE) Reel of 2000 µA7808CKTER µA7808C

8 TO-220 (KC) Tube of 50 µA7808CKC

µA7808C

TO-220, short shoulder (KCS) Tube of 20 µA7808CKCS µA7808C

10 POWER-FLEX (KTE) Reel of 2000 µA7810CKTER µA7810C

0°C to 125°C

10

TO-220 (KC) Tube of 50 µA7810CKC µA7810C

0°C to 125°C

POWER-FLEX (KTE) Reel of 2000 µA7812CKTER µA7812C

12 TO-220 (KC) Tube of 50 µA7812CKC

µA7812C

TO-220, short shoulder (KCS) Tube of 20 µA7812CKCS µA7812C

POWER-FLEX (KTE) Reel of 2000 µA7815CKTER µA7815C

15 TO-220 (KC) Tube of 50 µA7815CKC

µA7815C

TO-220, short shoulder (KCS) Tube of 20 µA7815CKCS µA7815C

24 POWER-FLEX (KTE) Reel of 2000 µA7824CKTER µA7824C

24

TO-220 (KC) Tube of 50 µA7824CKC µA7824C

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Copyright  2003, Texas Instruments Incorporated

(41)

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

SLVS056J – MAY 1976 – REVISED MAY 2003

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

schematic

INPUT

OUTPUT

COMMON

absolute maximum ratings over virtual junction temperature range (unless otherwise noted)†

Input voltage, VI: µA7824C . . . 40 V All others . . . 35 V Operating virtual junction temperature, TJ 150. . . °C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . 260°C Storage temperature range, Tstg. . . –65°C to 150°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

package thermal data (see Note 1)

PACKAGE BOARD θJC θJA

POWER-FLEX (KTE) High K, JESD 51-5 3°C/W 23°C/W

TO-220 (KC/KCS) High K, JESD 51-5 3°C/W 19°C/W

(42)

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

SLVS056J – MAY 1976 – REVISED MAY 2003

3

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

recommended operating conditions

MIN MAX UNIT

µA7805C 7 25

µA7808C 10.5 25

VI Input voltage µA7810C 12.5 28 V

VI Input voltage

µA7812C 14.5 30 V

µA7815C 17.5 30

µA7824C 27 38

IO Output current 1.5 A

TJ Operating virtual junction temperature µA7800C series 0 125 °C

electrical characteristics at specified virtual junction temperature, VI = 10 V, IO = 500 mA (unless otherwise noted)

PARAMETER TEST CONDITIONS T † µA7805C UNIT

PARAMETER TEST CONDITIONS TJ†

MIN TYP MAX UNIT

Output voltage IO = 5 mA to 1 A, VI = 7 V to 20 V, 25°C 4.8 5 5.2 V

Output voltage O ,

PD ≤ 15 W

I ,

0°C to 125°C 4.75 5.25 V

Input voltage regulation VI = 7 V to 25 V 25°C 3 100 mV

Input voltage regulation

VI = 8 V to 12 V 25°C 1 50 mV

Ripple rejection VI = 8 V to 18 V, f = 120 Hz 0°C to 125°C 62 78 dB

Output voltage regulation IO = 5 mA to 1.5 A 25°C 15 100 mV

Output voltage regulation

IO = 250 mA to 750 mA 25°C 5 50 mV

Output resistance f = 1 kHz 0°C to 125°C 0.017 Ω

Temperature coefficient of output voltage IO = 5 mA 0°C to 125°C –1.1 mV/°C

Output noise voltage f = 10 Hz to 100 kHz 25°C 40 µV

Dropout voltage IO = 1 A 25°C 2 V

Bias current 25°C 4.2 8 mA

Bias current change VI = 7 V to 25 V 0°C t 125°C

1.3 mA Bias current change

IO = 5 mA to 1 A 0°C to 125°C 0.5 mA

Short-circuit output current 25°C 750 mA

Peak output current 25°C 2.2 A

(43)

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

SLVS056J – MAY 1976 – REVISED MAY 2003

4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, VI = 14 V, IO = 500 mA (unless otherwise noted)

PARAMETER TEST CONDITIONS T † µ

A7808C

UNIT

PARAMETER TEST CONDITIONS TJ†

MIN TYP MAX UNIT

Output voltage IO = 5 mA to 1 A, VI = 10.5 V to 23 V, 25°C 7.7 8 8.3 V

Output voltage O ,

PD ≤ 15 W

I ,

0°C to 125°C 7.6 8.4 V

Input voltage regulation VI = 10.5 V to 25 V 25°C 6 160 mV

Input voltage regulation

VI = 11 V to 17 V 25°C 2 80 mV

Ripple rejection VI = 11.5 V to 21.5 V, f = 120 Hz 0°C to 125°C 55 72 dB

Output voltage regulation IO = 5 mA to 1.5 A 25°C 12 160 mV

Output voltage regulation

IO = 250 mA to 750 mA 25°C 4 80 mV

Output resistance f = 1 kHz 0°C to 125°C 0.016 Ω

Temperature coefficient of output voltage IO = 5 mA 0°C to 125°C –0.8 mV/°C

Output noise voltage f = 10 Hz to 100 kHz 25°C 52 µV

Dropout voltage IO = 1 A 25°C 2 V

Bias current 25°C 4.3 8 mA

Bias current change VI = 10.5 V to 25 V 0°C to 125°C 1 mA

Bias current change

IO = 5 mA to 1 A 0°C to 125°C 0.5 mA

Short-circuit output current 25°C 450 mA

Peak output current 25°C 2.2 A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, VI = 17 V, IO = 500 mA (unless otherwise noted)

PARAMETER TEST CONDITIONS T † µ

A7810C

UNIT

PARAMETER TEST CONDITIONS TJ†

MIN TYP MAX UNIT

Output voltage IO = 5 mA to 1 A, VI = 12.5 V to 25 V, 25°C 9.6 10 10.4 V

Output voltage O ,

PD ≤ 15 W

I ,

0°C to 125°C 9.5 10 10.5 V

Input voltage regulation VI = 12.5 V to 28 V 25°C 7 200 mV

Input voltage regulation

VI = 14 V to 20 V 25°C 2 100 mV

Ripple rejection VI = 13 V to 23 V, f = 120 Hz 0°C to 125°C 55 71 dB

Output voltage regulation IO = 5 mA to 1.5 A 25°C 12 200 mV

Output voltage regulation

IO = 250 mA to 750 mA 25°C 4 100 mV

Output resistance f = 1 kHz 0°C to 125°C 0.018 Ω

Temperature coefficient of output voltage IO = 5 mA 0°C to 125°C –1 mV/°C

Output noise voltage f = 10 Hz to 100 kHz 25°C 70 µV

Dropout voltage IO = 1 A 25°C 2 V

Bias current 25°C 4.3 8 mA

Bias current change VI = 12.5 V to 28 V 0°C to 125°C 1 mA

Bias current change

IO = 5 mA to 1 A 0°C to 125°C 0.5 mA

Short-circuit output current 25°C 400 mA

Peak output current 25°C 2.2 A

(44)

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

SLVS056J – MAY 1976 – REVISED MAY 2003

5

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, VI = 19 V, IO = 500 mA (unless otherwise noted)

PARAMETER TEST CONDITIONS T † µ

A7812C

UNIT

PARAMETER TEST CONDITIONS TJ†

MIN TYP MAX UNIT

Output voltage IO = 5 mA to 1 A, VI = 14.5 V to 27 V, 25°C 11.5 12 12.5 V

Output voltage O ,

PD ≤ 15 W

I ,

0°C to 125°C 11.4 12.6 V

Input voltage regulation VI = 14.5 V to 30 V 25°C 10 240 mV

Input voltage regulation

VI = 16 V to 22 V 25°C 3 120 mV

Ripple rejection VI = 15 V to 25 V, f = 120 Hz 0°C to 125°C 55 71 dB

Output voltage regulation IO = 5 mA to 1.5 A 25°C 12 240 mV

Output voltage regulation

IO = 250 mA to 750 mA 25°C 4 120 mV

Output resistance f = 1 kHz 0°C to 125°C 0.018 Ω

Temperature coefficient of output voltage IO = 5 mA 0°C to 125°C –1 mV/°C

Output noise voltage f = 10 Hz to 100 kHz 25°C 75 µV

Dropout voltage IO = 1 A 25°C 2 V

Bias current 25°C 4.3 8 mA

Bias current change VI = 14.5 V to 30 V 0°C t 125°C

1 mA Bias current change

IO = 5 mA to 1 A 0°C to 125°C 0.5 mA

Short-circuit output current 25°C 350 mA

Peak output current 25°C 2.2 A

† Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

electrical characteristics at specified virtual junction temperature, VI = 23 V, IO = 500 mA (unless otherwise noted)

PARAMETER TEST CONDITIONS T † µ

A7815C

UNIT

PARAMETER TEST CONDITIONS TJ†

MIN TYP MAX UNIT

Output voltage IO = 5 mA to 1 A, VI = 17.5 V to 30 V, 25°C 14.4 15 15.6 V

Output voltage O ,

PD ≤ 15 W

I ,

0°C to 125°C 14.25 15.75 V

Input voltage regulation VI = 17.5 V to 30 V 25°C 11 300 mV

Input voltage regulation

VI = 20 V to 26 V 25°C 3 150 mV

Ripple rejection VI = 18.5 V to 28.5 V, f = 120 Hz 0°C to 125°C 54 70 dB

Output voltage regulation IO = 5 mA to 1.5 A 25°C 12 300 mV

Output voltage regulation

IO = 250 mA to 750 mA 25°C 4 150 mV

Output resistance f = 1 kHz 0°C to 125°C 0.019 Ω

Temperature coefficient of output voltage IO = 5 mA 0°C to 125°C –1 mV/°C

Output noise voltage f = 10 Hz to 100 kHz 25°C 90 µV

Dropout voltage IO = 1 A 25°C 2 V

Bias current 25°C 4.4 8 mA

Bias current change VI = 17.5 V to 30 V 0°C to 125°C 1 mA

Bias current change

IO = 5 mA to 1 A 0°C to 125°C 0.5 mA

Short-circuit output current 25°C 230 mA

Peak output current 25°C 2.1 A

(45)

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

SLVS056J – MAY 1976 – REVISED MAY 2003

6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

electrical characteristics at specified virtual junction temperature, VI = 33 V, IO = 500 mA (unless otherwise noted)

PARAMETER TEST CONDITIONS T † µ

A7824C

UNIT

PARAMETER TEST CONDITIONS TJ†

MIN TYP MAX UNIT

Output voltage IO = 5 mA to 1 A, VI = 27 V to 38 V, 25°C 23 24 25 V

Output voltage O ,

PD ≤ 15 W

I ,

0°C to 125°C 22.8 25.2 V

Input voltage regulation VI = 27 V to 38 V 25°C 18 480 mV

Input voltage regulation

VI = 30 V to 36 V 25°C 6 240 mV

Ripple rejection VI = 28 V to 38 V, f = 120 Hz 0°C to 125°C 50 66 dB

Output voltage regulation IO = 5 mA to 1.5 A 25°C 12 480 mV

Output voltage regulation

IO = 250 mA to 750 mA 25°C 4 240 mV

Output resistance f = 1 kHz 0°C to 125°C 0.028 Ω

Temperature coefficient of output voltage IO = 5 mA 0°C to 125°C –1.5 mV/°C

Output noise voltage f = 10 Hz to 100 kHz 25°C 170 µV

Dropout voltage IO = 1 A 25°C 2 V

Bias current 25°C 4.6 8 mA

Bias current change VI = 27 V to 38 V 0°C to 125°C 1 mA

Bias current change

IO = 5 mA to 1 A 0°C to 125°C 0.5 mA

Short-circuit output current 25°C 150 mA

Peak output current 25°C 2.1 A

(46)

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

SLVS056J – MAY 1976 – REVISED MAY 2003

7

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

+VO +V

0.1 µF 0.33 µF

µA78xx

Figure 1. Fixed-Output Regulator

OUT IN

G

–VO COM

+

VI IL

µA78xx

Figure 2. Positive Regulator in Negative Configuration (VI Must Float)

R1

0.33 µF

Input µA78xx Output

0.1 µF IO

R2

VO+Vxx)

ǒ

Vxx

R1)IQ

Ǔ

R2

NOTE A: The following formula is used when Vxx is the nominal output voltage (output to common) of the fixed regulator:

Figure 3. Adjustable-Output Regulator

VO(Reg) R1 Input

IO IO = (VO/R1) + IO Bias Current

0.33 µF µA78xx

[image:46.612.73.527.71.640.2]

Output

(47)

µ

A7800 SERIES

POSITIVE-VOLTAGE REGULATORS

SLVS056J – MAY 1976 – REVISED MAY 2003

8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

µA7815C

0.1 µF 1N4001

0.1 µF

1N4001 0.33 µF

2 µF

1N4001 1N4001

VO = 15 V

VO = –15 V 20-V Input

–20-V Input µA7915C

[image:47.612.126.500.81.317.2]

1 µF

Figure 5. Regulated Dual Supply

operation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground but, instead, is connected to a voltage source of opposite polarity (e.g., operational amplifiers, level-shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals during startup and short-circuit operation.

µA78xx +VO

+VI

–VO 1N4001

[image:47.612.91.519.368.510.2]

or Equivalent

Figure 6. Output Polarity-Reversal-Protection Circuit

reverse-bias protection

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. This can occur, for example, when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series-pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be used as shown in Figure 7.

µA78xx +VO

VI

[image:47.612.205.382.561.646.2]
(48)

MECHANICAL DATA

MPFM001E – OCTOBER 1994 – REVISED JANUARY 2001

1

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

KTE (R-PSFM-G3) PowerFLEX PLASTIC FLANGE-MOUNT

0.360 (9,14) 0.350 (8,89)

0.080 (2,03) 0.070 (1,78)

0.010 (0,25) NOM 0.040 (1,02)

Seating Plane 0.050 (1,27)

0.001 (0,03) 0.005 (0,13)

0.010 (0,25) NOM

Gage Plane

0.010 (0,25)

0.031 (0,79) 0.041 (1,04)

4073375/F 12/00 NOM

3 1

0.350 (8,89)

0.220 (5,59) 0.360 (9,14)

0.295 (7,49) NOM

0.320 (8,13) 0.310 (7,87)

0.025 (0,63) 0.031 (0,79)

Thermal Tab (See Note C)

0.004 (0,10)

M

0.010 (0,25) 0.100 (2,54)

3°– 6° 0.410 (10,41)

0.420 (10,67)

0.200 (5,08)

0.365 (9,27) 0.375 (9,52)

NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice.

C. The center lead is in electrical contact with the thermal tab.

D. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15). E. Falls within JEDEC MO-169

(49)
(50)
(51)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Gambar

Fig. 2-1: RMS on-state current versus casetemperature (full cycle).
Fig. 5: Surge peak on-state current versusnumber of cycles.
Fig. 10: D²PAK Thermal resistance junction toambient versus copper surface under tab (printedcircuit board FR4, copper thickness: 35 µm).
FIGURE 1� Basic Centigrade
+7

Referensi

Dokumen terkait

The Presence of Jesus through the Gospel of John (Pretoria: Neotestamentica, 2002) 89.) Dari ungkapan Yesus sebagai Raja Penyelamat serta Anak Allah yang memberi

Pada gambar 5 grafik menunjukkan semakin lama perendaman semakin lama direndam tegangan maksimal (Vmax) nilainya semakin naik, demikian juga dengan gambar 6 semakin

Universitas diharapkan untuk turut berperan serta dalam pembentukan intelektualitas dan spiritualitas manusia, sehingga universitas sebagai penyedia jasa pendidikan

Demikian untuk menjadikan periksa dan atas kehadirannya diucapkan terima kasih. Pokja (II) Pengadaan Barang/Jasa Dinas Pekerjaan

Mata bor helix kecil ( Low helix drills ) : mata bor dengan sudut helix lebih kecil dari ukuran normal berguna untuk mencegah pahat bor terangkat ke atas

Judul Skripsi : PerbedaanTingkat Regulasi Diri Mahasiswa Ditinjau Dari Keikutsertaan Dalam Organisasi

Dari hasil penelitian ini disimpulkan bahwa ungkapan bicara tidak sosial pada anak adalah mengumpat, berbicara hal yang dianggap kotor, bicara hal yang dianggap orang lain tidak

posisi Ss pada posisi 2 dan tekan tombol stop watch, amati penunjukan Galvanometer dengan interval waktu seperti tertera pada tabel I dan masukkan hasilnya ke dalam