• Tidak ada hasil yang ditemukan

Experimental characterization of interna pdf

N/A
N/A
Protected

Academic year: 2018

Membagikan "Experimental characterization of interna pdf"

Copied!
8
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Journal

of

Power

Sources

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / j p o w s o u r

Experimental

characterization

of

internal

currents

during

the

start-up

of

a

proton

exchange

membrane

fuel

cell

A.

Lamibrac,

G.

Maranzana

,

O.

Lottin,

J.

Dillet,

J.

Mainka,

S.

Didierjean,

A.

Thomas,

C.

Moyne

LEMTA-NancyUniversity-CNRS,2avenuedelaForêtdeHaye,BP160,54504VandoeuvrelesNancyCedex,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received2May2011

Receivedinrevisedform28June2011 Accepted5July2011

Start-up/shutdownunderinappropriateconditionsareknowntodamageprotonexchangemembrane fuelcells.Severalmeasurementtechniqueswerealreadyusedtocharacterizetheireffectsandthe degra-dationsaremainlyattributedtocarbonoxidation:adecreaseofthecathodeactiveareaiscommonly observedafterstart-up/shut-downcycles.

Inordertoachieveabetterunderstandingoftheconditionsinwhichthisphenomenonappears,a segmentedcellwasdesignedandinternalcurrentswererecordedduringstart-upunderopencircuit conditions.Theresultsofthisworkallowestimatingthecarbonlossesataglobal,aswellasatalocalscale, asafunctionofthehydrogenflowrate.Localelectrochemicalimpedancespectroscopymeasurements carriedoutondamagedMEAshowclearlythatthesegmentsthatremainforthelongesttimeinthe presenceofair(whiletheothersarefedbyhydrogen)arethemostaffectedbycarbonoxidation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

During the start-up of a PEMFC, the anode compartment is divided momentarily into an upstream part occupied by fresh hydrogenanda downstreampartfilledwiththegaswhichwas usedtoflushtheanode: airornitrogen.Theboundarybetween thedownstreamandtheupstreampartsmovesfromtheinletto theoutletoftheanodecompartmentwithavelocitythatis gov-ernedbythehydrogenflowrate.Start-upsoccurgenerallyunder opencircuitconditionssothatpositiveandnegativeinternal cur-rentsappearbetweentheanodeandthecathode.Theseinternal currentscanbeobservedthankstodualcellconfiguration[1–3]

butalsowithinstrumentedcells[4].Theiroriginisattributedto faradicreactions[1,5],asdepictedinFig.1:hydrogenisoxidizedin theinletpartoftheanodecompartmentwhileinthepresenceof oxygen,waterandcarbonoxidationcantakeplaceatthecathode. Evidenceofcarbonoxidationwasbroughtbymeasuringinreal timetheemissionsofCO2 intheairexitingthecathodeduring start/stop cycles[6–9]. Gu etal. [7] measuredbetween60 and 100ppm(partspermillion)forstopandstart-upsequences, respec-tively,withhydrogenandairflowratessetto140sccm(standard cubiccentimetersperminute)attheanode(1000sccmforairat thecathode).

Correspondingauthor.Tel.:+33383595548;fax:+33383595551. E-mailaddress:[email protected](G.Maranzana).

Theaimsoftheworkpresentedinthispaperaretomeasure andanalyzetheinternalcurrentsoccurringduringPEMFCstart-up sequences,inordertobetterunderstandtheirorigin,theirnature, andtheirconsequencesintermofcathodeoxidation.These inves-tigationsarecarriedoutbymeansofasegmentedcell.Segmented cellsareincreasinglyusedforinsituinvestigationofPEMfuelcell operation[10,11],forinstancetodesignchannels[12]orto opti-mizetheirperformances[13].Althoughsuitableforthestudyof degradations[14,15],theywere rarelyemployed for character-izingstart-up andshutdownsequences[16].Theexperimental resultsareinterpretedbyreferencetoanelectricalequivalent cir-cuitproposedbyMaranzanaetal.[17],whoshowednumerically thatthecapacitivecontributiontonegativecurrentscouldbe sig-nificant,dependingontheoperatingconditions.Asaconsequence, itappearsthatcarbonoxidation,andthustheresultingfuelcell degradationandperformancelosses,dependhighlyonthe start-up/shut-downprotocol.

2. Segmentedcellprototype

The experimental results presented in the following were obtainedwiththetest benchdepictedinFig.2.Thisbenchwas developed inorder tomonitora uniquecellwith20 segments. Gasesaresuppliedthrough6massflowcontrollers,whichallow selectingabroadrangeofflowrates.Allofthemexceptnitrogen arehumidified.Hydrogenandair areintroducedinthecathode andanodecompartmentincounter-flow.Thegaslinesalsoallow 0378-7753/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved.

(2)

ARTICLE IN PRESS

GModel

POWER-14621; No.ofPages8

2 A.Lamibracetal./JournalofPowerSourcesxxx (2011) xxx–xxx

Nomenclature

S fuelcellarea(cm2)

jseg localcurrentdensity(Acm−2)

t time(s)

R∞ infiniteresistanceordischargeresistance()

QPN2 passivechargeforastart-upbyinjectionof hydro-geninnitrogen(C)

QPAir passivechargeforastart-upbyinjectionof hydro-geninair(C)

QBN2 balancingchargeforastart-upbyinjectionof

hydro-geninnitrogen(C)

QBAir balancingchargeforastart-upbyinjectionof hydro-geninair(C)

QgreenareaN2 activecharge+positivebalancingforastart-up

byinjectionofhydrogeninnitrogen(C)

QgreenareaAir activecharge+positivebalancingforastart-up byinjectionofhydrogeninair(C)

QAN2 activechargeforastart-upbyinjectionofhydrogen

innitrogen(C)

QAAir activechargeforastart-upbyinjectionofhydrogen inair(C)

U fuelcellvoltage(V) RH relativehumidity

HFR highfrequencyresistance(cm2)

C capacity(Fcm−2)

flushing theanode with nitrogen or air, and the cathodewith nitrogen.

Fig.3showspicturesoftheinstrumentedcell.Theanodeflow fieldplateisin goldplatedalumina.Exceptfortheresults pre-sentedinSection3.1,theanodeplateisnotsegmentedanditis alsousedtocontrolthetemperatureinthecellthankstoacooling circuitandathermostatedbath(LaudaRE104-E100).Thecathode compartmentismachinedinapolycarbonateplate(transparent butnon-conductive)andthecurrentcollectionismadeby20 elec-tricallyinsulatedsegments(Fig.3).Thefour15mm,1mmthick goldplatedbrassstripsusedforeachsegmentdelimitfiveparallel airchannels(thedepthandwidthofthe5straightparallel chan-nelsare0.7mm×1mm,atthecathodeandattheanode).Kapton sheets(2.3mm×1mm×80␮m)areusedtoisolateeachstripfrom

theadjacentones.Thefourstripsofeachsegmentareelectrically connectedoutsidethecell,whichamountstoaveragingthe cur-rentoverthemembrane’swidth.Thelocalcurrentsaremeasured thanksto20shuntresistorsof5mandrecordedbyadata process-ingandacquisitionsystem(NationalInstrumentSCXImultiplexer) atafrequencyof200Hz(Fig.4).

The1cm×30cm,notsegmented,JohnsonMattheyMEA con-sists of a Nafion 212 membrane, 0.4mgPtcm−2 electrodes and 190␮mthickgasdiffusionlayers(Toraypaper).150␮mTeflon

gas-ketsareinsertedbetweentheMEAandtheflowfieldplates.The platesareheldtogetherthankstoasetof40boltstightenedtoa torqueofabout2.5Nm.

ALabviewprogrammakesitpossibletocontrolthemassflow andtheoperationof thevalvesasfunctionsof the experimen-taldata:temperature,voltageandlocalcurrents.Localimpedance spectroscopywas performedin galvanostaticmode witha fre-quencyrangeof0.25–800Hzandwithanamplitudeofthe(total) currentoscillationequalto5%ofthesteadystatevalue(with a NationalInstrumentUSB6221loadcontroller).

Fig.1. Reactionsoccurringduringstart-up,theanodecompartmentbeinginitially filledwithair.

3. Resultsanddiscussion

3.1. Comparisonofinternalcurrentsbetweenanodeandcathode duringstart-up

Internalcurrentsmeasuredatoneelectrodeprovideonly par-tialinformation aboutthedirectionof theflow of theprotons. Thoseproducedintheactivepartoftheanodeshouldlogicallyflow throughthemembranetowardthecathode.However,onecannot excludeapriorithepossibilitythatsomeprotonsflowalongthe membranetoreactwithoxygenpresentinthepassivepartofthe fuelcell(Fig.5).

Thisinformationcanbeobtainedbyusingacellsegmentedon bothelectrodesandbycomparingtheinternalcurrentsmeasured onbothsides.TheresultsarepresentedinFig.6.

Thecurvesin Fig.6showonlya smalldiscrepancy between theinternalcurrentsmeasuredattheanodeandatthecathode. Thisisprobablyduetothenon-uniformityofthecontact resis-tancesbetweenthecollectingstripsandthegasdiffusionlayers, whichleadstoaredistributionoftheelectronsbetweensuccessive segments:onecancheckthatthedifferencebetweentheanode andcathodecurrentsisexactlycompensatedfromonesegment toanother.Moreoverthetotalamountofchargeproducedatthe anodeisthesameastheoneconsumedatthecathode(the differ-enceislessthan3%).Consequently,theflowofprotonsalongthe membranecanbeconsideredasnegligible:usingafuelcell seg-mentedatthecathodeonlymakesitpossibletomeasureaccurately theinternalcurrents.

3.2. Equivalentelectricalcircuit

3.2.1. Start-upwiththeanodecompartmentpreviouslyfilled withnitrogen

Theequivalentelectricalcircuitthatcanbeusedtounderstand andtomodeltheoccurrenceof internalcurrentswasproposed byMaranzanaetal.[17](Fig.7).Thepurposeofthismodelisto contributetotheunderstandingofthephenomenagoverningthe internalcurrents.Masstransportisnotaccountedfor.Forthesake ofsimplicity,thefuelcellissegmentedintoonlytwosegmentsin theexampledescribedbelow.

(3)

Fig.2.Gaslinesanddataacquisitionandprocessingsystem.

increaseoftheelectrochemicalpotentialleadstothechargeofthe doublelayercapacityatbothelectrodes.

Thefuelcellbeinginopencircuit,theelectronsproducedinthe activepart(attheanode)flowtowardthepassivepartwhere

neg-Fig.3. Segmentedcellandclose-uponthecurrentcollectionstrips.

ativecurrents(byreferencetothenormalfuelcelloperation)are measured.Intheabsenceofoxygen,noelectrochemicalreaction canoccurinthepassivepart:thesenegativecurrentsarecapacitive currents.Thecorrespondingchargeofthedoublelayercapacities isofsignoppositetothatoccurringintheactivepart.

Thesecondstagecorrespondstoananodecompletelyfilledwith hydrogen(Fig.7b),thatistosaytotheinstantthesecondsegment becomesactivewhenreachedbyhydrogen.Atthistime,the poten-tialoftheelectrodes(ofthecathode)increasesuptoitssteady statevaluewhereasthedouble layercapacities remaincharged negatively(byreferencetotheregularoperation).

Asaconsequence,thefuelcellvoltageexceedstheopencircuit valueforashorttime(Fig.8);simultaneouslythenon-uniformity of thechargeof thecapacitiesover thewholemembrane elec-trodeassembly (MEA)givesrisetocapacitiveinternal currents, untilthecompleteredistributionofcharges.Then,thefuelcell volt-agedecreasesslowlydowntoitssteadystateopencircuitvalue; thisprocessisnotyetwellunderstoodbutitcanbeassumedthat thereisasmallleakagecurrentbetweenanodeandcathode,which correspondstotheresistanceR∞(actuallynotinfinite,buthigh)in parallelwiththedoublelayercapacityintheequivalentcircuit.

(4)

ARTICLE IN PRESS

GModel

POWER-14621; No.ofPages8

4 A.Lamibracetal./JournalofPowerSourcesxxx (2011) xxx–xxx

Fig.4. Segmentedcellelectricalconnections.

Table1

Fuelcellvoltageovershootinthepresenceofnitrogenvs.hydrogenflowrate.Airandhydrogenhumidifiedto100%RH,fuelcelltemperaturesetto50◦C.

H2flowrate(slph) 0.1 0.2 0.5 1 2 5 10 20 30

Fuelcellovershoot(V) 1.06 1.09 1.10 1.09 1.08 1.06 1.03 1.01 1.00

thelastmeasurements(thefirstpointsinTable1)areaffectedby carbonoxidation.

Notethat avoltageovershoot of0.1V represents10%ofthe steadystateOCV,and15–20%ofthefuelcellvoltageinoperation.A 100cellsstackdesignedforworkingat0.6V/cell(60V/stack)could reachanOCVof110Vatstart-up,avalue80%higherthaninregular operation:onesimplewaytoreducethefuelcellvoltageovershoot duringstart-upconsistsinincreasingmonetarilythehydrogenflow rate.

3.2.2. Start-upwiththeanodecompartmentpreviouslyfilled withair

Thepresenceofoxygenintheanodecompartmententails oxi-dationreactionsatthecathodeinthepresenceofnegativecurrents (thecathodebecomingtransientlyananodeduringthefirststage ofthestart-upsequence).Theseoxidationreactions(eitheroxygen evolutionorcarboncorrosion)correspondtoafaradiccontribution tothenegativecurrentdensitymeasuredinthepassivepart;they areaccountedforintheequivalentcircuitwithachargetransfer resistance–setinparalleltothedoublelayercapacity–aswellas withanelectrodepotential(Fig.9).

Fig.5.Reactionsoccurringduringstart-upassumingpossibleflowofprotonsalong themembranefromtheactiveparttothepassivepartoftheanodecompartment (initiallyfilledwithair).

Notethatbecauseofthepresenceofairattheanode,the poten-tialdifferencebetweenthecathodeandtheelectrolytecanreach upto1.6V,correspondingtoveryoxidizingconditions[1,5–7,18].

3.3. Experimentalresults:localcurrentdensities

Fig.10ashowstheevolutionofthelocalcurrentdensities mea-suredinallthesegmentsduringastart-upwiththeanodeinitially filledwithnitrogen.Wefocusinthefollowingoncurrentdensity profilesmeasuredonthefirstsegmentsupplied withhydrogen (Fig.10b),onasegmentlocatedatanequaldistancefromtheanode inletandoutlet(Fig.10c)andonthelastsegment(Fig.10d).

Thefirstsegmentsuppliedwithhydrogenisalwaysactivewhile alltheothersbecomesuccessivelyactiveonceinthepresenceof hydrogen.Theredistributionofchargesbeginswhenthefaradic reactionsstop.Atthistime,thefirstsegmentreleasessomeofthe electronsithasaccumulatedatthecathode—whichcorresponds toanegativecurrentinFig.10bandcwhereastheinverse

phe-Fig.6. Localcurrentdensitiesmeasuredattheanodeandatthecathodesegments duringastart-upwiththeanodecompartmentinitiallyfilledwithair(H2flow rate=2slph,airflowrate=20slph).Airandhydrogenhumidifiedto100%RH,fuel celltemperaturefixedto50◦

(5)

Fig.7.(a)Equivalentelectricalcircuitcorrespondingtoastart-upwiththeanode initiallyfilledwithnitrogen—firststage,anodepartiallyfilledwithhydrogen.(b) Equivalentelectricalcircuitcorrespondingtoastart-upwithanodeinitiallyfilled withnitrogen—secondstage,anodecompletelyfilledwithhydrogen.

Fig.8. Fuelcellvoltageduringastart-up withtheanodeinitially filledwith nitrogen—experimentalresultsmeasuredwithahydrogenflowratesetto0.2slph. Airandhydrogenhumidifiedto100%RH,fuelcelltemperaturefixedto50◦C.

Fig.9.Equivalentelectricalcircuitcorrespondingtoastart-upwiththeanode ini-tiallyfilledwithair–Firststage,anodepartiallyfilledwithhydrogen.

(6)

ARTICLE IN PRESS

GModel

POWER-14621; No.ofPages8

6 A.Lamibracetal./JournalofPowerSourcesxxx (2011) xxx–xxx

Fig.11.Totalamountofpassiveandactivechargesexchangedduringastart-up sequencevs.thehydrogenflowrate.Anodeinitiallyfilledwithnitrogen.Airand hydrogenhumidifiedto100%RH,fuelcelltemperaturefixedto50◦

C.

nomenonoccursinthelastsegment.Thebalanceofchargeshows thatthetimeandspaceintegralofthenegativecurrentsisstrictly equaltothatofthepositivecurrents.Startingfromthese consider-ations,itispossibletodefinethreetypesofchargeexchangeduring thestart-upsequence:

(i)Thepassivechargescorrespondtothenegativecurrents mea-suredinthepassivepartofthefuelcell(orangehatchedarea inFig.10candd),

(ii)Balancing charges are exchanged during the redistribution stageonceallsegmentsbecameactive;thenegative balanc-ingchargescorrespondtothebluehatchedareainFig.10b andc,

(iii)Activechargescorrespondtothepositivecurrentmeasuredin theactivepartminusthepositivebalancingcharges(equalin absolutevaluetothenegativebalancingcharges),

Qgreen areaN2 =S

IntermofMEAdegradation,carbonoxidationoccursinthe pres-enceofnegativecurrentsinthepassivepart,i.e.,itislinkedtothe amountofchargesflowingthroughthepassivesegments(aslong astheyremainpassive),whichdependsonthehydrogenflowrate andonthegasfillinginitiallytheanodecompartment,asshownin

Fig.11.

ThemostimportantresultinFig.11 concernsthesignificant impactofthegasfillinginitiallytheanodecompartmentonthe amountof charge produced duringthestart-up sequence: it is much lower in the presence of nitrogen, this difference being attributedtotheabsenceofafaradiccontributiontothenegative currentsflowingthroughthepassivesegments,i.e.,totheabsence ofcarboncorrosionatthecathodewhenthereisnooxygenatthe anode.

Onecanalsonoticethattheimpactofaironthefaradic contribu-tiontothepassivechargesdecreaseswiththehydrogenflowrates: thisisprobablyduetothelowkineticofcarbonoxidation(and possiblyofoxygenevolution)comparedtothecapacitivecurrent densitiesinthepassivepart.

3.4. Experimentalresults:carbonoxidationandperformance losses

Assumingthatthedoublelayercapacitiesareindependentof thegasintheanodecompartment,andthatoxygenevolutionis negligible compared tocarbon corrosion (which seems reason-ablebuthastobechecked),onecanestimatethemassofcarbon oxidizedduringastart-upsequencestartingfromthedifference betweentheamountofpassivechargesmeasuredwhentheanode compartmentisinitiallyfiledwithairandwithnitrogen.

ThislastresultisillustratedinFig.12a,whereonecanclearlysee thedecreaseofcarboncorrosionathighhydrogenflowrate.The estimatedweightofoxidizedcarbonperstart-upisconsistentwith theinitialamountusedascatalystsupportatthecathode(about 50mg)andwiththeamountofcarbondioxidemeasuredatthe cathodeoutletbyOfstadetal.[9].

Fig.12bshowsthatthecarbonlossismoreimportantforthe segmentslocatednearthehydrogenoutlet,becausetheyare sub-mitted for a longer time to higher oxidizing conditions. As in

Fig.12a,thelowerthehydrogenflowrate,thehighertheamount ofcarbonoxidized.

Theperformancelossesresultingfromcarbonoxidationcanbe characterizedbytheevolutionofthefuelcellperformanceandof thelocalimpedancespectra(EIS)measuredalongthegaschannels. Thiswasdoneforasuccessionofstart/stopsequencesaccordingto threedifferentprotocols:

1.anodeflushedwithnitrogen,nitrogenflowrateatshutdown andhydrogenflowrateatstart-upsetto12slph;

2.anodeflushedwithair,airflowrateatshutdownandhydrogen flowrateatstart-upsetto12slph;

3.anodeflushedwithair,airflowrateatshutdownandhydrogen flowrateatstart-upsetto2slph.

Betweentwosuccessivesequences,thefuelcellcurrentdensity wassetto0.5Acm−2during1h,withairandhydrogenhumidified to60%RH,stoichiometricratiosequalto3and1.2,anda temper-aturefixedto50◦C.Thelocalimpedancespectraweremeasured duringthissteadystateoperation.

Theevolutionofthefuelcellvoltageasafunctionofthe num-berofstart-up/shut-downisdepictedbythecurvesofFig.13.They showadramaticvoltagedropwhentheanodeisflushedwithair, allthemore sowhenthehydrogenflow rateis low.Note that theseexperimentshavebeencarriedoutwithnewMEA,which explainsthesharpincreaseinperformanceobservedduringthe firstsequencesinthethreecases.Whentheanodeisflushedwith nitrogen,theimprovementof theperformance canbeobserved approximatelyuntilthe150thsequence;beyond,thefuelcell volt-ageat0.5Acm−2 startstodecrease slowly, probablyunderthe effectofpotentialcyclingassociatedwiththevariousstagesofthe start/stopprotocol.

Theaging testswerestoppedwhen thefuelcellvoltagefell under0.63Vat0.5Acm−2.Thisvaluewasreachedafterabout60 cycleswiththethirdprotocol(airflushat2slph)and180cycles withthesecondprotocol(airflushat12slph).Startingfromthe resultsdepictedinFig.12a,onecanestimatethatthe correspond-ingcarbonlosseswereequaltoabout0.1 and0.02mg/start-up, respectively.

(7)

Fig.12. (a)Estimationofthecarbonloss/start-upasafunctionofthehydrogenflowrate.Airandhydrogenhumidifiedto100%RH,fuelcelltemperaturefixedto50◦ C.(b) Estimationofthecarbonloss/start-upforeachsegmentasafunctionofthehydrogenflowrate.Airandhydrogenhumidifiedto100%RH,fuelcelltemperaturefixedto50◦

C.

[email protected]−2vs.numberofstart/stopsequencesfollowing threedifferentstart/stopprocedures.

us(rough)estimatesofthecarbonlossesperstart/stopsequence (0.15and 0.03mg,respectively)and thus overthewholeaging tests:about10mgwiththethirdprotocol(airflushat2slph)and 6mgwiththesecondprotocol(airflushat12slph).Thesevalues represent10–20%ofthetotal massofcarbonusedtomake the electrodes,whichisintheorderofmagnitudeofthevoltagedrop (about10%,byreferencetothemaximumvalue– 0.69V– reached withnitrogen).

Notethattheseestimationsonlytendtoconfirmour interpre-tationsofthefaradicandcapacitiveoriginsofnegativecurrents. Accuratemeasurementofcarbonoxidationandofitsconsequences startingfromtheanalysisofinternalcurrentsisanobjective diffi-culttoachievebecauseofthecomplexityofthisphenomenon:for instance,theproductionofcarbonmonoxidepoisoningtheactive sites[19–22]shouldbetakenintoaccount,aswellasthePt coars-eningresultingfromcarbonloss[23,24].

Finally,theevolutionoftheimpedancespectraprovides com-plementaryinformationaboutthelocaleffectsofcarboncorrosion. TheresultsdepictedinFig.14correspondtothesecondaging pro-tocol(airflushat12slph):acomparisonismadebetweenlocal

(8)

ARTICLE IN PRESS

GModel

POWER-14621; No.ofPages8

8 A.Lamibracetal./JournalofPowerSourcesxxx (2011) xxx–xxx

Fig.15.(a)Highfrequencyresistanceprofilesafter49and173start/stopsequencesfollowingprotocolNo.2.(b)Doublelayercapacityprofilesafter49and173start/stop sequencesfollowingprotocolNo.2.

impedancespectrameasuredafter49and173start/stopsequences, whichconfirmsthatthesegmentlocatednearthehydrogen out-let (i.e.,near theend of the anode compartment, where air is introduced)aremoreaffected,asshownbytheincreaseoftheir impedance.Nevertheless,itremainspossibletofitthese experi-mentalspectrausingtheusualRandle’sequivalentcircuitandto identifythemainimpedanceparameters[25].

Adetailedanalysisoftheirprofilewouldbeoutofthescopeof thispaper,allthemoresosincetheusualhypothesesand simpli-ficationsleadingtotheexpressionoftheWarburgimpedanceare probablynotadaptedtomodelmasstransport.However,itappears clearlythatthehighfrequencyresistanceincreasesdramatically nearthehydrogenoutlet(Fig.15a).Thishighfrequencyresistance isthesumofthecontactresistancesbetweentheMEAcomponents, oftheprotonicresistanceoftheelectrolyte,andoftheelectronic resistancesoftheelectrodes,gasdiffusionlayersandbipolarplates: inourcase,itsincreaseismostprobablyduetodamagestothe catalystlayerentailedbycarboncorrosion(i.e.,totheincreaseof thecathodeelectronicresistance).Thisisconfirmedbythe simul-taneousdecreaseofthedoublelayercapacity(Fig.15b)nearthe hydrogenoutlet,whichisinterpretedasalossofelectrochemically activearea.Notethattheimpedanceofthesegmentslocatedinthe centreofthecellorclosetotheoppositeendshowsnosignificant variation.

4. Conclusion

Amethodbasedontheanalysisoflocalcurrentdensities mea-suredinasegmentedcellisdevelopedandusedtoestimatecarbon oxidationduringfuelcellstart-up.Theresultsshowclearlythatthe rateatwhichhydrogenisintroducedintotheanodecompartment hasasignificantimpactonfuelcelldurability:itmustbeashigh aspossibleinthepresenceofairoroxygen.Similarly,ifairhasto beintroducedintotheanodecompartmentatshut-down,itsflow ratemustbeashighaspossible.

Introducinghydrogeninananodecompartmentinitially occu-piedbyaircausesprofounddamagetothecathode,andthiscan entailasteepdecreaseofthefuelcellperformance.Local electro-chemicalimpedancespectroscopymeasurementscarriedouton damagedMEAshowthatthesegmentsthatremainforthelongest timeinthepresenceofair(whiletheothersarefedbyhydrogen) arethemostaffectedbycarbonoxidation.Carbonoxidationoccurs atthecathode,inthepresenceofnegativecurrents.However,these negativecurrentshavealsoacapacitiveorigin,whichexplainsthe fuelcellvoltageovershootobservedduringstart-up.Itispossible toevaluatethefaradicandthecapacitivecontributionstothe neg-ativecurrentsbycomparingthevaluemeasuredduringstart-up,in thepresenceofairintheanodecompartment,andinthepresence

ofnitrogen.Inthislastcase,onecanreasonablyassumethatthe faradiccontributionisnegligiblesincenosignificantdegradation occursafterasuccessionofstart/stopsequences.

Theresultsofthis workshouldhelpoptimisingstart-upand shut-downprotocolsinordertoimprovefuelcellsdurability.They canalsobeusedtoimprovecarbonoxidationmodelsduring start-up[26].

References

[1]C.A.Reiser,L.Bregoli,T.W.Patterson,J.S.Yi,ElectrochemicalandSolid-State Letters8(6)(2005)A273–A276.

[2] H.Tang,Z.Qi,M.Ramani,J.F.Elter,JournalofPowerSources158(2006) 1306–1312.

[3]N.Takeuchi,T.F.Fuller,JournaloftheElectrochemicalSociety155(7)(2008) B770–B775.

[4] Z.Siroma,N.Fujiwara,T.Ioroi,S.Yamazaki,JournalofPowerSources172(2007) 155–162.

[5]J.P.Meyers,R.M.Darling,JournaloftheElectrochemicalSociety153(8)(2006) A1432–A1442.

[6] J.Kim,J.Lee,Y.Tak,JournalofPowerSources192(2009)674–678.

[7] W.Gu,R.N.Carter,P.T.Yu,H.U.Gasteiger,ECSTransactions11(1)(2007) 963–973.

[8]H.Chizawa,Y.Ogami,H.Naka,A.Matsunaga,N.Aoki,T.Aoki,ECSTransactions 3(1)(2006)645–655.

[9] A.B.Ofstad,J.R.Davey,S.Sunde,R.L.Borup,ECSTransactions16(2)(2008) 1301–1311.

[10]L.C.Pérez,L.Brandão,J.M.Sousa,A.Mendes,RenewableandSustainableEnergy Reviews15(2011)169–185.

[11]S.A.Freunberger,M.Reum,J.Evertz,A.Wokaun,F.N.Büchi,Journalofthe ElectrochemicalSociety153(11)(2006)A2158–A2165.

[12]M.Reum,A.Wokaun,F.N.Büchi,JournaloftheElectrochemicalSociety156 (10)(2009)B1225–B1231.

[13]M.Reum,S.A.Freunberger,A.Wokaun,F.N.Büchi,Journalofthe Electrochem-icalSociety156(3)(2009)B301–B310.

[14]F.-B.Weng,C.-Y.Hsu,C.-W.Li,InternationalJournalofHydrogenEnergy35 (2010)3664–3675.

[15]Z.Siroma,J.Takahashi,K.Yasuda,K.Tanimoto,M.Inaba,A.Tasaka,ECS Trans-actions3(1)(2006)1041–1047.

[16]D.J.L.Brett,S.Atkins,N.P.Brandon,V.Vesovic,N.Vasileiadis,A.R.Kucernak, ElectrochemistryCommunication3(2001)628–632.

[17]G.Maranzana,C.Moyne,J.Dillet,S.Didierjean,O.Lottin,JournalofPower sources195(2010)5990–5995.

[18]Q.Shen,M.Hou,D.Liang,Z.Zhou,X.Li,Z.Shao,B.Yi,JournalofPowerSources 189(2009)1114–1119.

[19]S. Gottesfeld, J. Pafford, Journal of the Electrochemical Society 135 (1988)2651.

[20]T.E.Springer,T.Rockward,T.A.Zawodzinski,S.Gottesfeld,Journalofthe Elec-trochemicalSociety148(1)(2001)A11–A23.

[21] K.K.Bhatia,C.-Y.Wang,ElectrochimicaActa49(2004)2333–2341.

[22]S.Jiménez,J.Soler,R.X.Valenzuela,L.Daza,JournalofPowerSources151(2005) 69–73.

[23]P.J. Ferreira, G.J.la O’,Y. Shao-Horn,D. Morgan, R. Makharia, S.Kocha, H.A. Gasteiger c,Journal ofthe Electrochemical Society152 (11) (2005) A2256–A2271.

[24]F.H.Garzon,J.R.Davey,R.L.Borup,ECSTransactions1(8)(2006)153–166. [25] J.Mainka,G.Maranzana,J.Dillet,S.Didierjean,O.Lottin,ProceedingsWHEC

18,EnergieAgentur,NRW,Germany,2010.

Referensi

Dokumen terkait

In response to this audibility of terror, the documentary initially draws from the political charge of the particularly local folkloric figure of the aswang to inspire its sonic

Start-Up Tests Used in the Benchmark As listed in Table2, six of the sixteen experiments were selected, based on their high- quality measurements and qualified data, for the start-up

Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast 5.1 Introduction Graphites have been dominantly used as an anode of lithium ion

The column Query Name presents the isotig number desig- nated by the assembly program; Query Length, the length of isotig sequence in base pairs; Query Start, the start of alignment in

The plants of CL 31 produced the highest number of fruits 253.80, which was statistically different with rest of the genotypes and the lowest number 13.09 was found in CL 35.This

Specific growth rate at 25oC 0.46023 Alcohol produced % 5.5 Specific product formation rate 5.5 x 10-5 Final pH 5.8 Temperature: 21oC 25oC 21 days 8 days Yield of biomass/unit

Both tests showed that the Xanthosoma starch produced a much stronger and higher viscosity gel than all of the cassava, Alocasia and Colocasia starches which produced gels with similar

Software can translate genomic data into a protein sequence, “digest” the protein sequence into peptides given a protease, and calculate the masses of the peptides produced.14 In this