Maciej STARZAK
School of Chemical Engineering
University of Kw aZulu-Natal
Durban, South Africa
W ater activity in aqueous
W ater activity in aqueous
solutions of sucrose: an improved
solutions of sucrose: an improved
temperature dependence
temperature dependence
Mohamed MATHLOUTHI
Laboratoire de Chimie Phy sique Industrielle
Université de Reims, Champagne-Ardenne
Outline
Outline
1. Introduction
2. Previous studies
3. Experimental database
4. Selection of the water activity model 5. Relationships between experimental
variables and activity coefficients 6. Data regression
7. Results
Water activity formulae popular amongst food technologists
Norrish, 1966
ln
γ
A=
α
x
B2Chen, 1989
1000
1000
(
)
A
A n
A
M m
M m A
Bm
γ
=
+
+
+
Models used to predict
water activity coefficient
n
Redlich-Kister expansion - empirical
(includes Margules equation)
n
UNIQUAC - phenomenological
(two-fluid theory)
(
)
2 2
ln
AQ
x
B1
bx
Bcx
BRT
γ =
+
+
Starzak & Peacock, 1997
0 20 40 60 80 100 0.4
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
% mas. sucrose
Water activity coefficient
Catté et al., 1994
0 20 40 60 80 100
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
% mas. sucrose
Water activity coefficient
Starzak & Peacock, 1997
0 10 20 30 40 50 60 70 80 90 100 0.4
0.6 0.8 1 1.2 1.4 1.6 1.8
% mass sucrose
Water activity coefficient on the boiling curve
1193 points
Water activity coefficient (boiling curve)
Theoretical models of activity
for highly concentrated sucrose solutions
§
Van Hook, 1987:- sucrose hydration
- sucrose association (clustering)
§
Starzak & Mathlouthi, 2002: - water association- sucrose hydration
Previous studies (small exptl. databases)
Ø Le Maguer, 1992 (UNIQUAC)
Ø Caté et al., 1994 (UNIQUAC)
Ø Peres & Macedo, 1996 (UNIQUAC)
Ø Peres & Macedo, 1997 (UNIFAC)
Ø Spiliotis & Tassios, 2000 (UNIFAC)
Objective of this study:
q an empirical activity equation
q wide range of temp. & concentrations
Thermodynamic data typically used
to determine the activity coefficient
q
VLE data (BPE, VPL, ERH,
osmotic coeff. by isopiestic method)
q
SLE data (FPD, sucrose solubility)
4 70
Heat capacity
125 2338
Total
10 283
Heat of dilution
34 265
Solubility
13 213
FPD
64 1507
VLE
Literature sources Experimental points
Data type
2
ln
n
k
A k B
k
x
γ
α
=
=
∑
Selection of water activity model
n-suffix Margules equation
Advantages: linear with respect to its coefficients
2 3 0
1 2 3 4 5
( )
kln
k k k k k k
α
α θ
α
α
θ α θ α θ
α θ
θ
=
+
+
+
+
+
General temperature dependence
Disadvantage: large number of parameters
0
Simplified temperature dependence
Advantage: reduced number of parameters
2 2
ln
( )
n
k
A k B
k
a
b
x
γ
θ
−=
=
∑
2 3 0
1 2 3 4 5
( )
a
ln
a
θ
a
a
θ
a
θ
a
θ
a
θ
θ
=
+ +
+
+
+
2
ln
n
k
B k A
k
x
γ
β
=
=
∑
Sucrose activity coefficient
ln
Aln
BA B
A B
d
d
x
x
d x
d x
γ
=
γ
Expansion coefficients of sucrose activity
( 1)
,
2
n k
k l
l k
l
A
k
k
β
= −
∑
³
³
1
1
,
2,3,...,
1
l l l
n n
l
A
l
n
l
A
α
α
α
+
+
=
−
=
−
2 2 3 4 5 6 7
3 3 4 5 6 7
4 4 5 6 7
5 5 6 7
6 6 7
7 7
3 5 7
2 2
2 2 2
8 35
5 8
3 3
15 35
9
4 2
24
14 5
35 6
β α α α α α α
β α α α α α
β α α α α
β α α α
β α α
β α
= + + + + +
= − − − − −
= + + +
= − − −
= +
= −
Expansion coefficients of sucrose activity Matrix representation
=
ß
M a
1
1 1
1
,
1, 2,...,
1
n
k k l l
l
M
k
n
β
+ −α
+=
Processing experimental data
ln
ln
ln
/
/
A A B
E asym E
pasym
H
RT
C
R
γ
γ
γ
⇒
⇒
⇒
⇒
⇒
VLE data
FPD data
Solubility
Heat of dilution
ln
VLE data
⇒
γ
AModified Raoult’s law
0
(1
)
( )
A
B A
P
x P T
γ =
−
ERH 100
1
A
B
x
γ =
−
ln
Freezing point data
⇒
γ
ASolid-liquid equilibrium
( ) ( )
ln 1
2
( )
ln 1 ln(1 )
2
fA m pA m A m m
A
m f
pA m f A m f
A m B
m m
H T C T B T T
RT R T
C T T B T T
B T x
R T T
γ = − ∆ − ∆ + ∆ − ∆ ∆ + − ∆ + − − − ( ) ( ) ( )
pA pA m
A m
C T C T
B T T
R R
∆ ∆
= + ∆ −
Assumed
ln
Sucrose solubility data
⇒
γ
%
BSolid-liquid equilibrium (asym. convention)
0 0 ( ) ( ) ( ) pB pB B
C T C T
B T T
R R ∆ ∆ = + ∆ − Assumed for sucrose: 0
0 0 0
0 0 0 ( ) ( ) ( ) ln 1 2 ( )
ln 1 ln( )
2
pB
B m dB B m
B
B m
pB B m
B B
m m
C T
T H T B T T T
RT R T T
C T T B T T
B T x
R T T
Heat of dilution data
E asym
H
RT
⇒
Two-step procedure
q fitting each set of isothermal data to
McMillan-Mayer expansion (evaluating coefficients of expansion)
I. Amount of heat liberated per one mole of
sucrose in solution after addition of a known amount of pure water
Types of experimental heats of dilution
1 1
I
0 2
(J/mol solute)
k k(f )
k(i)
k B
H
h
m
m
n
− −
=
∆
=
−
Types of experimental heats of dilution
II. amount of heat liberated per one mole of water in original solution after
addition of a known amount of dilute sucrose solution
[
]
II
0 2
(J/mol solvent)
(i)
(i)
(a)
(f )
(a)
(a)
(i)
(i)
(i)
A
k k k
A A A A
k
k A
H
n
n
n
m
n
m
n
m
h
n
=∆
=
+
−
−
Types of experimental heats of dilution
III. amount of heat liberated per one gram of water added after addition of a small amount of pure water
(differential heat of dilution)
III
0 2
1
(J/g solvent added)
(i)
1000
(f )
(i)
k k
k A
H
h m
w
m
m
=
∆
= −
∑
Heat of dilution data
E asym
H
RT
⇒
Excess enthalpy of solution
from McMillan-Mayer expansion
0 2
(J/mol)
1000
k k
E k
asym
A
h m
H
m
M
=
=
+
/
Specific heat data
⇒
C
p asymER
Apparent molar heat capacity of sucrose:
1 ( )
1000 ( )
B
p pA
c
M
m c m c
m
m
+ −
Φ =
Excess heat capacity of solution
[
( )
(0)
]
(J/mol K)
1000
E c c
p asym
A
m
m
C
m
M
Φ
− Φ
=
Experimental variables
& Margules expansion coefficients
SLE (asym. convention) - solubility
[
]
1
2 1
2 1 2
(
)
ln
( )
(
)
( )
1
B m B Bn n n
k k
k l l A m
k l k
T
b
a T
M b x
a T
a T
Experimental variables
& Margules expansion coefficients
Excess enthalpy of solution
Derived from free Gibbs energy:
(
ln ln)
E
A A B B
G = RT x γ + x γ
( / )
E E
H G RT
T
RT T
∂ = −
∂
2 ln
E E B
asym B
H H RT x
T
γ ∞
∂
= +
Experimental variables
& Margules expansion coefficients
Excess enthalpy of solution
2 2
( )
1
E n
asym k k
B k
H
b
T a T
x
RT
k
− =
′
=
−
∑
2 3
0
2 3 4 5
0
( )
2
3
where
a
T a T
a
a
a
a
T T
θ
θ
θ
θ
θ
′
= −
+ +
+
+
Experimental variables
& Margules expansion coefficients
Excess heat capacity of solution
By definition:
(
)
E E
pasym asym
C H R
R T
∂ =
∂
Hence:
[
]
22
2 ( ) ( )
1 E
n
p asym k k
B k
C b
T a T Ta T x
R k
− =
′ ′′
= +
−
∑
[
]
2 32 3 4 5
2 ( ) ( ) 2 6 12
DATA REGRESSION
Performance index
2 2 2
VLE VLE, , , VLE
2 2 2 2
FPD , , FPD SOL , , SOL
2 2 , , , , , , 2 2 HE CE
( , ) (ln ln )
(ln ln ) (ln ln )
a b i A i expA i
i
exp exp
A i A i B i B i
i i
E E exp
E E exp
p p
asym i asym i asym i asym i
exp
i i i i
I w w
w w
C C
H H
w w
RT RT R R
0 10 20 30 40 50 60 70 0
10 20 30 40 50 60 70
BPE experimental, ºC
BPE predicted, ºC
Boiling point elevation – predicted vs experimental
0 20 40 60 80 0.82
0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02
% wt. sucrose
Water activity coefficient,
γ A
0 20 40 60 80
0 5 10 15 20 25 30 35 40
% wt. sucrose
Freezing point depression [°C]
Results of FPD data regression
213 points
0 50 100 150 -4
-3.5 -3 -2.5 -2 -1.5 -1 -0.5
Temperature [°C]
ln [
γ B
γ
∞ ( B
T m
) /
γ
∞ ] B
0 50 100 150
60 65 70 75 80 85 90 95 100
Temperature [°C]
% wt. sucrose
Solubility curve
Results of solubility data regression
265 points
0 0.1 0.2 0
0.1 0.2
20°C
0 0.1 0.2 0
0.1 0.2
30°C
0 2 4
0 20 40
12°C
0 2 4
0 20 40
16°C
0 2 4
0 50
18°C
0 2 4
0 20 40
22°C
0 2 4
0 50 100
26°C
0 2 4
0 50
30°C
0 0.1 0.2 0
0.1 0.2
18°C
0 0.5 1 0
1 2
18°C
0 2 4
0 50
20°C
1 1.5 2 0
10 20
0°C
1 1.5 2 0
10 20
1000 x Heat of dilution, H
E /RT [-]
5°C
1 1.5 2 0
10 20
10°C
1 1.5 2 0
10 20
15°C
1 1.5 2 0
10 20
20°C
1 1.5 2 0
10 20
25°C
1 1.5 2 0
10 20
30°C
1 1.5 2 0
10 20
33°C
0 1 2
0 10 20
25°C
0 5 10 0
50 100
20°C
0 5 10
0 50 100
40°C
0 5 10 0
50 100
60°C
0 5 10
0 50
80°C
0 1 2
0 5 10
25°C
0 1 2
0 10 20
Molality
25°C
Regression of 26 heat of dilution data sets
____
0 2 4 6 8 0 20 40 60 80 100 120 140 0°C 5°C 10°C 20°C 40°C 60°C 80°C Molality, mol/kg
1000 x Enthalpy of dilution, H
E /RT [-]
0 20 40 60 80
0 10 20 30 40 50 60 70 80 90 100
1 mol/kg (26%) 2 mol/kg (41%) 3 mol/kg (51%) 4 mol/kg (58%)
5 mol/kg (63%)
6 mol/kg (67%)
Temperature, °C
1000 x Enthalpy of dilution, H
E /RT [-]
0 2 4 6 0 0.1 0.2 0.3 0.4
Excess heat capacity, C
E /R [-]
T = 20°C
0 2 4 6
0 0.05 0.1 0.15 0.2 0.25 0.3
T = 25°C
0 0.5 1 1.5
0 0.01 0.02 0.03 0.04
T = 25°C
0 0.5 1 1.5
0 0.01 0.02 0.03 0.04 0.05
Molality, mol/kg
T = 25°C
0 2 4 6
0 0.1 0.2 0.3 0.4
T = 15°C
Gucker & Ayres, 1937 Gucker & Ayres, 1937 Banipal et al., 1997
DiPaola & Belleau, 1977 Vivien, 1906
0 2 4 6 8 -1.5 -1 -0.5 0 0.5 1 0°C 5°C 10°C 20°C 40°C 60°C 80°C
Molality, mol/kg
Excess heat capacity, C
E /R [-]
0 20 40 60 80
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 1 mol/kg 2 mol/kg 3 mol/kg 4 mol/kg 5 mol/kg 6 mol/kg Temperature, °C
Excess heat capacity, C
E /R [-]
70 75 80 85 90 95 100 0.6
0.8 1 1.2 1.4 1.6
% wt. sucrose
Water activity coefficient,
γ A
ISOTHERMS BETWEEN 0°C and 150°C
85 90 95 100 0.5
0.6 0.7 0.8 0.9 1
% wt. sucrose
Water activity coefficient,
γ A
150°C
0°C 20°C 40°C 60°C
80°C
100°C
Final water activity coefficient equation
2 2
1 2
2 0
1 2 3 4
ln
( ) (1
)
( )
ln
A
a
b x
Bb x
Bx
Ba
a
a
a
a
a
γ
θ
θ
θ
θ
θ
θ
=
+
+
=
+ +
+
+
a
0 = -268.59
a
1 = -861.42
a
2 = -1102.3
a
3 = 1399.9
a
4 = -277.88
b
1 = -1.9831
b
Acknowledgement
Acknowledgement