See discussions, stats, and author profiles for this publication at:
https://www.researchgate.net/publication/236683794
Effects of organo-mineral glass-matrix based
fertilizers on citrus Fe chlorosis
Article
in
European Journal of Agronomy · January 2013
DOI: 10.1016/j.eja.2012.07.007
CITATIONS
4
READS
82
6 authors, including:
Some of the authors of this publication are also working on these related projects:
WASA - WAter Saving in Agriculture: technological developments for the sustainable management of
limited water resources in the Mediterranean area. ERANETMED_WATER-13-109
View project
Alessandra Trinchera
Council for Agricultural Research and Agricul…
50
PUBLICATIONS436
CITATIONSSEE PROFILE
Elvira Rea
Council for Agricultural Research and Agricul…
73
PUBLICATIONS995
CITATIONSSEE PROFILE
Maria Allegra
Council for Agricultural Research and Agricul…
17
PUBLICATIONS75
CITATIONSSEE PROFILE
Giancarlo Roccuzzo
Council for Agricultural Research and Agricul…
41
PUBLICATIONS134
CITATIONSSEE PROFILE
All content following this page was uploaded by
Giancarlo Roccuzzo
on 19 December 2016.
The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document
Europ.J.Agronomy44 (2013) 32–37
ContentslistsavailableatSciVerseScienceDirect
European
Journal
of
Agronomy
j our na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e j a
Effects
of
organo-mineral
glass-matrix
based
fertilizers
on
citrus
Fe
chlorosis
Biagio
Torrisi
a,∗, Alessandra
Trinchera
b, Elvira
Rea
b, Maria
Allegra
a,
Giancarlo
Roccuzzo
a,
Francesco
Intrigliolo
aaConsiglioperlaRicercaelasperimentazioneinAgricoltura–Centrodiricercaperl’AgrumicolturaeleColtureMediterranee(CRA-ACM),C.soSavoia190,95024Acireale,Italy
bConsiglioperlaRicercaelasperimentazioneinAgricoltura– CentrodiricercaperlostudiodelleRelazionitraPiantaeSuolo(CRA-RPS),ViadellaNavicella2-4,00184Roma,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory: Received9March2012
Receivedinrevisedform6July2012 Accepted17July2012
Keywords: Fechlorosis Orange
Glass-matrixbasedfertilizer Driedvinevinasse
a
b
s
t
r
a
c
t
SeveralcitrusorchardsdevelopsymptomsofFedeficiencywhencultivatedincalcareousandalkaline soils.Inafieldtrialanewtypeoffertilizer,theglass-matrixbasedfertilizer(GMF,aby-productfrom ceramicindustries)wasapplied.GMFisabletoreleasenutrients,particularlyFe,onthebasisof plant-demand,beingnutrientsnotsolubleinwater,butonlyinacidicormetalcomplexingsolutions.Inour experiment,theeffectivenessofGMFwastestedon“Tarocco”orangetreesoftwentyyears,severely sufferingfromFechlorosis,alsobymixingGMFwithmeatmeal(MM)ordigestedvinevinasse(DVV), thuscomparingthesetreatmentstotheconventionalFe-chelatefertilizationandtheFe-unfertilized control.
TheGMF+DVVmixtureshowedtobeabletosupplyadequatelymicronutrients(particularlyFe)onlong term,reducingthechlorosissymptoms,increasingtheleafSPADindex,Feconcentrationanddecreasing Feindex.Nosignificanteffectonyieldandfruitqualitywasnoticed.Ourresultsindicatedthatthese innovativeformulates,andinparticularglass-matrixbasedfertilizermixedwithdigestedvinevinasse, couldbeusedasan“environmentalfriendly”fertilizer,allowingnotonlytoreducetheuseofchemicals (suchasFe-chelate),butalsotore-useindustrialwastesandorganicresidueswhichgavean“adding value”tothesenovelorgano-mineralformulates.
© 2012 Elsevier B.V. All rights reserved.
1. Introduction
Fechlorosisisthemostcomplexphenomenonincitrusorchard andoneofmajorabioticstressesaffectingfruittreecropsinthe Mediterraneanarea(Abadíaetal.,2011;Pestanaetal.,2003).One ofthemostcommonsymptomsistheleafbladeyellowing, start-ingfromapicalleaves,whichmayprogressandturnintonecrosis (TagliaviniandRombolà,2001).Itexhibitsatemporalandspatial variability,requiringanefficientdiagnosissystem.Fechlorosisis mainlycausedbylowFeavailabilityinsoil,duetothepresenceof highamountofactivelimeandhighsoilpH(LindsayandSchwab, 1982).
Ingeneral,tolerantgenotypesofcitrusrootstocks displayan enhancedabilitytoreduceFe(III)atrootlevel(bytheFCRenzyme), releasingprotonsintotherhizosphereunderlowexternalFe avail-ability(Bienfait,1988;Manteyetal.,1994;Pestanaetal.,2011), reducingand/orchelatingsubstancessuchasphenolsandflavins (WelkieandMiller,1993;Susìnetal.,1994).StrategyIalsoincludes morphological changes, such as the developmentof root hairs
∗Correspondingauthor.Tel.:+390957653132;fax:+390957653113.
E-mailaddress:biagiofrancesco.torrisi@entecra.it(B.Torrisi).
andtransfercellsandincreasedratesofprotonsexcretion( Lòpez-Millanetal.,2001).
LowFeavailabilityinducesmorphologicalchangesinroot epi-dermalcellsthataresimilartothoseinducedbyPdeficiency.When Feislimiting,root-hairformationand elongationincreases.The extraroothairsthatresultfromlimitedFeavailabilityareoften locatedinpositionsthatareoccupiedbynon-haircellsunder nor-malconditions(Lòpez-Bucioetal.,2003;RömheldandMarschener, 1981).
ThepreventionandcureofFechlorosisinfruittreeshavebeen traditionallyapproachedthroughtheuseofsyntheticFechelates (Lucena,2003).SoilapplicationofFechelatesaimstoenhancing Fe availability for the following uptake at root level and rep-resents an efficient prevention tool, due to the mechanism by whichitisabsorbedbytheroots,transportedandutilizedbythe leaves.
ItshouldberemarkedthatFechelatesgenerallyappliedtosoil arewater-solubleandthuseasilyleachedoutfromtherhizosphere if excessive irrigationregimes are applied, or during the rainy season(RombolàandTagliavini,2006).Moreover,alikely under-estimatedproblemrelatedtosyntheticchelatesistheirpotential to bind also undesired heavy metals (Grˇcman et al., 2001). In addition,thecostfortreatingorpreventingFechlorosisincitrus orchardswiththeuseofsyntheticFechelatesisveryhigh,astobe
Table1
Mainphysicalandchemicalparametersof0–30cmsoil(meanvalues).
Parameter Value
applicableonlytohighvaluecrops,correspondingtomorethan 400Dha−1(RombolàandTagliavini,2006).
Glass-matrixbased fertilizer (GMF),obtainedby alteringthe crystallinestructureofamineralnaturalsubstancethrougha phys-ical process by mixing different salts and oxides, represents a newtypologyoffertilizer,characterizedbythespecificattitudeto releasenutrientsonthebasisofplant-demand,beingnutrientsnot solubleinwater,butonlyinacidicorinmetalcomplexingsolutions (∼99%),similartothoseexudedbyplantroots(Pintonetal.,2007;
Trincheraetal.,2009).
TheGMFabilitytoreleaselargeamountsofmacroand micro-elements,inparticularFe,whenappliedaloneorincombination withsmallamountsoforganicamendments,wasalreadytested in laboratory under different extractive conditions (0.2% and 2% citric acid;0.1% and 1% HCl) (Trinchera et al.,2009, 2011), confirming its attitude to solubilize nutrients in presence of complexingacidic solutions. Onthebasis of suchprevious lab-oratoryresults, inthis fieldtrialthesefertilizersweretestedin fieldasasuitablealternativetosyntheticFechelatestocureFe chlorosis.
The aim of our workwas to evaluate if glass-matrix based fertilizer, alone orin combination withtwo alternative organic materials,couldactonthepreventionandtreatmentofnutrient deficiencyand,inparticular,ofFechlorosisinfieldconditions,in comparisonwiththeuseofacommonsyntheticFe-chelate fertil-izer.
2. Materialsandmethods
2.1. Orcharddescription
The research was realized in a farm located in the Eastern Sicily(Italy),wheretwentyyearsold“Tarocco”orangetrees[Citrus sinensis(L.) Osbeck]graftedonsourorangerootstock[C. auran-tium(L.)]werecultivated witha plantingdistanceof6m×4m
(416treesha−1).The areaischaracterizedby highsummerand
low winter temperatures. The rainfalls are concentrated in the autumn–winterseason.Duringtheexperimentalperiodtotal rain-fallhadtypicalvaluesofthisMediterraneanregion.Theirrigation wascarriedoutwithtwomicro-sprinklersperplantwithan aver-ageannualwatersupplyof3360m3ha−1.Soilofcitrusorchardwas
asandy-loamysoil,withalowcontentoforganicmatter,high con-tentsofactivelimeandtotal calciumcarbonate,lowcontentof availableFe(Suppl.Ord.G.U.No.248,21.10.1999,MethodIX.3). Mainchemical–physicalsoilparametersarereportedinTable1 (soilsampledat0–30cmofdepth,layermostexploredbycitrus roots).
Before treatments (early spring season, 2008), plant leaves showedtypicalsymptomsofFedeficiencybygreendiscoloring,in particulartheintervenialleafyellowing,startingfromapicalleaves. Treescanopyshowedsymptomsof Fechlorosisthroughoutthe year,buttheyweremoreevidentinspring,whenshootgrowthis fasterandthebicarbonateconcentrationinthesoilsolutionbuffers
Table2
Elementalcomposition(gkg−1)offertilizersutilizedindifferenttreatments(a),and amountofnutrients(gtree−1)distributedyearlyduringthetrial(b).
N PasP2O5 KasK2O Fe
aInallGMFtreatments,thethreeyears’Feamount(45g)wasdistributedinthe
firstyear;noFeadditioninthecontrol.
thesoilpHin therhizosphere androotapoplast(Rombolàand Tagliavini,2006;TorrisiandIntrigliolo,2009).Resultsreportedin thispaperarerelatedtothreeyearsoffieldtrial(2008–2010).
2.2. Experimentaldesign
The trial was realised by adopting a system with two ran-domizedblocks;withineachblock3plantspertreatmentwere identified,foratotalof6indexplantspertreatment.Toevaluate theeffectofthreeGMFtreatments,incomparisonwithastandard treatmentwithaFe-chelatefertilizerandaFe-untreatedcontrol, fivetreatmentswereapplied:GMF(100%glassmineralfertilizer, powderedat0.1mm),GMF+DVV(80%glassmineralfertilizer+20% digested vine vinasse, powdered at 0.1mm), GMF+MM (80% glassmineralfertilizer+20%meat-meal,powderedat0.1mm),NK fertilizercontainingFe-EDDHA [ethhylenediamine-di(o-hydroxy-phenylacetic) acid],and thecontrol Test(treatmentwithout Fe supply).
Besides,main parameters of DVV and MM were also deter-mined: pH (8.4 and 6.4), Corg (155gkg−1 and 415gkg−1), Ntot (41gkg−1 and 81gkg−1), P2O5 (9gkg−1 and 125gkg−1), K2O
(16gkg−1 and 10gkg−1), Fe2O3 (no detectable content and
1.5gkg−1), respectively. Nodetectable amountofheavy metals
wererecordedinGMF,DVVandMM(Table2).Topreparethe fer-tilizingmixtures,GMFandorganicmatrices(DVVandMM)were driedinaovenat40◦Cfor18h,weightedandthenmixedatthe
ratioGMF/organicmatrix=80/20(w/w).
AllthetreesreceivedthesameNPKamount(370gN,200gP2O5 and300gK2Opertree),appliedeachyearonthe2nddecadeof March.In thecontroltreatmentand in allothertreatments, to completetheannualrequirementsofN,PandK,singlenutrient fertilizers wereadded asurea, simple superphosphate and sul-phateofpotash,respectively.ThetotalFethreeyears’request(45g pertree)wasappliedinonerateatthebeginningofthefirstyear (2nddecadeofMarch)foralltheGMFtreatments,whereastheFe chelateonewasfractionatedinyearlyapplications(15gpertree peryear),addedonthe2nddecadeofMarch.Treatmentswiththe additionofDVVorMMalonewerenotperformedbecauseofthe negligibleFesupplyrespecttothataddedwithGMFfertilizer(see Table2).
waterandnutrientuptake)withoutdamagingthem,topromotethe mechanismof“plantdemand”.Thechosendepthwasthatofan ordinarysoiltillageinthearea.
2.3. Treenutritionalstatus
Everyyear,nutritionalstatuswasdeterminedbyfoliar analy-sisperformedon20leavesoftheindextreescollectedinOctober fromnonfruitbearingterminalshootsoftheyear’sspringflush on6treespertreatment(Embletonetal.,1973),accordingtoa standardpracticefordeterminingcitrusnutritionalstatusinSicily (Intriglioloetal.,1999).
Leaveswerewashedwithdistilledwater,ovendriedat65◦Cfor
24h,untiltheyreachedconstantweight.Arepresentative subsam-plewasmill-groundandnitrogen(N,ingkg−1)wasdetermined
bymicro-Kjeldahldigestionprocedure.Leafsubsampleswerealso analyzedforphosphorus(P,ingkg−1),potassium(K,ingkg−1),
calcium(Ca, in gkg−1), magnesium (Mg, in gkg−1) and Fe (Fe,
inmgkg−1)contentbyInductivelyCoupledPlasmaSpectrometry (ICP-OESOptima2000DV,PerkinElmer,Italy),afterdry-ashingof samplesinmufflefurnaceat550◦Cfor12handdissolutionina
1%(v/v)solutionofhyperpureHNO369%(PanreacQuimicaSAU, Barcelona,Spain).
2.4. EstimationofFedeficiencyandSPADindex
Everyyear,fortheestimationofFedeficiency,20leavespertree weresampledfromnon-fruitbearingshoots,inthe2nddecadeof May,whentheleaveswerewelldevelopedandthesymptomsof Fechlorosis,ifpresent,becomeeasilyanalyticallyevaluable.The leavesweretreatedasaboveandanalyzedforFe(mgkg−1)by ICP-OES.
SPADvaluewasestimatedusingtheportableinstruments SPAD-502chlorophyllmeter(Minolta,Osaka,Japan),usingthesame20 leavespertreealready sampledfortheestimationof iron defi-ciency,beforetheywereovendried.TheSPADreadings,expressed asSPADunits,weretakenfromthemidareaofthefullyexpanded springleaves(Intriglioloetal.,2000;Pestanaetal.,2005).
2.5. Yieldandfruitquality
Everyyear,totalyieldpertreewasrecordedatcommercial har-vest(February)and,onasub-sampleof50fruitscollectedfromthe outerpartofthecanopy,thefruitmeanweightandfruitphysical andchemicalparametersweredetermined.Fruitweight,firmness, widthofthecentralaxisandpeelthicknessweremeasured accord-ingtoWardowskietal.(1979).Furthermore,foreachsub-sample juicecontent,totalacidity(TA)andtotalsolublesolids(TSS)were determined. Vitamin C was determined by high-performance liquid chromatography (HPLC) (Rapisarda and Intelisano, 1996).
2.6. Statisticalanalysis
Datawereevaluatedfortheanalysisofvariance(ANOVA)by
SPSS-10package(SPSS,Chicago,USA);Duncan’smultiplerangetest wasusedformeanseparation.
3. Results
Visualsymptomsofthecitrusleaves,sampledafterthreeyears ofexperiment,showedclearlytheeffectsofdifferenttreatments onFechlorosis.LeafgreennessintheFechelatefertilizertreatment showedtheovercomingoftheFechlorosis,aspredictable,whereas intheothertreatmentsleavesmaintainedthetypicalintervenial leafyellowing. Onlytheleavessampledfromtreestreatedwith
Fig.1. Leavessampledafterthreeyearsoftheexperiment:differentlevelsof chloro-sisareshown,asaresultofthedifferentfertilizationtreatments.
GMF+DVVshowedanincreasedgreencolourinalltheyearsof testing,thussuggestingapositiveactionofthismixtureon chloro-sisevenuntilthreeyearsaftertreatment(Fig.1).
ResultsofleafanalysesandSPADareshowninTable3,asmean valuesofthreeyears’experiment.
PlantstreatedwiththemixtureGMF+DVVandFechelate, com-paredtoGMF,GMF+MM and thecontrol,showeda significant increaseofSPADindex.
Moreover, a positive effect on Fe (Table 3) was found in the different treatments. As expected, after three years of experiment, fertilization with Fe-chelate gave the highest val-ues of Fe contents, but it was comparable to what obtained after addition of GMF+DVV. The other fertilization treat-mentsgaveresultscomparabletocontroltreatmentwithoutFe supply.
IthasbeenproposedtoidentifyFedeficiency,notonlybyFe con-centrationinleaves,butalsoanalysingtheconcentrationofother elements.Inthiscontext,P/Feratio(PandFegg−1d.w.)is consid-eredtobeanusefulindextoevaluatechlorosisduetoFedeficiency. Theratioincreaseswhenthechlorosisbecomessevere( Álvarez-Fernándezetal.,2005;Chouliarasetal.,2004)duetotheincrease ofplantPuptakeand/orthedecreaseofFeuptake.K/Caratio(Kand Cagg−1d.w.)gavesimilarinformation(Chouliarasetal.,2004; Wangetal.,2008;El-Jendoubietal.,2011),butrelatedtotheeffect ofcalciumexcessinthesoilcationexchangecomplex.TheFeindex, [(10P+K)50]/Fe(wherePandKg100g−1d.w.,Fegg−1d.w.),is
Table3
Leafmacronutrient(gkg−1),Fe(mgkg−1)contentandSPADindex.Leaf macronu-trientarereferredtoleavessampledinOctober,FeandSPADtoleavessampledin May.Meanvaluesofthreeyears±standarderrorinparenthesis;n=18.
Treatment N P K Ca Mg Fe SPAD
GMF 26.4b 1.29 11.7c 43.6ab 1.75ab 64a 47.6a (±0.4) (±0.01) (±0.5) (±1.1) (±0.04) (±8.2) (±3.5)
GMF+DVV 25.1a 1.32 9.3b 46.7bc 1.84b 73ab 67.0b (±0.4) (±0.02) (±0.4) (±1.5) (±0.06) (±7.7) (±1.9)
GMF+MM 25.5ab 1.31 10.2b 42.1a 1.67a 63a 52.6a (±0.5) (±0.03) (±0.6) (±1.9) (±0.03) (±6.7) (±2.9)
Fechelate 25.6ab 1.33 7.3a 48.1c 1.86b 80b 73.4b (±0.4) (±0.03) (±0.5) (±2.1) (±0.06) (±8.9) (±1.6)
Test 26.2ab 1.32 9.1b 44.2abc 1.65a 64a 50.6a (±0.5) (±0.02) (±0.7) (±1.7) (±0.05) (±6.0) (±2.6)
0,00
GMF GMF+MM Fe chelate Test
a
GMF GMF+MM Fe chelate Test
a
GMF GMF+MM Fe chelate Test
a
Fig.2.LeafP/Feratio,K/CaratioandFeindex(meanvaluesofthreeyears).Mean separationatp<0.05byDuncan’smultiple-rangetest.Meanswiththesameletter arenotsignificantlydifferent.
anotherimportantindexforevaluatingFedeficiency(Köseo˘glu, 1995;Wangetal.,2008).
OurdatashowedtheincreaseofP/Feratio,K/CaratioandFe index(Fig.2)inGMF,GMF+MMandcontroltreatments,andthe decreaseinGMF+DVVandFe-chelateones.
OfparticularinterestisthebehavioroftheSPADduringthethree years.Fig.3showsthat,atthethirdyear,theSPADvalueobtained forGMF+DVVtreatmentwasquitesimilartothatofFe-chelateone. Thesedifferenceswerejustevidentinthesecondyear,indicating asortofFeslowreleaseinthesoilbyGMF-DVV.
Concerningtheyieldandqualityoffruits,onlythemeanvalues ofthreeyears (Table4)werereported,sincetheannual perfor-mancesweresimilarduringthethreeyearsofstudy.
Nosignificantdifferenceswerenoticedasfarasyieldandfruit qualityparameters wereconcerned(Table4).Anupwardtrend ofmaturityindex(TSS/TA)inGMF+DVVtreatmentwasnoticed, mainlyduetoalowervalueoftotalacidity(TA)infruitjuice.
0,0
Fig.3.SPADindex(meanvalues,calculatedforeachyearofexperiment).Mean separationatp<0.05(small letters)andp<0.001(capitalletters)byDuncan’s multiple-rangetest.Meanswiththesameletterarenotsignificantlydifferent.
4. Discussion
TreatmentsGMFandGMF+MMshowedaSPADindexrather lowwhencomparedwiththecorrespondingmeasuredleafFe con-tent.ThismaybeduetoaFeinactivationeffect,inparticularin theleafapoplast(asanexample,throughaprocessof alkaliniza-tion):asamatteroffact,ahighconcentrationoffoliarFecannot alwaysbeconsideredasareliableindicatortodiagnoseFechlorosis (Römheld,2000).
Inourexperiment,visiblesymptomsofchlorosisduetohigh contentofsoilactivelimethatstronglyinfluencednotonlyFe,but alsoothernutrientsuptake,werefoundincorrespondencewith sub-optimaloroptimalleafFecontent.Intheso-called“chlorosis paradox”(Moralesetal.,1998;Pestanaetal.,2003),chloroticleaves withlowSPADindexshowtotalleafFeconcentrationsimilartothat ofFesufficientleaves.Inourexperimentthis“paradox”wasfound, sinceplantswithlowerSPADindexhowevershowedafairlygood Fecontentinleaves(Table3).
ThebeneficialeffectoforganicmatteronFechlorosisprevention dependsonthedirectFechelatingabilityofthehumicandfulvic acidsandthebiostimulationexertedbyorganiccomponentson boththesoilmicrobialactivitiesandtherootgrowth(Shenkerand Chen,2005).Inparticular,previousstudiesshowedthatplantroots developmentwaspositivelyinfluencedbythepresenceofparticles ofaddedorganicmaterials,whichhavealsotheabilitytoattract rootstowardsthem,increasingmucigelexcretion(Trincheraetal., 2010)andacidicrootexudates(Oburgeretal.,2009),sotobeable tosolubilizenutrientsfromGMF+DVVmixture.
Datafromtheliterature(Intriglioloetal.,2000)suggestthat SPAD index is correlated with leaf-N-concentration,but in our studywedidnotfoundthisindication.Infact,severelychlorotic leaves,withlowSPADvalues,hadhigherNcontent.Thiscorrelation ispreferentiallyfoundinplantswithagoodnutritionalstatus, with-outstrongbioticorabioticstresses,andtheabsenceofassociation couldalsobeduetothefactthatleafNallocationisnotexclusive ofpigment-proteinreactioncentercomplexandthatgrowth envi-ronmentplaysacentralrole(Jifon etal.,2005).Asalsoshowed in Table3,theNcontentof theplantstreated withGMF+DVV andFechelatewhichshowedgreenerleaves(thatimplieshigher SPADindex)was25.1and25.6gkg
−1
ds,respectively,whilefor treat-mentGMF,whichgavechloroticleaves(lowerSPADindex),itwas 26.4gkg
−1
ds.TheGMF+MMtreatmentgaveaNleafconcentration correspondingto25.5g kg−
1
Table4
Yieldandfruitqualitycharacteristics(meanvaluesofthreeyears±standarderror,n=18).
GMF GMF+DVV GMF+MM Fechelate Test
ThehighKconcentrationsinGMFandGMF+MMleavescannot beexplainedbydifferencesinKsuppliedwithfertilization,since itwasequallydistributedinalltreatments.Probably,itsincrease wasduetoanincreaseofATPasesactivityofrootplasma mem-brane,directlyinvolvedinprotonsexcretion(Marschner,1995). ThehighKconcentrationmaybealsoassociatedtothe accumu-lationoforganicacidsthatoccursunderFedeficiency(Belkhodja etal.,1998;WelkieandMiller,1993).Onthecontrary,with treat-ment Fe-chelate we found a reduction of K uptaken by plant. Urrestarazuetal.(1994)alsopointedoutthatplantstakeKmuch morethanFeandexcessiveamountsofKcouldinhibittheFeuptake andtranslocationinplants,leadingtoFedeficiency.Somerecent studiesshowedthat,whenthechlorosissymptomsoccurred, cor-respondinghighKcontentsinchloroticleaveswerefound(C¸elik andKatkat,2007;Lietal.,2001).Thisrelationshipbetween potas-siumandFemaybeattributedtothenormalizationeffectofKon Feabsorptionandtranslocationintotheshoots(Lietal.,2001).
ThelowervaluesofP/FeandK/CaratiosandofFeIndexobtained after addition of the organo-mineral fertilizer GMF+DVV con-firmedthehypothesizedmechanismofnutrientreleasebasedon plantdemand,alreadydescribedbyTrincheraetal.(2010),which takeplacebyincreasingplantrootexudationandfavouringthe releaseofnutrientsbythemixture.Thedriedvinevinasse, consti-tutedmainlybyhumo-similarorganiccompounds,isparticularly abletocomplex mineralnutrientscontainedin GMFand mak-ingthemavailableforthefollowingrootuptake;conversely, in GMF+MM,thismechanismisnoteffectivebeingMMconstituted mainlybysimpleproteins,notabletocomplexorchelatenutrients fromGMF.
TherationaleforthedecreaseoffruityieldinFedeficienttrees hastobefoundinthedecreasedassimilatorypowercausedbyFe chlorosis(Álvarez-Fernándezetal.,2006).Inourcase,inspiteofthe evidentchloroticleafysymptoms,almostallthevaluesofnutrient inleaveswereintheoptimumrange,withtheonlyexceptionof magnesium(Embletonetal.,1973).Forthisreasonnocleareffect onyieldandfruitqualitywasnoticed.
5. Conclusions
Resultsobtainedattestedthattheconsideredorgano-mineral fertilizersincreasedsignificantlythenutrientrelease fromGMF, favoringthefollowingnutrientuptakebyplants.Inparticular,foliar K,Ca,MgandFeseemedtobepositivelyaffectedbytheorganic matteradditiontoGMFatdifferentextent.
InrelationtoFechlorosisofcitrusplants,allevidencesallowed toaffirmthatthemixtureGMF+DVVisthemostpromising for-mulate able tofront Fe deficiency of citrus in field conditions, byincreasingplantFeuptakeand related photosynthetic activ-ity.Theabilityofthespecificaddedorganiccomponents,mixed tothealumino-silicatematerial, tocomplex mainnutrient ele-ments,makesthem,andFeinparticular,moreavailabletoplants: the mixtures of GMF and used organic matrices seems to be
particularlyeffectiveas“environmentalfriendly”fertilizers,since theyallownot onlytoreducetheuseofchemicals,but alsoto re-useagro-industrialwastesandorganicresidueswhichgavean “addingvalue”tothesenovelorgano-mineralformulates.Atthe end,sincethereportedexperienceisrelatedtoamedium-term period,itshouldbeconsideredthepotential“residual”Fethatthe proposedmixturescouldsupplytoplantonlongterm:thisaspect needstobefurtherinvestigated.
References
Abadía,J.,Vázquez, S.,Rellán-Álvarez,R., El-Jendoubi,H.,Abadía,A., Álvarez-Fernández,A.,López-Millán,A.F.,2011.Towardsaknowledge-basedcorrection ofironchlorosis.PlantPhysiologyandBiochemistry49,471–482.
Álvarez-Fernández,A.,Garcìa-Marco,S.,Lucena,J.J.,2005.Evaluationofsynthetic iron(III)-chelates(EDDHA/Fe3+,EDDHMA/Fe3+andthenovelEDDHSA/Fe3+)to correctironchlorosis.EuropeanJournalofAgronomy22,119–130.
Álvarez-Fernández,A.,Abadía,J.,Abadía,A.,2006.Irondeficiency,fruityieldandfruit quality.In:Barton,L.,Abadia,J.(Eds.),IronNutritioninPlantsandRhizospheric Microorganisms.Springer,pp.85–101,ISBN:1-4020-4742-8.
Belkhodja,R.,Morales,F.,Sanz,M.,Abadía,A.,Abadía,J.,1998.Irondeficiencyin peachtrees:effectsonleafchlorophyllandnutrientconcentrationsinflowers andleaves.PlantandSoil203,257–268.
Bienfait,H.F.,1988.MechanismsinFe-efficiencyreactionsofhigherplants.Journal ofPlantNutrition11,605–629.
C¸elik,H.,Katkat,A.V.,2007.Somephysicalsoilpropertiesandpotassiumasan inten-sifiedfactoronironchlorosis.InternationalJournalofSoilScience2,249–300. Chouliaras,V.,Therios,I.,Mollasiotis,A.,Diamantidis,G.,2004.Ironchlorosisin
graftedsweetorange(CitrussinensisL.).BiologiaPlantarum48,141–144. El-Jendoubi,H.,Melga,J.C.,Ávarez-Fernández,A.,Sanz,M.,Abadía,A.,Abadía,J.,
2011.Settinggoodpracticestoassesstheefficiencyofironfertilizers.Plant PhysiologyandBiochemistry49,483–488.
Embleton,T.W.,Jones,W.W.,Labanauskas,C.K.,Reuther,W.,1973.Leafanalysis asadiagnostictoolandguidetofertilization.In:Reuther,W.(Ed.),TheCitrus Industry,vol.3.UniversityofCalifornia,Div.Agric.Sciences,Berkeley,CA,USA, pp.183–210.
Grˇcman,H.,Velikoja-Bolta, ˇS.,Vodnik,D.,Kos,B.,Leˇstan,D.,2001.EDTAenhanced heavymetalphytoextractionmetalaccumulation,leachingandtoxicity.Plant andSoil235,105–114.
Intrigliolo,F.,Roccuzzo,G.,Lacertosa,G.,Rapisarda,P.,Canali,S.,1999.Agrumi: Modalitàdicampionamentoperterreno,foglie,acqued’irrigazioneefrutti. Valorianaliticidiriferimento,C.U.E.C.M,Catania,Italy,p.86.
Intrigliolo,F.,Giuffrida,A.,Rapisarda,P.,Calabretta,M.L.,Roccuzzo,G.,2000.SPADas anindicatorofnitrogenstatusincitrus.ProceedingsoftheInternationalSociety ofCitriculture,665–667.
Jifon,J.L.,Syvertsen,J.P.,Whaley,E.,2005.Growthenvironmentandleafanatomy affectnondestructiveestimatesofchlorophyllandnitrogeninCitrusspp.leaves. JournalofAmericanSocietyforHorticulturalScience130,152–158.
Köseo˘glu,A.T.,1995.Effectofironchlorosisonmineralcompositionofpeachleaves. JournalofPlantNutrition18,765–776.
Li,H.,Yang,X.,Luo,A.C.,2001.Amelioratingeffectofpotassiumonirontoxicityin hybridrice.JournalofPlantNutrition24,1849–1860.
Lindsay,W.L.,Schwab,A.P.,1982.Thechemistryofironsoilsanditsavailabilityto plants.JournalofPlantNutrition3,579–591.
Lòpez-Bucio,J.,Cruz-Ramìrez,A.,Herrera-Estrella,L.,2003.Theroleofnutrient availabilityinregulatingrootarchitecture.CurrentOpinioninPlantBiology6, 280–287.
Lòpez-Millan,A.F.,Morales,F.,Abadìa,A.,Abadìa,J.,2001.Irondeficiency-associated changesinthecompositionoftheleafapoplasticfluidfromfield-grownpear
(PyruscommunisL.)trees.JournalofExperimentalBotany52,1489–1498.
Lucena,J.J.,2003.FechelatesforremediationofFechlorosisinstrategyIplants. JournalofPlantNutrition26,1969–1984.
Marschner,H.,1995.MineralNutritionofHigherPlants,2nded.AcademicPress, ISBN:978-0-12-384905-2.
MetodoIX.3.Determinazionedelferro,dell’alluminioedelsilicioestraibiliin ammo-nioossalatoacido.Supplementoordinarioalla“GazzettaUfficiale”n.248del21 ottobre1999.
Morales,F.,Grasa,R.,Abadia,A.,Abadia,J.,1998.Ironchlorosisparadoxinfruittrees. JournalofPlantNutrition21,815–825.
Oburger,E.,Kirk,G.J.D.,Wenzel,W.W.,Puschenreiter,M.,Jones,D.L.,2009. Interac-tiveeffectsoforganicacidsintherhizosphere.SoilBiology&Biochemistry41, 449–457.
Pestana,M.,deVarennes,A.,AraújoFaria,E.,2003.Diagnosisandcorrectionofiron chlorosisinfruittrees:areview.JournalofFood,Agriculture&Environment1, 46–51.
Pestana,M.,deVarennes,A.,Abadia,J.,AraújoFaria,E.,2005.Differential toler-ancetoirondeficiencyofcitrusrootstocksgrowninnutrientsolution.Scientia Horticulturae104,25–36.
Pestana,M.,Correia,P.J.,David,M.,Abadia,A.,Abadia,J.,deVarennes,A.,2011. Responseoffivecitrusrootstocktoirondeficiency.JournalofPlantNutrition andSoilScience174,837–846.
Pinton,R.,Varanini,Z.,Nannipieri,P.(Eds.),2007.TheRhizosphere.Biochemistryand OrganicSubstancesattheSoil–PlantInterface.,2nded.CRCPress/Taylorand FrancisGroup,BocaRaton/London/NewYork,447pp.,ISBN:0-8493-3855-7. Rapisarda,P.,Intelisano,S.,1996.SamplepreparationforvitaminCanalysisof
pig-mentedorangejuices.ItalianJournalofFoodScience3,251–256.
Rombolà,A.D.,Tagliavini,M.,2006.Ironnutritionoffruittreecrops.In:Barton, L.,Abadia,J.(Eds.),IronNutritioninPlantsandRhizosphericMicroorganisms. Springer,pp.61–83,ISBN:1-4020-4742-8.
Römheld,V.,2000.Thechlorosisparadox:Feinactivationasasecondaryeventin chloroticleavesofgrapevine.JournalofPlantNutrition23,1629–1643. Römheld,V.,Marschener,H.,1981.Irondeficiencystressinducedmorphological
andphysiologicalchangesinroottipsofsunflower.PhysiologiaPlantarum53, 354–360.
Shenker,M.,Chen,Y.,2005.Increasingironavailabilitytocrops:fertilizers, organo-fertilizers,andbiologicalapproaches.SoilScience&PlantNutrition51,1–17.
Susìn, S., Abiàn, J., Peleato, M.L., Sànchez-Baeza, J., Abadìa, A., Gelpì, E., Abadìa,J.,1994.Flavinexcretionfromirondeficientsugarbeet.Planta193, 514–519.
Tagliavini,M.,Rombolà,A.D.,2001.Irondeficiencyandchlorosisinorchardand vineyardecosystems.EuropeanJournalofAgronomy15,71–92.
Torrisi,B.,Intrigliolo,F.,2009.Ferrocarenza,problemanutrizionaledagestirecon attenzione.RivistadiFrutticoltura71(2),14–19.
Trinchera,A.,Marcucci,A.,Rivera, C.M.,Sequi,P., Rea,E., Torrisi,B.,Leonardi, A.,Intrigliolo,F.,2009.Glass-matrixbasedfertilizersonplantdemand:first results.In:Sequi,P.,Ferri,D.,Zaccheo,P.,Rea,E.,Montemurro,F.,Desantis,M., Vonella,A.V.,Fornaro,F.(Eds.),Proceedingsof18thSymposiumofthe Inter-nationalScientificCentreofFertilizers.CIEC– FertilitasAgrorum,Rome,Italy, pp.500–505.
Trinchera,A.,Rivera,C.M.,Rinaldi,S.,Salerno,A.,Rea,E.,Sequi,P.,2010.Granular sizeeffectofclinoptiloliteonmaizeseedlingsgrowth.OpenAgricultureJournal 4,23–30.
Trinchera,A.,Allegra,M.,Rea,E.,Roccuzzo,G.,Rinaldi,S.,Sequi,P.,Intrigliolo,F., 2011.Organo-mineralfertilizersfromglass-matrixandorganicbiomasses:a newwaytoreleasenutrients.JournaloftheScienceofFoodandAgriculture91, 2386–2393.
Urrestarazu,M.,Sanchez,A.,Alvarado,J.,1994.Ironindicesandmicronutrientsin deciduousfruittrees.CommunicationsinSoilScienceandPlantAnalysis25, 1685–1701.
Wang,M.,Christie,P.,Xiao,Z.,Qin,C.,Wang,P.,Liu,J.,Xie,Y.,Xia,R.,2008.Arbuscular mycorrhizalenhancementofironconcentrationbyPoncirustrifoliataL.Rafand
CitrusreticulataBlancogrownonsandmediumunderdifferentpH.Biologyand
FertilityofSoils45,65–72.
Wardowski,W.,Soule,J.,Grierson,W.,Westbrook,G.F.,1979.Minimumquality (maturity)standards.In:FloridaCitrusQualityTests.FloridaCooperative Exten-sionBulletin,p.188.
Welkie, G.W., Miller, G.W., 1993. Plant iron uptake physiology by non-siderophoresystems. In:Barton,LL.,Hemming,L.(Eds.),IronChelationin Plantsand SoilMicroorganisms. AcademicPressInc.,NewYork, USA,pp. 345–369.