• Tidak ada hasil yang ditemukan

Program Studi Teknik Lingkungan FTSP ITS

N/A
N/A
Protected

Academic year: 2018

Membagikan "Program Studi Teknik Lingkungan FTSP ITS"

Copied!
47
0
0

Teks penuh

(1)

Activated Sludge Processes

MK Unit Proses Teknik Lingkungan

(2)

Suspended Growth

Organisms are suspended in the treatment

basin fluid.

This fluid is commonly called the “mixed

liquor”.

Suspended Growth:

• Activated sludge

• Oxidation ditch/pond

(3)

Activated Sludge

• Process in which a mixture of wastewater &

microorganisms is agitated & aerated

• Leads to oxidation of dissolved organics

• After oxidation, sludge is separated from

wastewater

(4)

Activated Sludge

• Designed based on loading (the amount of organic

matter added relative to the microorganisms

available)

• Commonly called the food-to-microorganisms ratio, F/M

F measured as BOD. M

measured as volatile suspended solids

concentration

F/M is the pounds of

(5)
(6)
(7)

Activated sludge flocs

Note filmentous blcteril

Note

Vorticella

lnd other

(8)
(9)
(10)

Oxygenated systems

(11)

Settling tanks

(12)
(13)

Nitrogen removal

Nitrifcltion (Nitrosomonas lnd Nitrobacter)

NH3 + O2  NO2-  NO 3

- Denitrifcltion

NO3- + orglnics CO

2 +

N2

Process ldlptltions

Anoxi

c Aerobic

(14)

Phosphate removal

BNR pilnts

Disclrding phosphlte lnlerobicliiy

Luxury lerobic uptlke of P in lerobic stlge

Process ldlptltions for N lnd P removli

Anlero

bic Anoxic Aerobic

(15)

Excess biomass disposal

Production

Seplrltion

Further bioiogicli treltment –

(ln)lerobic

 Dewltering

Drying – soilr or gls helted

Disposli/ benefcili use – soii lmender/ fertiiizer

or fuei

The cost of biomlss disposli lmount to lbout hlif the cost of wlstewlter treltment. Aerltion, if used, limost up to hlif of the rest of the cost. If no lerltion, the clpitli cost , inciuding the

(16)
(17)

Type of Activated Sludge

Activated sludge without cell recycle

(18)

Design of Activated Sludge

Influent organic compounds provide the food for

the microorganisms and is called substrate (S)

The substrate is used by the microorganisms for

growth, to produce energy and new cell material.

The rate of new cell production as a result of

the use of substrate may be written

mathematically as:

Y is called the yield and is the mass of cells

produced per mass of substrate used (g SS/g BOD)

dt dS Y

dt dX

(19)

Monod Model for Substrate Utilization

S

K

S

s m

S

K

SX

X

dt

dX

s m

dt

dS

Y

dt

dX

)

S

K

(

Y

SX

Y

.

dt

dX

dt

dS

s m

1

:

(20)

ACTIVATED SLUDGE

(21)

Mean Cell Residence Time, θ

c

Mean cell residence time (MCRT, θc) is the mass of cells in the system divided by the mass of cells wasted per day.

Consider the system:

At steady state, the amount of solids wasted per day must equal the amount produced per day:

For no recycle systems, θc = θh

Q

V

QX

VX

c

dt dS Y

X

V dt dS Y

VX

V dt dX

VX

c   

(22)

Mass Balance on Microorganisms:

In steady state condition  (dX/dt) V = 0, and QX0 = 0 Accumulation = input – output – process

dibagi VX

Jika kd diabaikan 

XV

k

V

dt

dS

Y

QX

QX

dt

dX

V

o

d

) S K ( Y SX dt dS s m    d s m c k S K S      1

1

c m s

K

S

XV k V S K SX QX d s m       0 d s m k S K S V Q       0  cd
(23)

Example

Solve for θc:

V = θ

c

Q = 12.75 (3) = 38.25 m

3

A CSTR without cell recycle receives an influent with 600 mg/L BOD at a rate of 3 m3/day. The BOD in the effluent

must be 10 mg/L. The kinetic constants are: Ks = 500 mg/L and μm = 4 days-1. How large should the reactor be?

1

c m

s

K

S

days

75

.

12

4

*

10

10

500

m s c

S

S

K

Q

V

(24)

Given the conditions in the previous example, What

would the percent reduction in substrate be if the

reactor volume was 24 m

3

?

Reduction = [(600 – 16.1)/600] x 100 = 97.3%

days

8

3

24

Q

V

c

mg/L

1

.

16

1

8

*

4

500

1

c m

s

K

S

(25)
(26)
(27)
(28)

Now consider a CSTR with cell recycle:

Since Xe = 0:

Removal of substrate often expressed in terms of substrate removal velocity, q:

(29)

Mass balance on microorganisms:

X0 = Xe = 0

The substrate removal velocity, q, can also be expressed as: q = μ/Y

By substitution:

But q is also equal to:

XV k XV X ) Q Q ( X Q QX dt dX

Vow r   w e   d

d c

d w

r k k

XV Q X       1 S K S s m     since S K S Y q s m   1 

(30)

Since q = μ / Y

If we equate these two equations for q and solve for S0 – S:

Hydraulic retention time:

(31)
(32)

Solids Separation

The success of the activated sludge process depends on the

efficiency of the secondary clarifier, which depends on the settling characteristics of the sludge (biosolids).

Some system conditions result in sludge that is very difficult to settle. In this case the return activated sludge becomes thin (low MLSS) and the concentration of organisms in the aeration tank

goes down. This produces a higher F/M ratio (same food input, but fewer organisms) and a reduced BOD removal efficiency.

One condition that commonly causes this problem is called bulking sludge. Bulking sludge occurs when a type of bacteria called

filamentous bacteria grow in large numbers in the system. This produces a very billowy floc structure with poor settling

(33)

Sludge Volume Index, SVI

SVI =

(volume of sludge after 30 min. settling, ml) x 1000

mg/L suspended solids

A mixed liquor has 4000 mg/L suspended solids. After 30

minutes of settling in a 1 L cylinder, the sludge occupied 400 ml.

SVI = (400 x 1000)/ 4000 = 100

(34)

Problem

The hydraulic retention time may be found from the following equation:

θh = [0.5(300 – 30)(200 + 30)] / [2 (30) (4000)] = 0.129 days = 3.1 hr An activated sludge system operates at a flow rate of 400 m3/day and has an

influent BOD of 300 mg/L. The kinetic constants for the system have been determined to be: Ks = 200 mg/L, Y = 0.5 kg SS/kg BOD, μm = 2 day-1. The

mixed liquor suspended solids concentration will be 4000 mg/L. IF the system must produce an effluent with 30 mg/L BOD, determine:

A. The volume of the aeration tank B. The sludge age (MCRT)

C. The quantity of sludge wasted per day

)

(

K

S

Y

SX

S

S

s

h m

o

SX

S

K

S

S

Y

m

s o

h

(35)

θc = 1/ (qY)

q = (S0 – S) / (X θh ) = (300– 30) / [(4000)(0.129)]

= 0.523 (kg BOD removed/day) / (kg SS in the reactor)

θc = 1/ (qY) = 1 / (0.523 x 0.5) = 3.8 days

Also θc = (X V) / (Xr Qw)

Xr Qw = (X V) / θc = [(4000)(51.6)( 103 L/m3)( 1/106 kg/mg)] / 3.8

= 54.3 kg/day

(36)

Using the same data what MLSS is necessary to produce an effluent concentration of 15 mg BOD/L?

= [2(15)] / [0.5(200 + 15)] = 0.28 day-1

= (300 – 15) / [0.129(0.28)] = 7890 mg/L

θc = 1 / (q Y) = 1 / [0.28(0.5)] = 7.2 days q = (μm S) /[Y(Ks + S)]

(37)

Ringkasan

Persamaan-persamaan yang digunakan

dalam proses

activated sludge:

1.

TANPA RECYCLE:

d h k     1 c d o

k

)

S

S

(

Y

X

1

d s m c k S K S      1 Q V h c

1

1

)

k

(

)

k

(

K

S

d m c c d s

h d h o

Y

Y

k

X

)

S

S

(

1

1

) S S ( X Y o h    

S

K

S

s m

S K S

k m m

s h d h

1

1   

(38)

Mencari

k

d

dan

Y

dari percobaan lab.:

Menclri

K

s

dln

μ

m

dlri percoblln

ilb.:

TANPA RECYCLE h d h o

Y

Y

k

X

)

S

S

(

1

1

S K S

k m m

s h d h

1

1   

      h o X S S  )

( slope Y1

h

1

Y kd

intercept

S kd h

(39)

2. DENGAN RECYCLE:

d c k     1 c d o c h

k

)

S

S

(

Y

X

1

d s m c k S K S      1 Q V h

1

1

)

k

(

)

k

(

K

S

d m c c d s

d e w w k VX X ) Q Q ( X Q     

S

K

S

s m

) (S S X Y o h     c d h o

Y

Y

k

X

)

S

S

(

1

1

S K S

k m m

s c d c

1

1   

(40)

Mencari k

e

danY dari percobaan lab.:

Menclri K

s

dln

μ

m

dlri percoblln

ilb.:

RECYCLE c d h o

Y

Y

k

X

)

S

S

(

1

1

S K S

k m m

s c d c

1

1   

      h o X S S  )

( slope Y1

c

1

Y kd

intercept

S kd c

(41)

Parameters Recycle Non-Recycle

Siudge lge & hydrluiic residence time Microorglnism in system Substrlte in system

Determining kd &

Y

Determining Ks &

m

F-M rltio

Q V

h c  

Q

V

h c  

c d o h c k ) S S ( Y X      

1 d c

o k ) S S ( Y X     1 1 1     ) k ( ) k ( K S d m c c d s    1 1     ) k ( ) k ( K S d m c c d s    c d h o Y Y k X ) S S (   1 1    S K S

k m m

s c d c     1

1   

      h d h o Y Y k X ) S S (   1 1    S K S

k m m

s h d h     1

1   

(42)

Recycle Ratio

(43)

Mass Balance at Junction

Microorganism

Substrate

Xo = 0

e r o r r o

o

S

Q

S

(

Q

Q

)

S

Q

X

)

Q

Q

(

X

Q

X

Q

o o

r r

o

r
(44)

Sludge Production

S

R

= (S

o

- S

e

).Q

o

Oxygen Requirement

Y’ = oxygen coeff, mass

oxygen/mass substrate utilized = 1 – 1,42 Y

kd‘ = endogenous respiration coeff, mass oxygen/

mass cell-day = 1,42 kd On = oxygen for nitrification

= mass N x 3.84

VX

k

YS

P

x

R

d

n d

R

R

Y

'

S

'k

VX

O

(45)

Soal-soal

• Suatu percobaan proses lumpur aktif dalam skala

laboratorium yang dioperasikan secara Batch, dengan waktu aerasi 24 Jam dan diketahui nilai MLVSS = 70 % dari nilai MLSS. Hitunglah nilai Y dan kd dengan acuan masa MLVSS. Data hasil

percobaan :

No. Reaktor

Xo (MLSS)

(mg/L)

Xt (MLSS)

(mg/L)

So (BOD5)

(mg/L)

St (BOD5)

(mg/L) 1

2 3 4

450 860 1650 3670

790 1160 1960 3875

725 725 725 725

(46)

Suatu kawasan pemukiman dengan jumlah penduduk 8000 jiwa dilayani dengan sistem IPAL terpusat. Kapasitas air buangan sebesar 225

L/orang.hari dan rata-rata BOD sebesar 425 mg/L. Konsentrasi NH3-N sebesar 25 mg/L dan teroksidasi sebesar 95 %. Susunan sel C5H7NO2. Removal BOD pada pengendap I diperkirakan sebesar 32 %. Jika

diinginkan reaktor utama adalah proses Lumpur Aktif, dengan nilai : Y = 0,81 kg VSS/ kg BOD; ke = 0,07/hari ; Y’ = 0,73 kg O2/kg BOD;

ke’ = 0,16 kg O2/kg VSS; X = 2500 mg MLSS/L ; Xr = 10.000 mg/L

MLVSS/MLSS = 0,7, umur lumpur = 10 hari , waktu tinggal hidrolik = 8 jam.

Hitunglah :

• Konsentrasi BOD effluen. • Produksi lumpur

• Kebutuhan Oksigen.

(47)

Air limbah industri rumah tangga diolah dengan Proses lumpur aktif. Karakteristik air buangan dan Parameter perencanaan ditentukan sbb:

• Q = 6.000 m3/hari.

• BOD5 influen (So) = 320 mg/ L • BOD5 effluen (Se) = 20 mg/ L • Umur Lumpur = 7 hari,

• Konsentrasi mikroorganisme dalam reaktor (X) = 2500 mg VSS/L

• SVI = 85

• Y = 0,6 kg VSS/kg BOD ke = 0,04 • MLVSS = 0,75 MLSS.

1. Hitung kebutuhan Oksigen untuk proses lumpur aktif tersebut 2. Hitung nilai ratio resirkulasi (R = Qr/Qo)

Referensi

Dokumen terkait

Fotokopi Sertifikat Akreditasi Jurusan/Program Studi yang dikeluarkan oleh BAN-PT sebanyak 1 (satu) rangkap yang dilegalisir oleh pejabat yang berwenang sesuai dengan Point f

Ukara sing bener kanggo nyritakake gunane barang iki yaiku ….. pirantine

Pengaruh penerapan model pembelajaran sinektik dengan penugasan mind mapping terhadap kualitas miskonsepsi & peningkatan kemampuan kognitif siswa SMP.. Universitas

[r]

Pelelangan Umum dengan Pascakualifikasi pada Bi&ng Bina ltarga Dirrc Pekeriaan Umurn Katxt@n. Lebong, Tahun Anggaran 2012 untuk Pekeriaan Kondruksi sebagai

Dan pada BAB 2 saya hanya mengkritik secara singkat saja karena tugas dan kewenangan Wakil Presiden di setiap Negara-negar hamper sama atau sama persis, tetapi yang membedakan

Penelitian ini bertujuan untuk melakukan pengukuran sifat antioksidatif ekstrak teh putih pada berbagai konsentrasi dengan pembanding ekstrak biji anggur (EBA) dan

Anda sudah tahu posisi yang boleh dilakukan pada hari pertama setelah operasi.. Universitas