• Tidak ada hasil yang ditemukan

(cm) 12 K il to 22.4 t«20 JO. Ki^OO (»l) _. MTLL lmi J. >ll«> f I T I f 10 II It '» * (cm) 2 (4 <l II t«20 JO K> )

N/A
N/A
Protected

Academic year: 2021

Membagikan "(cm) 12 K il to 22.4 t«20 JO. Ki^OO (»l) _. MTLL lmi J. >ll«> f I T I f 10 II It '» * (cm) 2 (4 <l II t«20 JO K> )"

Copied!
7
0
0

Teks penuh

(1)

(cm) 12 K il •• tO 22 .4 t« 20 JO 32 31 • • • • I I • 1 1 1— 7.5 too 40 J »oo 400 300 Ki^OO (»l) _ •,.->no (S«). = 109 MTLL lMi°J I0O >ll«>.

jBGRiS

u a

e 10 • JO

el

5 W - » 8 4 f I T I f 10 II It '» •*

WELL-GRADED CRUSHED AGGREGATE

(cm) • 2 (4 <l II 10 22 24 t« 20 JO 39 34 6170 400 K> 300 181) 300 «.?O0 IS*' 10 0

^y^OOUlL---1 00 . a 1 A) — l»50_i-«f"' 40 4 5

BANK-RUN SAND & GRAVEL (Pl<6)

it> l«0 V '» »o •»

40^

x 1 30 " 20 i»

Gambar A6 Pengaruh Material Base Coarse dan Pasir Terhadap Modulus

(2)

APPENDIKS B

PERHITUNGAN EQUIVALENT ANNUAL DEPARTURES PESAWAT KRITIS

B.l.

PESAWAT KRITIS

B.l.l Ketika pesawat yang beroperasi di suatu bandar udara terdiri dari

berbagai jenis pesawat dengan berbagai tipe roda pendaratan (landing

gear) dan berbagai variasi beban, efek pesawat

tersebut terhadap

perkerasan dihitung berdasarkan pesawat terkritis atau dalam desain

disebut pesawat desain.

B.1.2 Untuk mengkonversi semua pesawat ke dalam pesawat kritis, langkah

pertama yang dilakukan adalah dengan mengkonversi landing gear

semua pesawat yang beroperasi ke pesawat kritis. Adapun faktor

konversi berbagai tipe landing gear seperti dalam Tabel Bl.

Tabel Bl Faktor Konversi Berbagai Konfigurasi Landing Gear Pesawat

No Konversi dari Konversi ke Faktor

Konversi

1

Single wheel

0 Dual wheel 0+0 0.8

2

Single wheel

0 Dual Tandem 0+0

0+0

0.5

3

Dual wheel

0+0

Dual Tandem

0+0

0+0 0.6 4

Double

dual

tandem 0+0 0+0 0+0 0+0 Dual Tandem 0+0 0+0 1.0 5

Dual tandem

0+0 0+0

Single wheel

0 2.0 6

Dual tandem

0+0 0+0 Dual wheel 0+0 1.7

7 Dual wheel 0+0

Single wheel

0 1.3

8

Double

dual

tandem

0+0 0+0

0+0 0+0

Dual wheel 0+0 1.7

B.2

EQUIVALENT ANNUAL DEPARTURES PESAWAT KRITIS

B.2.1 Untuk mendapatkan Equivalent Annual Departures pesawat kritis,

dihitung dengan menggunakan persamaan berikut:

1/2

logf.l = logtf2x(^)

Dimana,

Rl= Annual departures pesawat kritis/ pesawat desain

R2= annual departures yang dinyatakan dalam landing gear

pesawat

Wl= beban roda pesawat kritis/desain

W2= beban roda pesawat yang dikonversi

(3)

Tabel B2 Tabulasi Perhitungan Equivalent Annual Departures

NO JENIS PESAWA T KONFI G. RODA BEBAN PESAW AT ANNUA L DEPAR T. EQUIV. DUAL GEAR DEPAR T. BEBAN RODA BEBAN RODA PESAW AT KRITIS LOG R2

/w2\as

LO G Ri EQUIV. ANNUA L DEPAR T. I 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 TOTAL

Keterangan tabel:

Kolom 6 : kolom 5 x faktor konversi roda (Paragraf B. 1.2)

Kolom 7 : kolom 4 x 95% / jumlah roda pada main gear

Kolom 8 : beban roda terbesar pada kolom 7 (pesawat kritis)

Kolom 9

: log (kolom 6)

Kolom 10: (kolom 7/kolom 8)05

Kolom 11: kolom 9 x kolom 10

Kolom 12: invers log (kolom 11)

CONTOH PERHITUNGAN

Tentukan pesawat kritis dan equivalent annual departures pesawat yang

beroperasi pada suatu bandar udara dengan data penerbangan sebagai

berikut:

No Jenis Pesawat

Kedatangan

per

tahun 1 ATR 42-300 1.460 2

Boeing 737-800 NG

1.095 3 ATR 72-500 1.460 4

Boeing 737-900 ER

1.095 5 Airbus A 310-300 365 NO JENIS PESAWAT KONF RODA BEBAN PESAWA T ANNUAL DEPART EQUIV. DUAL GEAR DEPART BEBAN RODA BEBAN RODA PESAWA T KRITIS LOG R2

a

LOG Ri EQUIV. ANNUAL DEPART 1 2 3 4 5 6 7 8 9 10 11 12 1 ATR 42-300 D 36.861 1.460 1460 8.754 44.698 3,1 6 0,44 3 1,4 0 25 2 B 737-800 NG D 174.700 1.095 1.095 41.491 44.698 3,0 4 0,96 3 2,9 3 848 3 ATR 72-500 D 47.466 1.460 1.460 11.273 44.698 3,1 6 0,50 2 1,5 9 39 4 B 737-900 ER D 188.200 1.095 1.095 44.698 44.698 3,0 4 1,00 0 3,0 4 1.095 5 A 310-300 DT 315.041 365 621 37.411 44.698 2,7 9 0,91 5 2,5 5 359

(4)

APPENDIKS C

PERHITUNGAN TEBAL EQUIVALENT PERKERASAN

CI.

NOMENKLATUR LAPISAN PERKERASAN SISTEM FAA

C.1.1 Nomen klatur lapisan perkerasan sistem FAA adalah sebagai berikut:

P- 501 P-401 P - 4 0 3 P - 306 P-304 P - 212 P- 213 P - 2 2 0 P - 209 P - 208 P - 211 P - 301 P- 154 P-501

Portland Cement Concrete (PCC)

Plant Mix Bituminous Pavements (HMA)

Plant Mix Bituminous Pavements (HMA)

Econocrete Subbase Course (ESC)

Cement Trated base Course (CTBC)

Shell base Course

Sand-Clay Base Course

Caliche Base Course

Crushed Aggregate Base Course

Aggregate Base Course

Lime Rock Base Course

Soil-Cement Base Course

Subbase Course

Portland Cement Concrete (PCC)

C.2

TATA CARA PERHITUNGAN TEBAL EKUIVALEN PERKERASAN

C.2.1 Tebal ekuivalen perkerasan digunakan dalam perhitungan PCN metode

klasik

perkerasan

lentur.

Langkah

perhitungan

tebal

ekuivalen

perkerasan adalah sebagai berikut:

(i)

Menentukan tebal minimum lapisan aus (material 401 dan

P-403).

No

Bagian Perkerasan

Pesawat Single

Wheel dan Dual Wheel

Pesawat B 747, B

777, DC 10, L 101

atau pesawat sejenis

1

Area Kritis (Jalur

Roda)

10.0 cm (4 in)

12.7 cm (5 in)

2

Area diluar jalur

roda

7.6 cm (3 in)

10.0 cm (4 in)

(ii)

Menentukan tebal minimum lapisan base dengan menggunakan

(5)

17 1_ (Cm)

20

25

JO

JS

40

45

50

55

• — 1 __1 1 1 . 100 9 0 80 70 60

i

50

s

«

z * : o 40 X t— i- 35 £ 30 —1 i? 25 o e -20 IS 10,. -f-i 1—i—1—i—,—r — 1 _ —»—T—T—1 o a . n m < 7

V\

FTTT >

P

200

/_y r

-A

y

M7s

**

/

y?

&

?> y 1

7

/

S~y

•«•

_ \

X

7* — r — r - - mo

/

y

y

,

.,«,

r>

/

/

Z

_*' '' S* S

,zo

/

r 5 /

/

6 /

y

y,

y

y~

3? y v y

y y y

* , . '00

7*

z

-7*

y

1 >^

yftiVn

\S-y-—

-y—z;

•< — 7 U 80 • 70 —

H

7

^

7^

y 7 y.- y ^ ^ ' 60 y y ,

^~.

A

/

- y

~l

'

/

^

7 -

y - y

<^-l

y

Zk"

'—-

2---^ >

/

X i - 50

SyS-

/ y\'

y

'

,>

/

/

y ** y , / / y - S o n r/ / • 40 — B * ^

'"\

S*

y

S

^

s

y

[• iO

i 7 8 9 10 15 20

MINIMUM 8ASE COURSE THICKNESS, IN.

25

Gambar C1 Kebutuhan Tebal Minimum Lapisan Base

(iii) Menghitung tebal konversi lapisan perkerasan dengan faktor

konversi seperti ditampilkan dalam Tabel 6, Gambar C2, Gambar

(6)

328. STABILIZED BASE AND SUBBASE. Stabilized base and subbase courses are necessary for new pavements

designed to accommodate jet aircraft weighing 100.000 pounds (45 350 kg) or more These stabilized courses maybe substituted for granular courses using the equivalency factors discussed in paragraph 322 These equivalency factors are based on research studies which measured pavement perfoimance See FAA Report No FAA-RD-73-198. Volumes I.

II, andIII Comparative Performance of Structural Layers in Pavement Systems See Appendix 3 A range of equivalency factors is given because the factor is sensitive to a number of variables such as layer thickness, stabilizing agent type and quantity, location of stabilized layer m the pavement structure, etc Exceptions to the policy requirmg

stabilized base and subbase may be made on the basisof superior materials beingavailable, such as 100percent crushed,

hard, closely graded stone These materials should exhibit a remolded soaked CBR minimum of 100 for base and 35 for subbase In areas subject to frost penetrauon, the materials should meet permeability andnonfrost susceptibility tests in

addition to the CBR requirements Other exceptions to the policy requiring stabilized base and subbase should be based on proven performance of a granular material such as lime rock ui the State of Florida Proven performance in this instance means a history of satisfactory airport pavements using the materials This history of satisfactory performance

should be under aircraft loadings and climatic conditions comparable to those anticipated.

321. SUBBASE AND BASE EQUIVALENCY FACTORS. It is sometimes advantageous to substitute higher

quality materials for subbase andbase course than the standard FAA subbase andbase material. Thestructural benefits

of using a higherquality material is expressed in the form of equivalency factors. Equivalency factors indicate the substitution thickness ratios applicable to various higher quality layers. Stabilized subbase and base courses are designed

in this way Note that substitution of lesser quality materials for higher quality materials, regardless of thickness, is not permitted. The designer is reminded that even though structural considerations for flexible pavements with high quality

subbase and base may result m tlnnnei flexible pavements fiost effects must still be considered and could require thicknesses greater than the thickness for stnicniral considerations.

a. Minimum Total Pavement Thickness. The minimum total pavement thickness calculated, after all

substitutions and equivalencies have been made, should not be less than the total pavement thickness required bya 20

CBR subgrade on the appropriate design curve

b. Granular Subbase. The FAA standard for granular subbase is Item P-154. Subbase Course In some

instances it may be advantageous to utilize nonstabilized granular material of higher quality than P-154 as subbase course. Since these materials possess higher strength than P-154. equivalency factor ranges are established whereby a lesser thickness of high quality granular may be used in lieu of the required thickness of P-154 In developing the equivalency factors the standard granular subbase course. P-154. was used as the basis. Thicknesses computed from the

design curves assume 154 will be used as the subbase If a granular material of higher quality is substituted for Item

P-154. the thickness of the higher quality layer should be less than P-P-154. The lesserthickness is computed by dividing the required thickness of granular subbase, P-154, by the appropriate equivalency factor. In establishing the equivalency factors the CBR of the standard granular subbase. P-154, was assumed to be 20 The equivalency factor ranges are given below in Table 3-6:

TABLE 3-6. RECOMMENDED EQUIVALENCY FACTOR RANGES FOR HIGH QUALITY GRANULAR SUBBASE

Material Equivalency Factor Range

P-208. Aggregate Base Course 1.0-1.5 P-209. Crushed Aggregate Base Course 1-2-1.8

P-211.Lime Rock Base Course 1.0- 1 5

(7)

C. Stabilized Subbase. Stabilized subbases also offer considerably higher strength to the pavement than P-154. Recommended equivalency factors associated with stabilized subbase ate presented in Table 3-7.

TABLE 3-7. RECOMMENDED EQUWALENCY FACTOR RANGES FOR STABILIZED SUBBASE

Material

Equivalency Factor Range

P-301. Soil Cement Base Course 10-15 P-304. Cement Treated Base Course 1.6 - 2.3 P-306, Econocrete Subbase Course 1.6 - 2.3 P-401. Plant Mix Bituminous Pavements 1.7 - 2.3

d. Gi.iiiul.ii Base. The FAA standard foi granulai base is Item P-209. Crushed Aggregate Base Course

In some instances it may be advantageous to utilize other uonstabilized granular material as base course Other materials acceptable for use as granular base course are as follows

TABLE 3-8. RECOMMENDED EQUIVALENCY FACTOR RANGES

FOR GRANULAR BASE

Material

Equivalency Factor Range

P-208. Aggregate Base Course

P-21 1. Lime Rock Base Course

10 10

Substimtion of P-208 for P-209 is permissible only if the gross weight of the design aircraft is 60.000 lbs (27 000 kg) or less. In addition, if P-208 is substituted for P-209. the required thickness of hoi mix asphalt surfacing shown

on the design curves should be increased 1 inch (25 mm).

t. Stabilized Base. Stabilized base courses offer structural benefits to a flexible pavement ui much the same manner as stabilized subbase The benefits are expressed as equivalency factors similar to those shown for

stabilized subbase In developing the equivalency factors Item P-209. Crashed Aggregate Base Course, with an assumed

CBR of 80was used as the basis for comparison. The thickness of stabilized base is computed by dividing the granular

base course thickness requirement by theappropriate equivalency factor. Theequivalency factor ranges are given below in Table 3-9. Ranges of equivalency factors are shown rather than smgle values since variations m thequality of materials, construction techniques, and control can influence the equivalency factor. In the selection of equivalency

factors, consideration should be given to the tiaffic using the pavement, total pavement thickness, and the thickness of

the uidiMdu.il layer. Forexample, a thin layer in a pavement structure subjected to heavy loads spread over large areas will result m an equivalency factoi ueai the low endof the range Conversely, light loads on thick layers will callfot

equivalency factors near the upper end of the ranges

TABLE 3-9. RECOMMENDED EQUIVALENCY FACTOR RANGES FOR STABILIZED BASE

Material Eauivalencv Factor Ranee

P-304. Cement Treated Base Course 1.2-1.6 P-306, Econocrete Subbase Course 1.2-1.6 P-401. Plant Mix Bituminous Pavements 1.2-1.6

Note: Reflection cracking may be encountered when P-304 or P-306 is used as

base for a flexible pavement. The thickness of the hot mix asphalt surfacing course should be at least 4 inches (100 mm) to muiimize reflection cracking in these instances,

f. Example. As an example of the use of equivalency factors, assume a flexible pavement is required to serve a design aircraft weighing 300.000 pounds (91 000 kg) with a dual tandem gear. The equivalent annual departures

are 15,000. The design CBR for the subgrade is 7 Item P-401 will be used for the base course and the subbase course.

(b)

Gambar

Gambar A6 Pengaruh Material Base Coarse dan Pasir Terhadap Modulus Reaksi Subgrade (K) pada Perkerasan kaku
Tabel Bl Faktor Konversi Berbagai Konfigurasi Landing Gear Pesawat
Tabel B2 Tabulasi Perhitungan Equivalent Annual Departures NO JENIS PESAWA T KONFIG.RODA BEBANPESAWAT ANNUAL DEPAR T
Gambar C1 Kebutuhan Tebal Minimum Lapisan Base
+2

Referensi

Dokumen terkait