• Tidak ada hasil yang ditemukan

Perancangan Inkubator Memanfaatkan Sisi Panas Dari Elemen Peltier Berbasis Mikrokontroller Atmega 8535

N/A
N/A
Protected

Academic year: 2017

Membagikan "Perancangan Inkubator Memanfaatkan Sisi Panas Dari Elemen Peltier Berbasis Mikrokontroller Atmega 8535"

Copied!
20
0
0

Teks penuh

(1)

Lampiran 1. Konfigurasi Program Menghitung Data Komputer (Bahasa C)

pada Mikro

/*******************************************************

This program was created by the

CodeWizardAVR V2.60 Standard

Automatic Program Generator

© Copyright 1998-2012 Pavel Haiduc, HP InfoTech s.r.l.

http://www.hpinfotech.com

Project :

Version :

Date :

Author :

Company :

Comments:

Chip type : ATmega8535

Program type : Application

AVR Core Clock frequency: 16.000000 MHz

Memory model : Small

External RAM size : 0

Data Stack size : 128

*******************************************************/

#include <mega32.h>

#include <delay.h>

#define led PORTC.7

#define peltier PORTC.6

// Declare your global variables here

unsigned char fc_l, fc_h;

// Standard Input/Output functions

#include <stdio.h>

// Timer1 overflow interrupt service routine

interrupt [TIM1_OVF] void timer1_ovf_isr(void)

(2)

// Reinitialize Timer1 value

TCNT1H=0x9E58 >> 8;

TCNT1L=0x9E58 & 0xff;

// Place your code here

led = ! led;

}

#define ADC_VREF_TYPE ((1<<REFS1) | (1<<REFS0) | (0<<ADLAR))

// Read the AD conversion result

unsigned int read_adc(unsigned char adc_input)

{

ADMUX=adc_input | ADC_VREF_TYPE;

// Delay needed for the stabilization of the ADC input voltage

delay_us(10);

// Start the AD conversion

ADCSRA|=(1<<ADSC);

// Wait for the AD conversion to complete

while ((ADCSRA & (1<<ADIF))==0);

ADCSRA|=(1<<ADIF);

return ADCW;

}

unsigned int channel_0 (void)

{

float v_ch_0;

unsigned char idx;

v_ch_0 = 0;

for (idx = 0; idx < 150; idx ++)

{

v_ch_0 = v_ch_0 + read_adc(0);

}

v_ch_0 = v_ch_0/150;

return v_ch_0;

(3)

void main(void)

{

// Declare your local variables here

unsigned int v_0, v_1;

// Input/Output Ports initialization

// Port A initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In

DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) |

(0<<DDA2) | (0<<DDA1) | (0<<DDA0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) |

(0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0);

// Port B initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In

DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) |

(0<<DDB2) | (0<<DDB1) | (0<<DDB0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) |

(0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0);

// Port C initialization

// Function: Bit7=Out Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In

DDRC=(1<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) |

(0<<DDC2) | (0<<DDC1) | (0<<DDC0);

// State: Bit7=0 Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) |

(0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);

// Port D initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In

DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) |

(0<<DDD2) | (0<<DDD1) | (0<<DDD0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T

(4)

(0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);

// Timer/Counter 0 initialization

// Clock source: System Clock

// Clock value: Timer 0 Stopped

// Mode: Normal top=0xFF

// OC0 output: Disconnected

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) |

(0<<CS02) |

(0<<CS01) | (0<<CS00);

TCNT0=0x00;

OCR0=0x00;

// Timer/Counter 1 initialization

// Clock source: System Clock

// Clock value: 250.000 kHz

// Mode: Normal top=0xFFFF

// OC1A output: Disconnected

// OC1B output: Disconnected

// Noise Canceler: Off

// Input Capture on Falling Edge

// Timer Period: 0.1 s

// Timer1 Overflow Interrupt: On

// Input Capture Interrupt: Off

// Compare A Match Interrupt: Off

// Compare B Match Interrupt: Off

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) |

(0<<WGM11) | (0<<WGM10);

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) |

(0<<CS12) |

(1<<CS11) | (1<<CS10);

TCNT1H=0x9E;

TCNT1L=0x58;

(5)

ICR1L=0x00;

OCR1AH=0x00;

OCR1AL=0x00;

OCR1BH=0x00;

OCR1BL=0x00;

// Timer/Counter 2 initialization

// Clock source: System Clock

// Clock value: Timer2 Stopped

// Mode: Normal top=0xFF

// OC2 output: Disconnected

ASSR=0<<AS2;

TCCR2=(0<<WGM20) | (0<<COM21) | (0<<COM20) | (0<<WGM21) |

(0<<CS22) |

(0<<CS21) | (0<<CS20);

TCNT2=0x00;

OCR2=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) |

(0<<OCIE1B) |

(1<<TOIE1) | (0<<OCIE0) | (0<<TOIE0);

// External Interrupt(s) initialization

// INT0: Off

// INT1: Off

// INT2: Off

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00);

MCUCSR=(0<<ISC2);

// USART initialization

// Communication Parameters: 8 Data, 1 Stop, No Parity

// USART Receiver: On

// USART Transmitter: On

// USART Mode: Asynchronous

(6)

UCSRA=(0<<RXC) | (0<<TXC) | (0<<UDRE) | (0<<FE) | (0<<DOR) |

(0<<UPE) |

(0<<U2X) | (0<<MPCM);

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (1<<RXEN) | (1<<TXEN) |

(0<<UCSZ2) | (0<<RXB8) | (0<<TXB8);

UCSRC=(1<<URSEL) | (0<<UMSEL) | (0<<UPM1) | (0<<UPM0) | (0<<USBS) |

(1<<UCSZ1) | (1<<UCSZ0) | (0<<UCPOL);

UBRRH=0x00;

UBRRL=0x67;

// Analog Comparator initialization

// Analog Comparator: Off

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) |

(0<<ACIC) |

(0<<ACIS1) | (0<<ACIS0);

// ADC initialization

// ADC Clock frequency: 125.000 kHz

// ADC Voltage Reference: Int., cap. on AREF

// ADC High Speed Mode: Off

// ADC Auto Trigger Source: ADC Stopped

ADMUX=ADC_VREF_TYPE;

ADCSRA=(1<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) |

(1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

SFIOR=(1<<ADHSM) | (0<<ADTS2) | (0<<ADTS1) | (0<<ADTS0);

// SPI initialization

// SPI disabled

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) |

(0<<CPHA) | (0<<SPR1) | (0<<SPR0);

// TWI initialization

// TWI disabled

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) |

(0<<TWIE);

(7)

#asm("sei")

while (1)

{

// Place your code here

v_0 = channel_0();

v_0 = (v_0 * 9)/7;

addr_0 = '0';

// v_0 = 256;

hi_0 = v_0 >> 8;

lo_0 = v_0 & 0x00ff;

putchar(addr_0);

putchar(lo_0);

putchar(hi_0);

delay_ms(25);

}

}

Lampiran 2. Konfigurasi Program Menghitung Data Komputer Pada PC

Private Sub Command1_Click()

MSComm1.PortOpen = False

Close intHandle

End

End Sub

Private Sub Command3_Click()

Print #intHandle, "There will be a new line after this!"

Print #intHandle, "Last line in file!"; '<- Notice semicolon.

End Sub

(8)

If MSComm1.PortOpen = False Then

MSComm1.PortOpen = True

MSComm1.RThreshold = 3

MSComm1.NullDiscard = False

MSComm1.InputMode = comInputModeText

End If

End Sub

Private Sub MSComm1_OnComm()

Dim vkar, cmd As String

' Dim cmd As Byte

Dim arus, tegangan As Byte

If MSComm1.CommEvent = 2 Then

vkar = MSComm1.Input

cmd = Mid$(vkar, 1, 1)

If cmd = "0" Then

v1 = Asc(Mid$(vkar, 2, 1)) ' T dalam refrigerator

End If

End If

End Sub

Private Sub Timer1_Timer()

Dim intHandle As Integer

intHandle = FreeFile

Text3.Text = Time$() ' catat untuk waktu

Open "C:\Users\wahyuni\refri.txt" For Append As intHandle

Print #intHandle, Text1.Text, Text3.Text, Chr(13), Chr(10)

Close intHandle

(9)

Lampiran 3. Konfigurasi Program Ketahanan Suhu

/******************************************************* This program was created by the

CodeWizardAVR V3.12 Standard Automatic Program Generator

© Copyright 1998-2014 Pavel Haiduc, HP InfoTech s.r.l. http://www.hpinfotech.com

AVR Core Clock frequency: 8.000000 MHz Memory model : Small

#define LED PORTD.5 #define PELTIER PORTD.6 #define KIPAS PORTD.4

// Alphanumeric LCD functions #include <alcd.h>

// Declare your global variables here

unsigned char buf[33]; unsigned int trk, rrk;

unsigned int temp, h_ruang;

// External Interrupt 0 service routine

interrupt [EXT_INT0] void ext_int0_isr(void) {

(10)

}

// External Interrupt 1 service routine

interrupt [EXT_INT1] void ext_int1_isr(void) {

// Place your code here

}

// Timer1 overflow interrupt service routine interrupt [TIM1_OVF] void timer1_ovf_isr(void) {

// Reinitialize Timer1 value TCNT1H=0x85EE >> 8; TCNT1L=0x85EE & 0xff; // Place your code here LED = ! LED; }

// Voltage Reference: AVCC pin

#define ADC_VREF_TYPE ((0<<REFS1) | (1<<REFS0) | (0<<ADLAR))

// Read the AD conversion result

unsigned int read_adc(unsigned char adc_input) {

ADMUX=adc_input | ADC_VREF_TYPE;

// Delay needed for the stabilization of the ADC input voltage delay_us(10);

// Start the AD conversion ADCSRA|=(1<<ADSC);

// Wait for the AD conversion to complete while ((ADCSRA & (1<<ADIF))==0); ADCSRA|=(1<<ADIF);

return ADCW; }

unsigned int baca_trk (void) {

unsigned int t, cnt; t = 0;

for (cnt = 0; cnt < 50; cnt++) {

(11)

t = t/39; return t; }

unsigned int baca_rrk (void) {

unsigned int r, cnt; r = 0;

// Declare your local variables here

// Input/Output Ports initialization // Port A initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | (0<<DDA2) | (0<<DDA1) | (0<<DDA0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0);

// Port B initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | (0<<DDB2) | (0<<DDB1) | (0<<DDB0);

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0);

// Port C initialization

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In DDRC=(0<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | (0<<DDC2) | (0<<DDC1) | (0<<DDC0);

(12)

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);

// Port D initialization

// Function: Bit7=In Bit6=Out Bit5=Out Bit4=Out Bit3=In Bit2=In Bit1=In Bit0=In

DDRD=(0<<DDD7) | (1<<DDD6) | (1<<DDD5) | (1<<DDD4) | (0<<DDD3) | (0<<DDD2) | (0<<DDD1) | (0<<DDD0);

// State: Bit7=T Bit6=0 Bit5=0 Bit4=0 Bit3=T Bit2=T Bit1=T Bit0=T PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);

// Timer/Counter 0 initialization // Clock source: System Clock // Clock value: Timer 0 Stopped // Mode: Normal top=0xFF // OC0 output: Disconnected

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | (0<<CS02) | (0<<CS01) | (0<<CS00);

TCNT0=0x00; OCR0=0x00;

// Timer/Counter 1 initialization // Clock source: System Clock // Clock value: 125.000 kHz // Mode: Normal top=0xFFFF // OC1A output: Disconnected // OC1B output: Disconnected // Noise Canceler: Off

// Input Capture on Falling Edge // Timer Period: 0.25 s

// Timer1 Overflow Interrupt: On // Input Capture Interrupt: Off // Compare A Match Interrupt: Off // Compare B Match Interrupt: Off

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (0<<WGM10);

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (1<<CS11) | (1<<CS10);

(13)

ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00;

// Timer/Counter 2 initialization // Clock source: System Clock // Clock value: Timer2 Stopped // Mode: Normal top=0xFF // OC2 output: Disconnected ASSR=0<<AS2;

TCCR2=(0<<WGM20) | (0<<COM21) | (0<<COM20) | (0<<WGM21) | (0<<CS22) | (0<<CS21) | (0<<CS20);

TCNT2=0x00; OCR2=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | (0<<OCIE1B) | (1<<TOIE1) | (0<<OCIE0) | (0<<TOIE0);

// External Interrupt(s) initialization // INT0: On

// INT0 Mode: Falling Edge // INT1: On

// INT1 Mode: Falling Edge // INT2: Off

GICR|=(1<<INT1) | (1<<INT0) | (0<<INT2);

MCUCR=(1<<ISC11) | (0<<ISC10) | (1<<ISC01) | (0<<ISC00); MCUCSR=(0<<ISC2);

GIFR=(1<<INTF1) | (1<<INTF0) | (0<<INTF2);

// USART initialization // USART disabled

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | (0<<UCSZ2) | (0<<RXB8) | (0<<TXB8);

// Analog Comparator initialization // Analog Comparator: Off

// The Analog Comparator's positive input is // connected to the AIN0 pin

(14)

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | (0<<ACIC) | (0<<ACIS1) | (0<<ACIS0);

// ADC initialization

// ADC Clock frequency: 62.500 kHz // ADC Voltage Reference: AVCC pin // ADC High Speed Mode: Off

// ADC Auto Trigger Source: ADC Stopped ADMUX=ADC_VREF_TYPE;

ADCSRA=(1<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

SFIOR=(1<<ADHSM) | (0<<ADTS2) | (0<<ADTS1) | (0<<ADTS0);

// SPI initialization // SPI disabled

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) | (0<<SPR1) | (0<<SPR0);

// TWI initialization // TWI disabled

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);

// Alphanumeric LCD initialization // Connections are specified in the

// Project|Configure|C Compiler|Libraries|Alphanumeric LCD menu: // RS - PORTB Bit 0 // Characters/line: 16 lcd_init(16);

// Global enable interrupts #asm("sei")

PELTIER = 1; KIPAS = 1;

(15)

lcd_putsf("Inkubator");

while (1) {

// Place your code here trk = baca_trk(); rrk = baca_rrk(); temp = trk/10; h_ruang = rrk/10; lcd_gotoxy(13,0);

sprintf(buf,"%03u", temp); lcd_puts(buf); lcd_gotoxy(0,1);

sprintf(buf,"T:%02u.%01u Rh:%02u.%01u", temp, trk%10, h_ruang, rrk%10);

lcd_puts(buf);

if (temp > 39) {

PELTIER = 1; }

if (temp < 38) {

PELTIER = 0; }

KIPAS = 0; delay_ms(100);

(16)
(17)
(18)

Gambar Alat Lengkap Inkubator

(19)
(20)

Gambar

Gambar Alat Lengkap Inkubator

Referensi

Dokumen terkait

1.4.2 Bagi Fakultas Ilmu Keolahragaan Jurusan Ilmu Kesehatan Masyarakat Sebagai bahan tambahan kajian dan pengembangan ilmu pengetahuan di bidang gizi dan kesehatan

Masalah yang ingin dibahas pada penelitian ini adalah untuk mengetahui faktor-faktor yang mempengaruhi pemberian ASI Eksklusif di Wilayah Kerja Puskesmas

Berdasarkan data hasil belajar post-test siswa dapat disimpulkan bahwa rata-rata hasil belajar geometri siswa pada materi mengidentifikasi sifat-sifat bangun datar

Berikut ini adalah bionomik Aedes aegypti : (1) termasuk serangga diurnal (beraktivitas siang hari); (2) jarak terbang sekitar 100 meter; (3) menyukai lingkungan

yang ingin digambarkan oleh peneliti adalah lingkungan pembacaan, fungsi dan diksi yang terdapat dalam mantra upacara beentamao sebagai sastra lisan masyarakat

Approval of the Company’s Annual Report and validation of the Company’s Consolidated Financial Statements, approval the Board of Commissioners’ Supervisory Actions Report and

[r]

Dari hasil evaluasi yang dilakukan, terlihat bahwa peserta didik menjawab masalah yang diberikan menggunakan ide mereka sendiri. Bagi peserta didik yang masih