• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
6
0
0

Teks penuh

(1)

USED OF INTERPOLATORY LINEAR POSITIVE OPERATORS FOR

CALCULUS THE MOMENTS OF THE RELATED PROBABILITY

DISTRIBUTIONS

by

Lucia A. C

ă

bulea and Mihaela Todea

Abstract. In this paper using probabilistic methods for constructing linear positive operators and the Newton interpolation formula on representing a linear interpolatory positive operators by means of the factorial moments of the related probability distribution and the finite differences. By means of such representations we deduce explicit formulas for the ordinary moments of the corresponding discrete probability distributions

.

Keywords: probabilistic methods, interpolatory linear positive operators, moments of

the related probability distributions, factorial moments, ordinary moments.

1.Consider a sequence of two-dimensional random vectors

Yn={(Yn1, Yn2)} and let Fn (y1, y2; x1, x2) be the probability distribution of (Yn1, Yn2),

where (y1, y2) is any point of the Euclidean space R2 and (x1, x2) is a real

two-dimensional parameter varying in a parameter space Ω2, which is a subset of R2.

We suppose that (x1, x2) represents the mean value of this distribution i.e.

x1 =

2

) , ; ,

( 1 2 1 2

1

R

n y y x x

dF y

x2 =

2

) , ; ,

( 1 2 2

2

R

x n y y x x

dF y

If f = f(y1,y2) is a real-valued function defined and bounded on R2 such that the

mean value of the random variable f(Yn1,Yn2) exists for n = 1,2,…, there fore this

mean value can be expressed by the improper Stieltjes integral of (y1,y2) with respect

to Fn (y1,y2; x1,x2).

(1) E [f (Yn1, Yn2)] = Pn (f ; x1,x2) =

2

) , ; , ( ) ,

( 1 2 1 2 1 2

R

n y y x x

(2)

If we suppose that the radom vector (Yn1,Yn2) is of discrete type, one may

observe that its distribution function :

Fn (y1, y2; x1, x2) = P [Yn1 ≤ y1, Yn2 ≤ y2; x1, x2]

is a step function so that P[Yn1=y1, Yn2=y2; x1, x2] is zero at every point of R2 except at

a finite or a countable infinite such point (jump point) is taken with a positive probability (jump):

pn (ak1, ak2) = pn (ak1, ak2; x1, x2) = P [Yn1 = ak1, Yn2 = ak2; x1,x2]

satisfying the condition

p (a 1,a 2;x1,x2)=1

k

k k

n .

The corresponding distribution function is: Fn (y1, y2; x1, x2) =

) (

2 1 2 1, ; , )

(

k

k k

n a a x x

p

where the summation is extended now over all points (ak1, ak2) such that

ak1 ≤ y1, ak2 ≤ y2.

Consequently, in this discrete case we are able to write down the following expression for the operator (1)

(2) Pn ( f ; x1, x2 ) =

) (

2 1 2 1 2

1, ) ( , ; , )

(

k

k k n k

k a p a a x x

a f

It is easy to see that the operator Pn (f; x1, x2) defined by (1), or in particular by

(2) is a positive linear operator.

2.We shall now make use of an important method for constructing concrete

operators of this useful for computing the moments of the related probability distributions.

Consider a sequence of two-dimensional random vectors {(Xk1, Xk2) = Xk}

and let us assume that the components Yn1, Yn2 of the random vector Yn represent the

arithmetic means of the first n components Xk1, Xk2

(k = 1,2,…,n) that is:

(3) Ynr =

n

1

[X1r +X2r +…+ Xnr] (r = 1,2).

i) Let us suppose first that the components Yn1 , Yn2 have the binomial

distribution. Now referring to (2) we obtain the operator of Bernstein

(4)

∑∑

= −

=

  

  −

− 

   −     = n

k k n

k

k k n k

k n

n k n k f x

x x x k

k n k

n x

x f B

0 0

2 1 2

1 2 1 2

1

1 2

1

1 1

2

2 1 2

1 (1 ) ,

) , ; (

ii) If we consider that X1i, X2i, …, Xni (i=1,2) has a Poisson distribution with

the parameters xi (i=1,2) therefore Yni have a Poisson distribution with the parameters

nxi (i=1,2) and we obtain the operator

(5) 

  

  =

= + −

n k n k f k

k nx nx e

x x f P

k k x

k k

x x n n

2 1

2 1

2

0 ,

) ( 2

1 ,

! !

) ( ) ( )

, ; (

2 1

2 1

(3)

which represents an extension to 2 variables of an operator studied early by Favard [3] and Szasz [15].

iii) If we presuppose that X1i, X2i, …, Xni (i=1,2) has a geometric distribution

then Yni have a Pascal distribution and we obtain the operator

(6)       − −     + −     + − =

∞ = n k n k f x x x x k k n k k n x x f

P n k k

k k

n 1 2 1 2 1 2

2 2 0 , 1 1 2

1 ( ) (1 ) (1 ) ,

1 1

) , ;

( 1 2

2 1

iv) It should be observed that if we replace xi by

i

x

+

1

1

, (i=1,2) in formula

(6), then we arrive the operator (7)

      + +     + −     + − = ∞ + + =

n k n k f x x x x k k n k k n x x f P k n k n k k k k n 2 1 2 1 2 1 0 , 2 2 1 1 2 1 , ) 1 ( ) 1 ( 1 1 ) , ; ( 2 1 2 1 2 1

which has been considered first by Baskakov [1].

v) If the random variables X1i, X2i, …, Xni (i=1,2) are not independent and

identically distributed we obtain the operator of Stancu

(8)

= +      = n k k x k k n n n k n k f x x W x x f P 0 2 1 2 , 2 1 ] [ 2 1 2

1 ( , ; ) ,

) , ; ( α α where

=− +

= + −

= − − − + = 1 0 1 0 1 0 2 1 2 2 1 1 , 2 , 1 1 2 2 2 1 2 1 2

1 ( ) ( ) (1 )

) ( ) ; , (

k k n k k

k k n x k k

n x x x x

n B C x x W ν ν α ν ν α µ µα α ) ) 1 ( 1 )...( 2 1 )( 1 ( )

(n = +α + α + n− α

B ,

)! ( ! ! ! 2 1 2 1 ,2 1 k k n k k n Cnk k

− − =

3.Now we consider of an interpolation polynomial of Newton-Bierman type

for two variables [8]

( )

0,0 ! ! ) ( ) ( ) , ;

( 1 2

2 1 2 1 , 1 , 1

0 1 2

] [ 2 ] [ 1 2 1 f i i nt nt t t f

N i i

n n n i i i i ∆ =

= +

where )(ntk)[ik] =ntk(ntk −1)...(ntkik +1 (k=1,2) while

( )

      − −         − = ∆

∑∑

= = + n i n i f i i f i i i i n n 2 2 1 1 2 2 0 1 1 0 , 1 ,

1 0,0 ( 1) ,

1 1 2 2 2 1 2

1 ν ν

ν ν

ν ν

ν

ν represents the finite

partial difference of order (i1, i2) of the function f, with the steps n

1

and the starting point (0,0).

(4)

(9)

( )

0,0 !

! ,

; 1 2

2 1 2 1 , 1 , 1 0 1 2

] [ 2 ] [ 1 2 1 f i i y y n y n y f

N i i

n n n i i i i ∆ =      

= +

This polynomial satisfies the interpolating properties

      =       n k n k f n k n k f

N ; 1, 2 1, 2 for k1 = 0, 1, …, n , k2 = 0, 1, …, n-k1.

By using the formula (9) we can find for the mean value of the random variable       n y n y f

N ; 1, 2 where (y

1, y2) has the probability distribution function

Fn(y1, y2; x1, x2), the following representation

(10)

( )

0,0

! ! ) , ; , ( ,

; 1 2

2 1 2 1 2 , 1 , 1 0 1 2

] , [ 2 1 2 1 2 1 f i i m x x y y dF n y n y f

N i i

n n n i i i i n R ∆ =      

+ =

in terms of the factorial moments

= 2 2 1 2

1 ( 1, 2; 1, 2)

] [ 2 ] [ 1 ] , [ R n i i i

i y y dF y y x x

m

If the random vector Yn is of discrete type then

(11)

( )

= + = + = ∆     n k k i i n n i i n k k k k n f i i m n k n k f p 0 , 1 , 1 2 1 ] , [ 0 2 1 , ; 2 1 2 1 2 1 2 1 2

1 , ! ! 0,0

where

= + = n k k k k n i i i

i k k p

m 0 , ; ] [ 2 ] [ 1 ] , [ 2 1 2 1 2 1 2 1 .

4. i) With the aid of formula (11) we can give the following representation of

the operators of Bernstein type (4) in terms of finite differences

(12)

( )

0,0

! ! )

, ;

( 1 2 1 2

2 1 2 1 , 1 , 1 2 1 0 1 2

] [

2

1 x x f

i i n x x f

B i i

n n i n i n i i i i

n =

= +

+

which enables us to find the factorial moments

(13) 1 2 1 2

2

1 1 2

] [ ] , [ i i i i i

i n x x

m = +

ii) The operator Pn(f;x1, x2) defined by (5) in terms of finite differences have

the following representation

(14)

( )

= ∆ = 0 , , 1 , 1 2 1 2 1 2 1 2 1 2 1 2 1 0 , 0 ! ! ) , ; ( i i i i n n i i n f i i z z z z f P

if we assume that xi depends on n such a way for n →∞ we have nxi→ zi >0 , (i=1,2)

and we obtain the factorial moments

(15) 1 2

2

1, ] 1 2

[

i i i

i z z

(5)

iii) The operators of Stancu defined by (8) in terms of finite differences have the following representation (16)

( )

=

+ = + + − ∆

= n

i i

i i

n n i

i n

n x x x i f

i i B

C x

x f P

0

2

1

, 1 , 1 2

1 ,

2 1 ] [

2 1

2 1 2

1

0 , 0 )

) 1 ( )...( (

) , ( )

, ; (

ν ν ν ν ν

α α α

and we obtain the factorial moments

(17) ( )...( ( 1) )

) (

2

1 2 1

] [

] , [

2 1 2

1 ν α ν ν α

ν ν + + −

+

=

= +

i x x

x i i B

n m

i i

i i

5. For the function

(

)

1 2 1 2

2 1 2

1,

r r r r y y

n y y

f = + we have 1,2

( )

0,0 101 202

1 , 1

r i r i i

i

n n

f =∆ ∆

∆ .

In this case the operator defined by (12) permits us to find the express of the ordinary moments

) , ; ( )

, ;

( 1 2 , 1 2

2

1 n x x

m x x f

Bn = r r

that is

(18)

( )( )

1 1 2 2 1 2

1

1 2

2 2

1 1 2

2 1

0 0 1 2

1

, ( ; , ) 0 0

i i r i r i r

i r

i r

r x x

i i n i n x

x n

m ∆ ∆

    −    

=

∑∑

= =

if ∆m0r = 0 for m > r and =0

   

ν

m

for ν > m.

Analogous the operator defined by (14) enables us to find

(19)

( )( )

2 2

1

1 2

2

1 1 2 1 2

1 ( ; , ) ! ! 0 0

0 0 1 2 2 1 2

1 ,

r i r

i r

i

r i i i

r r

i i

z z z

z n

m =

∑∑

∆ ∆

= =

REFERENCES

[1]. Agratini, O., On the construction of approximating linear positive operators by

probabilistic methods, Studia Univ. “Babeş-Bolyai”, Math.,4(1993), 45-50.

[2]. Baskakov, V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 1957, 113,

249-251.

[3]. Cabulea, L., On the use of interpolatory linear positive operators for the

computing the moments of the related probability distributions, Studia Univ. “Babeş

-Bolyai”, Math.,4(1994), 79-91.

(6)

[5]. Khan, R.A., Some probabilistic methods in the theory of approximation operators, Acta Mathematica Academiae Scientiarum Hungaricae, 35 (1-2), 1980, 193-203. [6]. Stancu, D.D., On a new positive linear polynomial operator, Prac. Japan Acad.,44(1968), 221-224.

[7]. Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13 (1968),

1173-1194.

[8]. Stancu, D.D., Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Roumaine Math. Pures Appl., 14(1969), 673-691.

[9]. Stancu, D.D., Approximation of functions by means of a new generalized Bernstein operator, Calcolo, vol.XX, fasc. II, 1983, 211-229.

[10]. Wilks, S.S., Mathematical statistics, New-York, John Wiley, 1962.

Authors:

Lucia A. Căbulea, “1 Decembrie 1918” University of Alba Iulia, Romania,

Departament of Mathematics, e-mail: lcabulea@uab.ro.

Mihaela Todea, “1 Decembrie 1918” University of Alba Iulia, Romania, Departament

Referensi

Dokumen terkait

Dalam konteks permasalahan nyeri dan kecemasan yang di hadapi oleh partisipan, ketika partisipan berada pada kondisi sangat nyeri, nyeri berat, kecemasan berat maka patisipan

Pengolahan data kepegawaian yang sedang berjalan saat ini pada Dinas Perhubungan Kabupaten Garut masih dilakukan secara manual dimana dalam mengolah data pegawai

[r]

Hasil penelitian ini juga menunjukkan bahwa dimensi manajemen impresi berpengaruh pada individu dalam melakukan perilaku kewargaan organisasional, karena

Untuk mengetahui apakah usaha ternak sapi di PT.Sulung Ranch layak atau tidak dapat dihitung dengan analisis kelayakan finansial dari biaya investasi dan biaya operasional yang

NO NAMA PENYEDIA BARANG/JASA Nomor NPWP Penawaran Harga (Rp) Penawaran Harga Terkoreksi (Rp) Kesimpulan. MANDIRI CReASINDO

Penelitian ini bertujuan untuk menganalisis pengaruh kitosan secara topikal terhadap penyembuhan luka bakar kimiawi pada kulit tikus putih terinduksi asam sulfat..

Cindy K.. Divisi Corporate Secretary PT. Rajawali Citra Televisi Indonesia berada di bawah kepemimpinan Corporate Secretary yang bertugas dan bertanggung jawab terhadap dua