• Tidak ada hasil yang ditemukan

vol7_pp30-40. 181KB Jun 04 2011 12:06:15 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "vol7_pp30-40. 181KB Jun 04 2011 12:06:15 AM"

Copied!
11
0
0

Teks penuh

(1)

The Electronic Journal of Linear Algebra.

A publication of the International Linear Algebra Society.

Volume 7, pp. 30-40, March 2000.

ISSN 1081-3810. http://math.technion.ac.il/iic/ela

ELA

DIGRAPHS WITHLARGE EXPONENT S.KIRKLAND

y

, D. D. OLESKY z

, AND P. VAN DEN DRIESSCHE x

Abstrat. Primitivedigraphs on nverties with exponents at least b!n=2+2, where !n = (n 1)

2

+1, are onsidered. For n 3, allsuh digraphs ontaining a Hamilton yle are haraterized;andforn6,allsuhdigraphsontainingayleoflengthn 1areharaterized. Eaheigenvalueofanystohastimatrixhavinga digraphinoneofthesetwolassesisprovedto begeometriallysimple.

Keywords.primitivediretedgraph,exponent. AMSsubjet lassiations.15A48,05C20

1. Introdution. Adiretedgraph(digraph)Disprimitive ifforsomepositive integerm there is a(direted) walkof length m between any twovertiesu and v (inludingu=v). Theminimumsuhm istheexponent of D, denoted byexp(D). It is well known that D is primitive i it is strongly onneted and the gd of its yle lengthsis 1. A nonnegativematrix A is primitive if A

m

is entrywisepositive forsomepositiveintegerm. IfD=D(A),thedigraphofaprimitivematrixA, then exp(D)=exp(A),whihistheminimummsuh thatA

m

isentrywisepositive. Denoting(n 1)

2

+1by! n

,thebestupperbound forexp(D)when aprimitive digraph D has n 2 verties is given by exp(D) !

n

, with equality holding i D = D(W

n

) where W n

is a Wielandt matrix; see, e.g., [2, Theorem 3.5.6℄. When n= 2,then D(W

2

), onsisting of a1yle and a2yle, has exponent equalto 2. Heneforth weassumethatn3. ThedigraphD(W

n

)onsistsofaHamiltonyle (i.e.,ayleoflengthn)andonemorear,betweenapairofvertiesthataredistane twoapartontheHamiltonyle,givingayleoflengthn 1.

The followingresult ofLewin and Vitek[6, Theorem 3.1℄,see also [2, Theorem 3.5.8℄,isthebasisforourdisussionofdigraphswithlargeexponent.

Theorem 1.1. If D has n 3 verties and is primitive with suÆiently large exponent,namely

exp(D)b! n

=2+2;with ! n

=(n 1) 2

+1; (1)

thenD has ylesof exatlytwodierent lengthsj;kwith nk>j.

WesaythataprimitivedigraphDonnvertiessatisfying(1)hasalargeexponent. Note that in Theorem 1.1, gd(j;k)=1sineD is primitive. Ifgd(j;k)=1, then

Reeivedbythe editors on 26January 2000. Aeptedfor publiation on21 February2000. Handlingeditor:RihardA.Brualdi.

y

Department of Mathematis and Statistis, University of Regina, Regina, Saskathewan, S4S0A2,Canada(kirklandmath.uregina.a). ResearhsupportedinpartbyanNSERCResearh Grant.

z

DepartmentofComputerSiene,UniversityofVitoria,Vitoria,BritishColumbia,V8W3P6, Canada(doleskysr.uvi.a).ResearhsupportedinpartbyanNSERCResearhGrant.

x

(2)

ELA

DigraphswithLargeExponent 31 everyintegergreaterthanorequalto(j 1)(k 1)anbewrittenas

1 j+

2

k,where

i

arenonnegativeintegers. Thevalue(j 1)(k 1)isthesmallestsuhinteger,and isalledtheFrobenius-Shurindexforthetworelativelyprimeintegersj andk;see, e.g.,[2,Lemma 3.5.5℄.

The Frobenius-Shur index is used to prove the following result that gives a neessaryand suÆientonditionfortheexisteneofaprimitivedigraphwithlarge exponentandylesoftwospeiedlengths.

Theorem 1.2. Let k and j be suhthat gd(j;k)= 1 and n k > j. There exists a primitive digraph D on n verties having only yle lengths k and j and exp(D)b!

n

=2+2ij(k 2)b! n

=2+2 n.

Proof. Suppose thatDisadigraphwithlargeexponentandylelengthskand j <kn. Welaim thatforanypairof vertiesuandv,thereis awalkfrom uto v oflengthatmostk+n j 1nthat goesthroughavertexonakyleanda vertexona j yle. Toprovethis laim,note that from the proof ofTheorem 1in [4℄,there arenopairsofvertexdisjointylesin D;that is, anypairof ylesshare atleastoneommonvertex. Ifthereisawalkfromutovoflengthlessthanorequal to nthat passesthroughat leastonevertexonak yleand atleast onevertexon aj yle, thenthelaimisproved.

Sosupposethatthisisnotthease. Inpartiular,assumethatuandv areonly onk (resp. j) yles,andanypathfrom uto v passesonly throughvertiesnoton any j (resp. k) yle. Consider therst ase. Let lbe thenumber of verties not on aj yle, and note that 2l n j. Sine ashortest pathfrom uto v goes onlythroughvertiesnotonaj yle,thelengthpofsuhapathsatisespl 1. Considerthewalkfrom utov formed byrsttraversingak yle atu(neessarily going throughavertex onaj yle),then taking thepath oflength pfrom uto v. This generatesawalkfrom uto v that goesthroughavertex onak yle andone on aj yle, and itslength isk+pk+l 1k+n j 1. Theseond ase follows by interhangingk and j and noting that j+n k 1 < k+n j 1. Thus thelaim is proved. By theFrobenius-Shur index, there is awalkfrom uto v of length k+n j 1+(k 1)(j 1) = n+j(k 2) for any pairu;v. Thus n+j(k 2)exp(D)b!

n

=2+2,givingtheonditiononkandj.

For the onverse, assume the ondition on k and j, and onsider the digraph D onsistingof thek yle 1!k !k 1! ! k+j n+1! k+j n ! k+j n 1!!2!1,andars1!k+1!k+2!!n 1!n!k+j n. ThusD hasexatlyonekyleandonej yle. Considerthelengthofawalkfrom ktok+j n+1. Suhawalkhaslengthn j 1ork+n j 1+

1 k+

2 j for somenonnegativeintegers

i

,and (fromtheFrobenius-Shurindex)thereisnowalk oflengthk+n j 1+(k 1)(j 1) 1. Thus

exp(D)k+n j 1+(k 1)(j 1)=n+j(k 2)b! n

=2+2:

(3)

ELA

32 S.Kirkland,D.D.OleskyandP.vandenDriesshe

WeassumethatDhasalargeexponentandfousonthegraphtheoretiaspets of this ondition. In Setion 2, we haraterize the ase when D has a Hamilton yle (k = n 3); and in Setion 3, we haraterize the ase k = n 1. Our haraterizations give some information on the ase for general k n when n 4, sine a result of Beasleyand Kirkland [1, Theorem 1℄ implies that any indued subdigraphonkvertiesthatisprimitivealsohaslargeexponent(relativetob!

k =2+ 2), so thestrutureof somesuhinduedsubdigraphsis knownfrom ourresults. It is known from results in [6℄ exatlywhih numbers b!

n

=2+2are attainableas exponents of primitive digraphs. (Note that there are somegaps in this exponent set.) Ourwork inSetions2and3fousesondesribingtheorrespondingdigraphs whenkn 1.

Somealgebraionsequenesofthelargeexponentondition(1)forastohasti matrixA with D(A) = D have been investigated in [4℄ and [5℄. The harateristi polynomial of A has a simple form (see [4, Theorem 1℄), and, if n is suÆiently large,thenabouthalf oftheeigenvaluesofAhavemodulusloseto1. Kirklandand Neumann[5℄onsideredthemagnitudesoftheentriesinthegroupgeneralizedinverse ofI A(whihmeasuresstabilityoftheleftPerronvetorofAunderperturbations). In Setion 4 we use results of Setions 2 and 3 to investigate the multipliities of eigenvaluesofstohastimatrieswithlargeexponents.

2. TheHamiltonianCase. AssumingthatDhaslargeexponentanda Hamil-tonyle,webeginbyndingpossiblelengthsforotherylesinD.

Lemma 2.1. Suppose that D is a primitive digraph on n 3 verties with exp(D)b!

n

=2+2 and that D has a Hamilton yle. Then D has preisely one Hamilton yle,andallother yleshavelengthj,wheren>jd(n 1)=2e.

Proof. By Theorem 1.1, D ontainsyles of exatlytwo lengths, n = k > j. W.l.o.g.takethegivenHamiltonyleas1!n!n 1!!2!1,andassume that the ar 1 ! j lies on a seond Hamilton yle. Note that the only possible ars from any vertex i are i ! i 1 (mod n) and i ! i+j 1 (mod n). Sine thear j+1!j is noton theseond Hamilton yle, this yle must inlude the ar j+1! (j+1)+j 1=2j (mod n). Similarly, there is anar onthe seond Hamiltonylefrom(m 1)j+1tomj(modn),form=1;:::;n. Asgd(j;n)=1,D ontainsthedigraphofaprimitiveirulant. By[3,Theorem2.1℄,exp(D)(n 1) orexp(D)bn=2,thusexp(D)<b!

n

=2+2. Hene,there isnoseond Hamilton yleinD. Forthelowerboundonj,takek=ninTheorem1.2;seealso[4,Theorem 1℄.

IfD haslargeexponentandk=n=3,then Lemma2.1impliesthat j2f1;2g: Forj=1,Donsistingofa3yleanda1ylehasexponentequalto4=b!

3 =2+2. Forj=2=n 1,eitherD=D(W

3

)withexponentequalto5=! 3

,orDonsistsof a3ylewithtwo2ylesandhasexponentequalto4. Thislastaseisanexample oftheresultthatadigraphDonnvertieshasexp(D)=(n 1)

2

iD isisomorphi to an n ylewith two additionalars from onseutive verties forming twon 1 yles;see,e.g.,[2, pp.82{83℄.

(4)

Hamilto-ELA

DigraphswithLargeExponent 33 isodd,thentheasej=(n 1)=2isslightlydierentandisgiveninTheorem2.3.

Theorem 2.2. Supposethat j n=2. Then D isa primitive digraph on n3 verties withexp(D)b!

n

=2+2and ylelengths nand j iD isisomorphi to a(primitive)subdigraph ofthe digraphformedby taking the yle1!n!n 1! !2!1, andadding inthe ars i!i+j 1for 1in j+1.

Proof. AssumethatDisprimitivewithlargeexponentandhasaHamiltonyle. Then by Lemma 2.1, D hasonly oneHamilton yle and other yles of length j, whih by assumption is at least n=2. W.l.o.g. assume that the Hamilton yle is 1!n ! n 1! !2! 1;and that D ontainsthe ar 1!j. SineD has ylesofjust twodierentlengths,eahvertexiof D hasoutdegree2,andifthe outdegreeis 2,then theoutarsfrom vertexi arei!i 1andi!i+j 1. Here and throughouttheproof, allindies aremod n. As 1!j,theoutdegree ofvertex i is 1for eah i 2 fn j+2;:::;jg,sine otherwise1! j ! j 1! !i ! i+j 1 n!i+j 2 n!!2!1isayleoflengthlessthanj. Consequently iftheoutdegreeofvertexi2f2;:::;jgis2,theninfati2f2;:::;n j+1g. Ifthere isnosuhi,thenDhasthedesiredstruture,sineDhasatmostn j+1onseutive vertiesontheHamiltonyle(namely1andj+1;:::;n)ofoutdegree2. Heneforth suppose that there exists i2 f2;:::;n j+1gwith outdegree 2,and leti

1 be the maximumsuhi;thusi

1 n j+1onseutiveverties,asdesired. Sosupposeheneforththatn j+i

1

>j,that isi

1

>2j n0. Supposealsothat thereexistsi 2

havingoutdegree2. Theni 2 oneHamiltonyle(Lemma2.1),thisimpliesthat3j n=j,givingaontradition, sinegd(n;j)=1. Thusagaineahofvertiesi

1

+1;:::;j+i 1

1hasoutdegree1, andsoat mostn j+1onseutivevertieshaveoutdegree2,asdesired.

Fortheonverse,onsiderthemaximalsuhdigraphDwiththeaboveHamilton yleandthen j+1additionalars. Notethateahofthevertiesn j+2;:::;n D ismaximal,anyprimitivesubdigraphhasexponentatleastaslargeasexp(D).

Theorem 2.3. Suppose that n 3 is odd and j = (n 1)=2. Then D is a primitive digraph on n verties with exp(D) b!

n

=2+2 and yle lengths n and j i D isisomorphi toa(primitive)subdigraphof the digraph formedby takingthe yle 1 ! n ! n 1 ! ! 2 ! 1, and adding in the ars i ! i+j 1 for 1i(n 1)=2=j.

Proof. First assume that exp(D) b! n

=2+2 = (n 1) 2

(5)

ELA

34 S.Kirkland,D.D.OleskyandP.vandenDriesshe (n 1)+(n 1)(j 1) =j(n 1) =(n 1)

2

=2 from i to eah vertex of D. It followsthat there mustbe avertex with distane2 tothe nearestj yle. W.l.o.g. thatvertexisn,withvertexn 2onaj yle. Infatthatj yleisn 2!n 3! !(n 1)=2=j !n 2,otherwisen 1ornisonaj yle. Noneoftheverties j+1;j+2;;nan haveoutdegree2(otherwiseoneofn 1or nisonaj yle). However,thej 1additionalarsi!i+j 1fori=1;2;:::;j 1maybeinluded inD. ThusitfollowsthatD isasubdigraphofthedigraphthat hasthen 1yle andtheadditionalj arsasin thetheoremstatement.

For the onverse, note that if D is isomorphi to a subdigraph of the speied digraph, then a walk from n to n 1 of length greater than 1 must traverse the entireHamiltonyle, sowalksfrom nto n 1havelength1or n+1+

1 n+

2 j where

1 and

2

arenonnegativeintegers. Thus(byFrobenius-Shur)thereisnowalk from n to n 1 of length n+1+(n 1)(n 3)=2 1 = (n 1)

2

=2+1, so that exp(D)(n 1)

2

=2+2,asdesired.

Using the strutures of Hamiltonian digraphs D with largeexponents given in Theorems2.2and2.3,wedeterminetheexatvalueofexp(D)intermsofaparameter athatdependsonwhih j ylesourinD.

Corollary 2.4. Supposethat D isa primitive digraph on n3verties with exp(D)b!

n

=2+2, a Hamilton yleand all other yles of length j,where n> jd(n 1)=2e. Supposethat the Hamilton yleis1!n!n 1!!2!1. Let1an j+1if jn=2,and1aj ifj=(n 1)=2. SupposethatD also ontainsthe ar(s) 1!j anda!a+j 1,andthat ifi isavertexof outdegree 2, then1ia. Then exp(D)=n a+1+(n 2)j.

Proof. Theshortestwalkfromntoa+jthatpassesthroughavertexonajyle haslengthn a j+n,soitfollows(byFrobeniusShur)thatthereisnowalkfrom ntoa+joflengthn a j+n+(n 1)(j 1) 1.Thusexp(D)n a+1+(n 2)j. Further,sinethereisawalkbetweenanytwovertiesoflengthatmostn a j+n thatgoesthroughavertexonaj yle,itfollowsthatexp(D)n a+1+(n 2)j, andthusexp(D)=n a+1+(n 2)j.

Ifjn=2,notethatexp(D)=n a+1+(n 2)jj(n 1)for1an j+1, givingtheresultof[6,Corollary3.1℄whenk=nwithouttheadditionalassumption. Alsonote that if j =n 1and a=1,then exp(D)ahievesits maximumvalue of !

n

, and D=D(W n

),as desribed inSetion 1. Itis interestingto notethat in the aboveorollary,itisonlythevalueofathat inuenesthevalueoftheexponent;if 2i a 1,the presene or abseneof the ari !i+j 1does notaet the exponent. Forxed n andj, thisresult givesarange of valuesof exp(D) in whih therearenogaps;see[6℄.

(6)

ELA

DigraphswithLargeExponent 35 indies are taken mod (n 1). Vertex n repliates vertex v 2 f1;:::;n 1g in a digraph D on n verties iffor all a;b 2 f1;:::;n 1g;a! n i a! v and n !b iv !b. Thusin theadjaenymatrixA withD=D(A), therows(andolumns) orrespondingtovertiesnand varethesame.

Lemma 3.1. LetD beastronglyonneteddigraphonn5verties, withyle lengthsn 1and j,where n 1>j3. Supposethat 1!n 1!!2!1is ann 1yle,andthat!n. Thennhasoutdegreeatmost2,witheithern! 2 orn!+j 2orboth. Furthermore,if theoutdegreeofnis2,thentheindegree of nis1.

Proof. Firstsupposethat thereisanarn!a. Thenthere isaylen!a! a 1!!!noflengtha +2ifa>,orlengthn+1+a if>a. In theformer ase,a +2=j orn 1, from whih itfollowsthat a=+j 2or 2;inthelatterasesimilarlya=+j 2or 2. Thisestablishesthepossible outarsfrom n. Finally, assumethat n! 2and n !+j 2. Suppose that d!nforsomed6=. Asabovethetwooutarsfromnanbewritten asd 2and d+j 2. As d6=,it followsthat d 2=+j 2and 2=d+j 2. Hene d =j and d=j,givingaontradition. Thus theindegreeofnis1.

Corollary 3.2. LetD beasinLemma3.1. If n!,theneither +2!nor +2 j!norboth. Furthermore, ifthe indegreeof nis2,thenthe outdegreeof n is1.

Proof. FormD 0

byreversingtheorientationofeahar inD. ThenLemma 3.1 appliestoD

0

,andtheresultfollows.

Theorem 3.3. Supposethat n6andn 1>j>n=2. Then D isaprimitive digraph onnverties withexp(D)b!

n

=2+2andylelengthsn 1andj i(up to relabeling of verties andreversal of eah ar) D is a (primitive)subdigraph of a digraph formedby taking an n 1 yle1!n 1!n 2!!2!1, adding inthe ars a!a+j 1for 1an j,andone ofthe following:

(a)ars sothatn repliatesi 0

for axedi 0

2f1;:::;n 1g, (b)ars1!n;n!n 2andn!j 1.

Proof. First suppose that D is primitive with exp(D) b! n

=2+2and yle lengths n 1 and j. By relabeling the verties and/or reversing eah ar in D if neessary, we mayassume that the n 1 yle is asabove, and that vertex n has indegree1(Lemma3.1andCorollary3.2). Ifthesubdigraphinduedbyf1;:::;n 1g is not primitive, then this subdigraph is just the n 1 yle, and without loss of generality1!n,sobyLemma3.1theoutarsofnareasubsetofthosegivenin(b). Sosupposethatthesubdigraphinduedbyf1;:::;n 1gisprimitive. Itfollowsfrom aresult ofBeasley andKirkland [1, Theorem 1℄,that theexponentof this indued subdigraphisatleastb!

n

=2,whihinturnisatleastb! n 1

=2+2. Henewithout lossof generality, take the subdigraph to ontain thear 1 !j, and (by Theorem 2.2 ) to have the property that if a ! a+j 1, then 1 a n j. Let a

0 be themaximum suh a. Supposethat i!n and notefrom Lemma 3.1 that theonly possibleoutarsfromnaren!i 2andn!i+j 2. Considerthetwoases: (i) n6!i+j 2,(ii)n!i+j 2.

(7)

ELA

36 S.Kirkland,D.D.OleskyandP.vandenDriesshe above),D isasubdigraphofoneonstrutedasin(a)(withi

0

=i 1). Case(ii): n!i+j 2: If1i 1n jorn 1i 1a

0

+j 1,thenDisa subdigraphofoneoftheonesonstrutedin(a)(ifi6=1,withi

0

2:NotethatDontains thelosedwalka for some nonnegativeintegers

1

=1). Thelasttwooftheseimplythat j=n 1(aontradition). Therstofthese threeanonlyourif3j=2(n 1), and sinej andn 1arerelativelyprime, thisis also impossible. Consequently, it mustbetheasethat1i 1n j orn 1i 1a

0

+j 1,sothat Disa subgraphofoneoftheonesonstrutedin (a)or(b).

For theonverse,onsider amaximal digraph H onstrutedasin (a). Sine n repliates i

is formed from H by deleting n and its inidentars. NowH

0

isHamiltonianonn 1vertiesandhasthedigraphstruture ofTheorem 2.2,thusexp(H

0 )b!

n 1

=2+2:ApplyingCorollary2.4toH 0 (bytheusualFrobenius-Shur argument),sothat theexponentis atleast(n 2)j, givingtherequiredresultasin(a).

Note that the result of Theorem 3.3 does not hold for small values of n. For example,ifn=5adigraphasin(a)ofTheorem3.3withexponentequalto9<10= b!

5

=2+2an be onstruted bytaking a Hamiltonian digraphon 4 verties with twoadditionalarsfrom onseutivevertiesformingtwo3 yles(see,e.g.,[2,pp. 82-83℄)andvertex5repliatingvertex1.

Theorem 3.4. Supposethat n6iseven andj =n=2. Then D isaprimitive digraph onnverties withexp(D)b!

n

=2+2andylelengthsn 1andj i(up to relabeling of verties andreversal of eah ar) D is a (primitive)subdigraph of a digraph formedby taking an n 1 yle1!n 1!n 2!!2!1, adding inthe arsi!i+j 1for 1in=2 3, andoneofthe onstrutions(a)or (b) inTheorem3.3.

Proof. First suppose that D is primitive with exp(D) b! n

=2+2 and yle lengthsn 1and j. Asin theproofof Theorem3.3, assumethatthen 1yle is asabove,thatthesubdigraphinduedbyf1;:::;n 1gisprimitive,with1!j,and with theproperty that ifa! a+j 1,then 1a n j. Finally, alsosuppose that i!n. ByLemma 3.1andCorollary3.2there aretwoasestoonsider: (i)D ontainsexatlyoneofthearsn!i+j 2andi j!n,(ii)Dontainsneither thearn!i+j 2northeari j!n.

(8)

ELA

DigraphswithLargeExponent 37 n!n i+j. Withn i+2replaedbyi,thisdigraphontainsthearn!i+j 2. So withoutlossof generality, weassumethat thear n !i+j 2is in D. Sine vertexnisonaj-yleandsineD hasdiameter atmostn 1,itfollowsthatthere isawalkfromntoanyvertexoflengthn 1+(n 2)(n=2 1)=(n

2

2n+2)=2,and similarlythatfromanyvertexinDthereisawalktonoflength(n

2

2n+2)=2. Sine exp(D)b!

n

=2+2=(n 2

2n+6)=2,itmustbetheasethattherearevertiesu andv2f1;:::;n 1gsuhthatthereisnowalkfromutovoflength(n

2

2n+4)=2. Observethat for anyvertexw 2f1;:::;n 1gthat is onaj-yle, there is awalk fromwtoeveryvertexinf1;:::;n 1goflengthn 2+(n 2)(n=2 1)=(n

2

2n)=2. Asaresult,theshortestwalkfromutoavertexinf1;:::;n 1gthat isonaj-yle must havelength at least 3. It followsfrom this that in fat vertex n 1 mustbe at least3 stepsfrom thenearestj-yle, sothat in partiular, noneof n 1,n 2 and n 3an be onaj-yle. Thus in D, n j 6!n 1,n j 16!n 2and n j 26!n 3,andsoifa!a+j 1,thenan j 3=n=2 3. Further,it mustbetheasethat1in j 2,otherwiseoneofvertiesn 1,n 2andn 3 isonaj-yle(involvingvertiesiandn). Consequently,Danberelabeledtoyield asubdigraphofoneofthoseonstrutedin (a)withi

0

=i 1(if 2in j 2), or(b)(if i=1).

Case (ii): If D ontains neither the ar n ! i+j 2nor the ar i j ! n, then nhas both indegreeand outdegree 1,with i!n!i 2. Nowif D ontains either of the ars i 1 ! i+j 2 or i j ! i 1, then the labels of verties i 1and n anbeexhanged and ase (i)above applies. On the other hand if D ontains neither of those two ars, then i 1 has indegree and outdegree 1, with i!i 1!i 2,sothat vertexnrepliatesvertexi 1. Thus exp(D)=exp(D

0 ) whereD

0

isformed fromD bydeletingvertexnandthearsinidentwith it. From Corollary2.4 with n replaed byn 1, exp(D

0

)=n 1 a+1+(n 3)j where a = maxfb isavertexin D

0

: thear b ! b+j 1 isin D 0

g. Thus exp(D 0

) = exp(D)= n a+(n 3)n=2 (n

2

2n+6)=2,whih implies that a n=2 3. ConsequentlyDisasubdigraphofoneofthoseonstrutedin(a)withi

0

=i 1. Fortheonverse,onsider adigraph H onstrutedasin (a). Sinenrepliates i

0

, exp(H) = exp(H 0

), where H 0

is formed from H by deleting n and its inident ars. AppealingtoCorollary2.4withnreplaedbyn 1,a=n=2 3;andj=n=2, exp(H

0 )=(n

2

2n+6)=2=b! n

=2+2ifnis even. Finally, onsider thedigraph H onstrutedin(b). Evidentlythewalksfrom vertexn 1to n 3anonlyhave lengthsequalto2,orto2+n 1+

1

(n 1)+ 2

j fornonnegativeintegers 1

and

2

. Itfollowsthat thereisnowalkfrom n 1to n 3oflength(n 2

2n+4)=2,so thatexp(H)(n

2

2n+6)=2.

(9)

ELA

38 S.Kirkland,D.D.OleskyandP.vandenDriesshe

Theorem4.1. LetAbeaprimitive,rowstohastin-by-nmatrixwithn3and exp(A)b!

n

=2+2. Letk andj bethe twoylelengths inD(A)with nk>j. ThenAhasamultiplenonzeroeigenvaluei= r,whereristheuniquepositive rootof kx

j +jx

k

=k j. Whenthis isthe ase, kisodd andj iseven. Proof. ByTheorem1in[4℄,theharateristiequationofAisz

n

=0,forsome2(0;1). Thusanonzeroeigenvaluesatises z

Notethat1isalwaysaneigenvalue,and(byDesartes'ruleofsigns)thereisnoother positiveeigenvalue. Let=e

i

be aneigenvaluewith >0and 0< <2:By dierentiating, if is a multiple eigenvalue, then it also satises

j

=(k j)=k, giving

j

= (k j)=k and = 2l=j for some positive integer l < j. Further dierentiation showsthat thealgebraimultipliity of is 2. Bytaking imaginary partsoftheharateristiequation,

k

=(k j). Substitutinginto(2)givesk j

+j k

=k j. Theonverseisstraightforward.

From theharateristiequation, amatrixsatisfyingtheonditionsof Theorem 4.1haszeroasaneigenvalueik<n,anditsalgebraimultipliityisn k.

Thedigraphharaterizationsin Setions 2and 3leadto resultsaboutthe geo-metrimultipliitiesof eigenvaluesofprimitive,stohastimatrieswithlarge expo-nent.

Theorem 4.2. Let A be aprimitive, row stohasti n-by-n matrix with n 3 and exp(A) b!

n

=2+2. If D(A) is Hamiltonian, then eah eigenvalue of A is geometriallysimple.

Proof. Letthelengthoftheshorteryle(s)inD(A)bej d(n 1)=2ebyLemma 2.1. Forjn=2takep=n j+1,andforj=(n 1)=2takep=(n 1)=2. Thenby Theorems2.2and 2.3,withoutlossofgeneralitybypermutation similarityA=[a

ij ℄ hasthe following form: a

1;n unredued Hessenberg matrix. Bydeleting row1and olumnn, itanbeseenthat rankA(n 1)[7, Exerise22,p. 274℄. Similarly, rank(A I)=n 1foreah eigenvalueofA. This impliesthateaheigenvaluehasgeometri multipliityone. Asanexampleoftheaboveeigenvalueresults,onsiderthe3-by-3rowstohasti matrixAhavingk=3andj=2asintheproofofTheorem4.2with

1 =

2 =1=2. Note that exp(A)= 4. The harateristiequation of A is z

3

z (1 ) =0, with =3=4; thus A has eigenvalues1; 1=2; 1=2. Here 1=2isan eigenvalueof algebraimultipliity2(as preditedby Theorem4.1), but geometri multipliity1 (aspreditedbyTheorem4.2).

(10)

ELA

DigraphswithLargeExponent 39 eigenvalueof Aisgeometrially simple.

Proof. Sine k=n 1,=0isasimpleeigenvalueof A. Letthelengthofthe shorteryle(s)inD(A)bejdn=2ebyTheorem1.2. Forsimpliity,onlytheproof fortheasej >n=2is given,theasej =n=2is essentiallythe same. Forj>n=2, byTheorem3.3,withoutlossofgeneralitybypermutationsimilarityA=[a

ij ℄,orits transpose,musthaveoneoftwoformsorrespondingto(a)or(b).

Inase(a), without lossofgeneralitynanbetaken to repliateavertex with outdegree 1. (Thisis beause,byLemma 3.1, n haseither indegree oroutdegree 1, so,if neessary,takeA

T

.) Let vertex nrepliatevertexi where n 1i>n j. Consider the matrix A I, where 6= 0 and the digraph of A is as in Theorem 3.3(a). FormB from A I bydeleting therstrowand thelastolumn. Then B isblokuppertriangularwitha(1;1)blokoforderi 2anda(2;2)blokoforder n i+1. Sine the (1;1) blok is uppertriangular with positive diagonal entries, it is nonsingular. The (2;2) blok has the rst n i diagonal entries positive, in eah superdiagonalentry, anda1in thelast rowrstolumn. Everyother entry in the(2;2)blokiszero. Byexpandingabouttherstrow,thedeterminantofthe (2;2)blokhasmagnitude

n i

. Asaresult,B isnonsingular,sothat A I hasa submatrixofrankn 1.

In ase(b), a that A is primitive. Deleting rown and olumn n 1, theremaining submatrix of A I is upperHessenberg,andhasrankn 1forallvaluesof, beauseithasa uniquenonzerotransversaloflengthn 1(fromthesubdiagonaland(1;n)entriesof A I).

Thus rank (A I) = n 1 for every eigenvalue of A, and the geometri multipliityofeaheigenvalueisone.

We lose the paper with a lass of examples to show that for k n 2, a rowstohastimatrixwithlargeexponentanhaveaneigenvalueoflargegeometri multipliity. suh that0<<1,and formtheprimitiverowstohasti n-by-nmatrixA with nonzeroentriesasfollows:a

1;k 1 digraphofA anbeformedbystartingfrom D(W

k

)andtaking eahof theverties k+1;:::;nrepliating vertex3. Sinevertex3is repliatedn ktimes, there isa walk involvingany of the vertiesk+1;:::;n in D(A) i there is a orresponding walkinvolvingvertex3in D(W

(11)

ELA

40 S.Kirkland,D.D.OleskyandP.vandenDriesshe REFERENCES

[1℄ L.B. Beasleyand S.Kirkland.On the exponent of a primitivematrix ontaining a primitive submatrix.LinearAlgebraAppl.261:195{205,1997.

[2℄ R.A.BrualdiandH.J.Ryser.CombinatorialMatrixTheory.CambridgeUniversityPress,1991. [3℄ D.Huang.OnirulantBooleanmatries.LinearAlgebraAppl.136:107{117,1990.

[4℄ S.Kirkland.Anoteontheeigenvaluesofaprimitivematrixwithlargeexponent.LinearAlgebra Appl.253:103{112(1997).

[5℄ S.KirklandandM.Neumann.RegularMarkovhainsforwhihthetransitionmatrixhaslarge exponent.Preprint,1999.

[6℄ M.LewinandY.Vitek.Asystemofgapsintheexponentsetofprimitivematries.IllinoisJ. Math.,25:87{98,1981.

Referensi

Dokumen terkait

Pokja Datah Dawai ULP Wilayah VII UPBU Datah Dawai Mahakam Ulu akan melaksanakan Seleksi Sederhana Ulang dengan pascakualifikasi untuk paket pekerjaan jasa

Program arsitektur di sini dapat dijelaskan sebagai seluruh hal yang dibutuhkan dalam dan selama proses perencanaan dan perancangan arsitektur, mulai dari PENGUMPULAN DATA

Di sisi yang lain, oleh karena kekuatan ekonomi telah menjelmakan dirinya menjadi kekuasaan politik seperti dalam kasus di Guatemala, maka pemerintahan nasional menjadi tidak

Bersama ini Pokja ULP Kementerian Sosial berdasarkan Surat Tugas Kepala ULP Kementerian Sosial Nomor: 32/ PL.06.01/ ULP-KS/ 01/ 2017 tanggal 18 Januari 2017 telah

Argumen utama penulis adalah ketidakefektifan AATHP dipengaruhi oleh prinsip non-interference dalam ASEAN yang sangat kuat tecermin dalam isi perjanjian yang menjadikan ASEAN

Dalam konteks umat, seluruh bangsa yang menganut agama Islam di berbagai negara adalah bersaudara. Sedangkan dalam konteks global, setiap manusia di seluruh dunia memiliki hak

Data Flow Diagram (DFD) adalah suatu bentuk diagram alur yang dipakai pada metodologi pengembangan sistem yang terstruktur dan untuk.. mengembangkan arus data dalam sistem

Evaluasi harga dilakukan terhadap peserta yang dinilai lulus evaluasi administrasi dan Teknis, yaitu PT. MARSA MAIWA LESTARI dan PT. SEMARAK KARUNIA PRATAMA.