• Tidak ada hasil yang ditemukan

ANALISIS PENGARUH KEMIRINGAN DASAR SALURAN TERHADAP DISTRIBUSI KECEPATAN DAN DEBIT ALIRAN PADA VARIASI AMBANG LEBAR

N/A
N/A
Protected

Academic year: 2021

Membagikan "ANALISIS PENGARUH KEMIRINGAN DASAR SALURAN TERHADAP DISTRIBUSI KECEPATAN DAN DEBIT ALIRAN PADA VARIASI AMBANG LEBAR"

Copied!
12
0
0

Teks penuh

(1)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

1

ANALISIS PENGARUH KEMIRINGAN DASAR SALURAN

TERHADAP DISTRIBUSI KECEPATAN DAN DEBIT ALIRAN PADA

VARIASI AMBANG LEBAR

Restu Wigati1), Subekti 2), Kiki Tri Prihatini 3) 1)2)

Jurusan Teknik Sipil,Fakultas Teknik, Universitas Sultan Ageng Tirtayasa Jl. Jenderal Sudirman Km.3 Cilegon 42435.

E-mail : rezt.wiga@gmail.com, subekti_st@yahoo.co.id

3)

Alumni Program Studi S-1 Teknik Sipil,Fakultas Teknik, Universitas Sultan Ageng Tirtayasa Jl. Jenderal Sudirman Km.3 Cilegon 42435

ABSTRAK

Dalam pengukuran debit aliran pada saluran, alat yang umum digunakan adalah ambang lebar, selain Thomson, pintu sorong dan ambang tajam. Alat ukur debit dengan metode ambang lebar banyak digunakan untuk mengukur debit pada bangunan irigasi. Sejauh ini belum ada penelitian mengenai pengaruh kemiringan dasar saluran terhadap distribusi kecepatan dan debit aliran pada variasi ambang lebar. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh kemiringan dasar saluran (I) terhadap distribusi kecepatan (V) dan debit aliran (Q) pada variasi ambang lebar (A). Penelitian dilakukan dengan metode eksperimen di Laboratorium Hidraulika Fakultas Teknik UNTIRTA dengan menggunakan ambang lebar buatan pada alat Standard Tilting Flume. Hasil penelitian menunjukan bahwa variasi kemiringan dasar saluran (I) dapat meningkatkan kecepatan (V) dan debit aliran terukur (Qterukur) pada variasi ambang lebar (A). Hal ini

dikarenakan energi kinetik diatas ambang telah dialihkan kedalam energi potensial disebelah hilir saluran, sehingga adanya ambang menyebabkan perubahan karateristik aliran seperti kecepatan dan atau turbulensi. Sedangkan variasi kemiringan dasar saluran (I) dapat menurunkan debit aliran teroritis (Qteoritis) pada variasi

ambang lebar (A).

Kata kunci: kemiringan, ambang lebar, distribusi kecepatan, debit aliran ABSTRACT

In measuring of flow rate on the channel, the tool that is commonly used, is the width threshold in addition to Thomson, sliding doors and sharp threshold. Discharge measuring device using width threshold method is widely used to measure discharge in irrigation. So far no studies on the effects of the channel bottom slope on the distribution of velocity and flow rate on the width threshold variation. The purpose of this study was to determine the effect of the channel bottom slope (I) on the distribution of velocity (V) and flow rate (Q) on the width threshold variation (A). The study was conducted with experimental methods in hydraulics Laboratory, Faculty of Engineering UNTIRTA by using an artificial width threshold on the Standard Tilting Flume tool. The results showed that the variation of the channel bottom slope (I) can increase the velocity (V) and the measured flow rate (Qmeasured) on the width threshold variation (A). This is because the kinetic energy above

the threshold has been diverted into the adjacent downstream channel potential energy, so that the threshold causes changes in characteristics such as speed and flow or turbulence. While the variation of the channel bottom slope (I) can decrease theoretical flow rate (Qtheoretical) on the width threshold variation (A).

Keywords : slope, the threshold width, the velocity distribution, flow rate.

1. PENDAHULUAN

Sungai merupakan salah satu sumber air permukaan yang banyak dimanfaatkan, hal ini disebabkan karena pertimbangan kuantitas airnya yang cukup melimpah dan kemudahannya dalam memanfaatkan. Pemanfatan air sungai dapat dilakukan secara langsung atau dengan menggunakan bangunan-bangunan tertentu, seperti bangunan bendung dan bendungan.

Untuk memenuhi kebutuhan air yang tidak terlalu banyak, pemanfaatan air sungai secara langsung (free intake) sudah mencukupi. Namun, seiring dengan laju pertumbuhan penduduk, serta peningkatan jumlah dan jenis kegiatan untuk memenuhi berbagai kebutuhan air, diperlukan pembangunan bangunan tertentu untuk pemanfaatan sumber daya airnya secara lebih luas. Adanya sarana bangunan air

(2)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

2

memungkinkan adanya pengelolaan

(management) air sungai secara lebih baik. Pengukuran debit aliran pada saluran, alat yang umum digunakan adalah ambang lebar, Thomson, pintu sorong dan ambang tajam. Alat ukur debit dengan metode ini banyak digunakan untuk mengukur debit pada bangunan irigasi. Sejauh ini belum ada penelitian mengenai pengaruh kemiringan dasar saluran terhadap distribusi kecepatan dan debit aliran pada variasi ambang lebar. 2. TINJAUAN PUSTAKA

Peluap disebut ambang lebar apabila t > 0,66 H dengan t adalah tebal peluap dan H adalah tinggi peluapan. Titik A dan B adalah ujung hulu dan hilir dari peluap. Tinggi air di atas peluap pada titik A adalah H sedang pada titik B adalah h, dan b dalah lebar (panjang dalam arah melintang saluran) peluap (Bambang Triatmodjo, 1996).

Gambar 1.Peluap Ambang Lebar

Persamaan Bernoulli P1+½.ρ.v1 2 +h1.ρ.g = P2+½.ρ.v2 2 +h2.ρ.g (1)

Dari persamaan tersebut dapat ditentukan kecepatan aliran

)

(

2

g

H

h

V

(2) Debit aliran : Q = Cd b

2

g

x ( ) 3 2 h Hh  (3) Menurut Nur Yuwono (1977), untuk bermacam- macam bentuk ambang dengan menggunakan harga m sesuai dengan konstruksi ambangnya dan persamaannya sebagai berikut:

Qmaks = 1,71x m x Cd x b x H3/2 (4)

Ambang lebar adalah bagian dasar pelimpah yang berfungsi sebagai alat pengukur aliran. Bentuk penampang pelimpah aliran dari ambang tajam yaitu penampang berbentuk empat persegi panjang (SNI-03-6455.3-2000; SNI-033-6455.5-2000).

Menurut Chow (1959) dalam buku Open

Channel Hydraulics bahwa pengaruh akibat

percepatan gravitasi bumi terhadap aliran dinyatakan dengan rasio gaya inersia dengan gaya percepatan gravitasi bumi (g). Rasio ini diterapkan sebagai bilangan Froude (Fr) yang didefinisikan dengan rumus :

= . (5)

Gambar 2. Isometri Ambang Lebar pada Saluran 3. METODOLOGI PENELITIAN

Pelaksanaan penelitian ini dilakukan dalam beberapa tahapan, diantaranya tahap persiapan bahan dan peralatan, pembuatan media kerja, pengujian pendahuluan,

pengujian (running), analisis data dan kesimpulan.

a. Persiapan bahan dan peralatan

Tahap ini meliputi studi literatur serta mempersiapkan alat dan bahan yang akan

(3)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

3

diperlukan selama penelitian. Pada tahap ini

dilakukan pemeriksaan kesiapan komponen alat standard tilting flume, seperti pompa, bagian penggerak tilting dan instrumen pendukung yang lain. Serta membuat kajian tentang kemiringan dan ambang lebar yang akan digunakan. Peralatan yang digunakan dalam penelitian ini dikelompokan dalam dalam tiga bagian, yaitu :

1. Alat utama yang dipergunakan dalam pengujian berupa flume dengan panjang 3 m, lebar 0,078 m, dan tinggi 0.25 m. Serta kemiringan dasar saluran dapat diatur hingga maksimum +3% dan kemiringan minimum hingga -1%.

2. Model ambang dasar yang terbuat dari kayu dengan dimensi lebar 7,8 cm, tinggi 10,5 cm, tebal bervariasi mulai dari A1 = 6

cm, A2 = 9 cm, A3 = 12 cm, dan A4 = 15

cm.

3. Alat bantu yang dipergunakan selama proses pengujian ; antara lain tabung pitot, meteran/ penggaris, lilin/ malam.

b. Pengujian pendahuluan

Uji pendahuluan dimaksudkan untuk mengetahui karakteristik pola aliran berkaitan dengan angka Froude (Fr). Dalam penelitian ini aliran dianggap sebagai subkritik dimana Fr nilainya kurang dari satu.

c. Pengujian (running)

Tahap ini meliputi pengoperasian model dengan mencatat distribusi kecepatan aliran di tiga titik (hulu, diatas ambang, dan hilir), tinggi peluapan hulu, tinggi peluapan hilir, dan kedalaman muka air hilir.

4. ANALISIS DAN PEMBAHASAN a. Hasil uji pendahuluan

Pada penelitian ini kemiringan dasar saluran yang ditetapkan adalah 0.001 – 0.010, ambang dasar sungai yang dibuat yaitu 6 cm, 9 cm, 12 cm, dan 15 cm dengan lebar dan tinggi ambang dasar saluran konstan yaitu 7.8 cm dan 10.5 cm dan debit yang dialirkan adalah konstan dengan angka Froude (Fr) < 1.

Pemberian kode untuk setiap kali running bertujuan untuk membedakan jenis serta variasi dari ambang lebar, dimana kode tersebut terdiri dari enam digit yang terdiri dari huruf dan angka. Kode huruf pertama I menunjukan kemiringan dasar saluran (slope), kode huruf kedua menunjukan menunjukan variasi debit aliran. Angka-angka yang terdapat dibelakang huruf menunjukan urutan variasinya.

b. Hasil pengujian (running)

Data hasil uji aliran yang telah dilakukan disajikan pada Tabel 1. berikut ini.

Tabel 1. Hasil uji aliran No.

Δh Δs

Cd g Kode A b

Tinggi Muka Air Muka Air Pitot H h Dambang Dhilir h₁ h₂ h₃ (cm) (cm) (m/det²) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) 1. 0.245 245 0.60 9.81 I₁Qb₁A₁ 6 7.8 4.9 3.5 4.0 2.2 1.0 1.4 7.5 I₁Qb₁A₂ 9 7.8 5.6 3.3 4.0 2.2 1.0 1.5 7.9 I₁Qb₁A₃ 12 7.8 6.0 3.2 3.8 2.2 1.0 1.7 8.5 I₁Qb₁A₄ 15 7.8 6.1 3.0 3.4 2.2 1.0 1.8 10.5 2. 0.49 245 0.60 9.81 I₂Qb₂A₁ 6 7.8 5.1 3.4 3.7 2.2 1.0 1.7 7.8 I₂Qb₂A₂ 9 7.8 5.4 3.4 3.7 2.2 1.0 1.8 8.3 I₂Qb₂A₃ 12 7.8 5.7 3.4 3.6 2.2 1.0 1.7 8.8 I₂Qb₂A₄ 15 7.8 5.8 3.3 3.5 2.2 1.0 1.8 9.8 3. 0.735 245 0.60 9.81 I₃Qb₃A₁ 6 7.8 5.2 3.5 3.7 2.2 1.0 1.7 8.8 I₃Qb₃A₂ 9 7.8 5.4 3.4 3.5 2.2 1.0 1.8 9.6 I₃Qb₃A₃ 12 7.8 5.7 3.2 3.4 2.2 1.0 1.9 10.3 I₃Qb₃A₄ 15 7.8 5.9 3.0 3.4 2.2 1.0 1.9 10.8 4. 0.98 245 0.60 9.81 I₄Qb₄A₁ 6 7.8 5.2 3.5 3.6 2.2 1.0 1.8 9.3 I₄Qb₄A₂ 9 7.8 5.5 3.4 3.5 2.2 1.0 1.9 10.8 I₄Qb₄A₃ 12 7.8 5.7 3.3 3.3 2.2 1.0 2.0 10.8 I₄Qb₄A₄ 15 7.8 5.8 3.0 3.0 2.2 1.0 2.2 11.3

(4)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

4

Tabel 1. Hasil uji aliran (Lanjutan)

No.

Δh Δs Cd

g

Kode

A b Tinggi Muka Air Muka Air Pitot

H h Dambang Dhilir h₁ h₂ h₃ (cm) (cm) (m/det²) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) 5. 1.225 245 0.60 9.81 I₅Qb₅A₁ 6 7.8 5.1 3.5 3.5 2.2 1.0 1.9 9.8 I₅Qb₅A₂ 9 7.8 5.4 3.4 3.5 2.2 1.0 1.9 9.8 I₅Qb₅A₃ 12 7.8 5.7 3.2 3.3 2.2 1.0 2.0 10.8 I₅Qb₅A₄ 15 7.8 5.9 3.0 3.0 2.2 1.0 2.4 11.8 6. 1.47 245 0.60 9.81 I₆Qb₆A₁ 6 7.8 5.1 3.5 3.4 2.2 1.0 1.9 9.3 I₆Qb₆A₂ 9 7.8 5.5 3.4 3.4 2.2 1.0 2.0 9.8 I₆Qb₆A₃ 12 7.8 5.8 3.2 3.0 2.2 1.0 2.4 10.3 I₆Qb₆A₄ 15 7.8 5.9 3.0 2.8 2.2 1.0 2.5 12.3 7. 1.715 245 0.60 9.81 I₇Qb₇A₁ 6 7.8 5.1 3.5 3.4 2.2 1.0 1.9 8.8 I₇Qb₇A₂ 9 7.8 5.4 3.4 3.4 2.2 1.0 2.0 10.3 I₇Qb₇A₃ 12 7.8 5.7 3.1 3.2 2.2 1.0 2.0 11.8 I₇Qb₇A₄ 15 7.8 5.9 3.0 2.8 2.2 1.0 2.5 11.8 8. 1.96 245 0.60 9.81 I₈Qb₈A₁ 6 7.8 5.1 3.5 3.3 2.2 1.0 2.1 8.8 I₈Qb₈A₂ 9 7.8 5.5 3.4 3.4 2.2 1.0 2.0 10.3 I₈Qb₈A₃ 12 7.8 5.8 3.2 3.3 2.2 1.0 2.0 11.8 I₈Qb₈A₄ 15 7.8 5.9 3.0 2.8 2.2 1.0 2.5 11.8 9. 2.205 245 0.60 9.81 I₉Qb₉A₁ 6 7.8 5.1 3.5 3.4 2.2 1.0 2.0 9.8 I₉Qb₉A₂ 9 7.8 5.5 3.4 3.3 2.2 1.0 2.1 10.8 I₉Qb₉A₃ 12 7.8 5.8 3.2 3.1 2.2 1.0 2.2 11.8 I₉Qb₉A₄ 15 7.8 5.9 3.0 2.8 2.2 1.0 2.4 12.3 10. 2.450 245 0.60 9.81 I₁₀Qb₁₀A₁ 6 7.8 5.1 3.5 3.4 2.2 1.0 2.0 9.8 I₁₀Qb₁₀A₂ 9 7.8 5.5 3.4 3.3 2.2 1.0 2.1 10.8 I₁₀Qb₁₀A₃ 12 7.8 5.8 3.2 3.1 2.2 1.0 2.3 11.3 I₁₀Qb₁₀A₄ 15 7.8 5.9 3.0 2.8 2.2 1.0 2.5 12.3

Keterangan : Δh = beda tinggi ;Δs = jarak kemiringan; cd = koefisien debit; g = percepatan gravitasi; A = ambang

lebar; b = lebar saluran; Dambang = kedalaman aliran diatas ambang; Dhilir = kedalaman aliran hilir; H =

tinggi permukaan air hulu; h = tinggi permukaan air hilir; h₁ = tinggi permukaan air tabung pitot hulu; h₂ = tinggi permukaan air tabung pitot atas ambang; h₃ = tinggi permukaan air tabung pitot hilir.

c. Analisis data

Hasil analisa debit teoritis dan debit terukur dapat dilihat pada pada Tabel 2 berikut ini.

Tabel 2. Analisa data

No. I Kode A Qteoritis La V₁ V₂ V₃ Qterukur Frambang Frhilir (cm) (m³/det) (m²) (m/det) (m/det) (m/det) (m³/det)

1. 0.001 I₁Qb₁A₁ 6 0.00160 0.0031 0.443 0.524 1.213 0.00164 0.084 0.261 I₁Qb₁A₂ 9 0.00161 0.0031 0.443 0.542 1.245 0.00169 0.087 0.268 I₁Qb₁A₃ 12 0.00162 0.0030 0.443 0.578 1.291 0.00171 0.095 0.278 I₁Qb₁A₄ 15 0.00153 0.0027 0.443 0.594 1.435 0.00158 0.103 0.309 2. 0.002 I₂Qb₂A₁ 6 0.00158 0.0029 0.443 0.578 1.237 0.00167 0.096 0.266 I₂Qb₂A₂ 9 0.00163 0.0029 0.443 0.594 1.276 0.00172 0.099 0.275 I₂Qb₂A₃ 12 0.00167 0.0028 0.443 0.578 1.314 0.00162 0.097 0.283 I₂Qb₂A₄ 15 0.00164 0.0027 0.443 0.594 1.387 0.00162 0.101 0.298

(5)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

5

Tabel 1. Hasil uji aliran (Lanjutan)

No. I Kode A Qteoritis La V₁ V₂ V₃ Qterukur Frambang Frhilir (cm) (m³/det) (m²) (m/det) (m/det) (m/det) (m³/det)

3. 0.003 I₃Qb₃A₁ 6 0.00165 0.0029 0.443 0.578 1.314 0.00167 0.096 0.283 I₃Qb₃A₂ 9 0.00163 0.0027 0.443 0.594 1.372 0.00162 0.101 0.295 I₃Qb₃A₃ 12 0.00158 0.0027 0.443 0.611 1.422 0.00162 0.106 0.306 I₃Qb₃A₄ 15 0.00150 0.0027 0.443 0.611 1.456 0.00162 0.106 0.313 4. 0.004 I₄Qb₄A₁ 6 0.00165 0.0028 0.443 0.594 1.351 0.00167 0.100 0.291 I₄Qb₄A₂ 9 0.00164 0.0027 0.443 0.611 1.456 0.00167 0.104 0.313 I₄Qb₄A₃ 12 0.00163 0.0026 0.443 0.626 1.456 0.00161 0.110 0.313 I₄Qb₄A₄ 15 0.00149 0.0023 0.443 0.657 1.489 0.00154 0.121 0.321 5. 0.005 I₅Qb₅A₁ 6 0.00163 0.0027 0.443 0.611 1.387 0.00167 0.104 0.298 I₅Qb₅A₂ 9 0.00163 0.0027 0.443 0.611 1.387 0.00167 0.104 0.298 I₅Qb₅A₃ 12 0.00158 0.0026 0.443 0.626 1.456 0.00161 0.110 0.313 I₅Qb₅A₄ 15 0.00150 0.0023 0.443 0.686 1.522 0.00161 0.126 0.328 6. 0.006 I₆Qb₆A₁ 6 0.00163 0.0027 0.443 0.611 1.351 0.00162 0.106 0.291 I₆Qb₆A₂ 9 0.00164 0.0027 0.443 0.626 1.387 0.00166 0.108 0.298 I₆Qb₆A₃ 12 0.00159 0.0023 0.443 0.686 1.422 0.00161 0.126 0.306 I₆Qb₆A₄ 15 0.00150 0.0022 0.443 0.700 1.553 0.00153 0.134 0.334 7. 0.007 I₇Qb₇A₁ 6 0.00163 0.0027 0.443 0.611 1.314 0.00162 0.106 0.283 I₇Qb₇A₂ 9 0.00163 0.0027 0.443 0.626 1.422 0.00166 0.108 0.306 I₇Qb₇A₃ 12 0.00153 0.0025 0.443 0.626 1.522 0.00156 0.112 0.328 I₇Qb₇A₄ 15 0.00150 0.0022 0.443 0.700 1.522 0.00153 0.134 0.328 8. 0.008 I₈Qb₈A₁ 6 0.00163 0.0026 0.443 0.642 1.314 0.00165 0.113 0.283 I₈Qb₈A₂ 9 0.00164 0.0027 0.443 0.626 1.422 0.00166 0.108 0.306 I₈Qb₈A₃ 12 0.00159 0.0026 0.443 0.626 1.522 0.00161 0.110 0.328 I₈Qb₈A₄ 15 0.00150 0.0022 0.443 0.700 1.522 0.00153 0.134 0.328 9. 0.009 I₉Qb₉A₁ 6 0.00163 0.0027 0.443 0.626 1.387 0.00166 0.108 0.298 I₉Qb₉A₂ 9 0.00164 0.0026 0.443 0.642 1.456 0.00165 0.113 0.313 I₉Qb₉A₃ 12 0.00159 0.0024 0.443 0.657 1.522 0.00159 0.119 0.328 I₉Qb₉A₄ 15 0.00150 0.0022 0.443 0.686 1.553 0.00150 0.131 0.334 10. 0.010 I₁₀Qb₁₀A₁ 6 0.00163 0.0027 0.443 0.626 1.387 0.00166 0.108 0.298 I₁₀Qb₁₀A₂ 9 0.00164 0.0026 0.443 0.642 1.456 0.00165 0.113 0.313 I₁₀Qb₁₀A₃ 12 0.00159 0.0024 0.443 0.672 1.489 0.00162 0.122 0.321 I₁₀Qb₁₀A₄ 15 0.00150 0.0022 0.443 0.700 1.553 0.00153 0.134 0.334

Keterangan : I = kemiringan saluran; A = ambang lebar; Qteoritis = 1.71 Cd x b x H¹’⁵; La = Luas alas saluran; V₁ =

kecepatan aliran hulu; V₂ = kecepatan aliran atas ambang; V₃ = kecepatan aliran hilir; Qterukur = V2 x

(6)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

6

Gambar 3. PengaruhKemiringan Dasar Saluran terhadap Distribusi

Kecepatan diatas Ambang (V2)

Gambar 3 terlihat bahwa pada A1, A2, dan A3

distribusi kecepatan aliran diatas ambang(V2)

mengalami fluktuasi (naik turun) tetapi cenderung meningkat, sedangkan pada A4

terlihat bahwa distribusi kecepatan aliran diatas ambang lebih cenderung meningkat.

Dengan demikian semakin besar kemiringan dasar saluran (I) maka semakin besar distribusi kecepatan aliran diatas ambang (V2)

pada variasi ambang lebar begitu juga sebaliknya.

Gambar 4.PengaruhAmbang Lebar terhadap Distribusi Kecepatan diatas Ambang (V2)

Pada Gambar 4 terlihat juga bahwa variasi kemiringan dasar saluran (I) cenderung meningkatkan distribusi kecepatan aliran diatas ambang (V2) pada variasi ambang

lebarnya (A), kecuali di kemiringan dasar saluran I2 (0.002) yang sempat mengalami

fluktuasi (naik turun) yang kemudian kembali. Dengan demikian variasi ambang lebar (A)

juga telah mempengaruhi distribusi kecepatan aliran diatas ambang (V2). Hal ini dikarenakan

energi kinetik dan energi potensial diatas ambang yang hendak mendekati sisi terjunan akan menyebabkan aliran mengalir sedikit lebih cepat (kecepatan aliran meningkat).

Dari Gambar 5 berikut terlihat bahwa pada variasi kemiringan dasar saluran (I), y = 9,901x + 0,545 R² = 0,786 y = 8,800x + 0,563 R² = 0,811 y = 9,354x + 0,577 R² = 0,625 y = 13,28x + 0,589 R² = 0,770 0,500 0,600 0,700 0,800 0 ,0 0 0 0 ,0 0 1 0 ,0 0 2 0 ,0 0 3 0 ,0 0 4 0 ,0 0 5 0 ,0 0 6 0 ,0 0 7 0 ,0 0 8 0 ,0 0 9 0 ,0 1 0 0 ,0 1 1 V (m /d e t)

Kemiringan Dasar Saluran (I) I terhadap V₂ A₁ = 6 cm A₂ = 9 cm A₃ = 12 cm A₄ = 15 cm y = 0,008x + 0,473 R² = 0,979 y = 0,001x + 0,574 R² = 0,2 y = 0,003x + 0,557 R² = 0,889 y = 0,006x + 0,550 R² = 0,970 y = 0,008x + 0,548 R² = 0,759 y = 0,011x + 0,540 R² = 0,931 y = 0,009x + 0,546 R² = 0,744 y = 0,005x + 0,587 R² = 0,414 y = 0,006x + 0,584 R² = 0,970 y = 0,008x + 0,572 R² = 0,982 0,500 0,550 0,600 0,650 0,700 0,750 3 6 9 12 15 18 V (m /d e t)

Ambang Lebar (A, cm) A terhadap V₂ I₁ = 0.001 I₂ = 0.002 I₃ = 0.003 I₄ = 0.004 I₅ = 0.005 I₆ = 0.006 I₇ = 0.007 I₈ = 0.008 I₉ = 0.009 I₁₀ = 0.010

(7)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

7

distribusi kecepatan aliran hilir (V3)

mengalami fluktuasi (naik turun) tetapi lebih cenderung meningkat distribusi kecepatan aliran hilirnya (V3). Dengan demikian

semakin besar kemiringan dasar saluran (I) maka semakin besar juga distribusi kecepatan hilirnya (V3) pada variasi ambang lebar (A)

begitu juga sebaliknya.

Gambar 5.PengaruhKemiringan Dasar Saluran terhadap Distribusi Kecepatan Hilir (V3)

Gambar 6.PengaruhAmbang Lebar terhadap Distribusi Kecepatan Hilir (V3)

Sedangkan Gambar 6 terlihat bahwa variasi kemiringan dasar saluran (I) cenderung mengalami peningkatan distribusi kecepatan aliran hilir (V3) pada variasi ambang lebarnya

(A). Dengan demikian terlihat bahwa variasi ambang lebar (A) sangat mempengaruhi

distribusi kecepatan hilir saluran (V3), karena

ada energi potensial diatas ambang lebar dan hilir saluran sehingga kecepatan aliran meningkat. Hal ini disebabkan ada perbedaan tinggi muka air di hulu, diatas ambang, dan hilir. y = 14,92x + 1,243 R² = 0,551 y = 19,97x + 1,277 R² = 0,669 y = 23,60x + 1,311 R² = 0,747 y = 16,30x + 1,409 R² = 0,754 1,100 1,200 1,300 1,400 1,500 1,600 0 ,0 0 0 0 ,0 0 1 0 ,0 0 2 0 ,0 0 3 0 ,0 0 4 0 ,0 0 5 0 ,0 0 6 0 ,0 0 7 0 ,0 0 8 0 ,0 0 9 0 ,0 1 0 0 ,0 1 1 V (m /d e t)

Kemiringan Dasar Saluran (I) I terhadap V₃ A₁ = 6 cm A₂ = 9 cm A₃ = 12 cm A₄ = 15 cm y = 0,023x + 1,046 R² = 0,879 y = 0,016x + 1,133 R² = 0,971 y = 0,015x + 1,224 R² = 0,986 y = 0,013x + 1,292 R² = 0,793 y = 0,015x + 1,271 R² = 0,892 y = 0,021x + 1,203 R² = 0,881 y = 0,024x + 1,191 R² = 0,887 y = 0,024x + 1,191 R² = 0,887 y = 0,018x + 1,281 R² = 0,976 y = 0,017x + 1,284 R² = 0,984 1,150 1,200 1,250 1,300 1,350 1,400 1,450 1,500 1,550 1,600 3 6 9 12 15 18 V (m /d e t)

Ambang Lebar (A, cm) A terhadap V₃ I₁ = 0.001 I₂ = 0.002 I₃ = 0.003 I₄ = 0.004 I₅ = 0.005 I₆ = 0.006 I₇ = 0.007 I₈ = 0.008 I₉ = 0.009 I₁₀ = 0.010

(8)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

8

Gambar 7. Pengaruh Kemiringan Dasar Saluran terhadap Debit Aliran Terukur Dari Gambar 7 terlihat bahwa variasi

kemiringan dasar saluran (I) menyebabkan debit aliran terukur (Qterukur) mengalami

fluktuasi (naik turun) tetapi lebih cenderung meningkat. Hal tersebut dikarenakan debit aliran terukur (Qterukur) dengan distribusi

kecepatan aliran diatas ambang (V2)

merupakan saling berkaitan sehingga apabila semakin besar kecepatan aliran diatas ambang (V2) maka debit aliran terukur (Qterukur)

semakin besar begitu juga sebaliknya.

Gambar 8. Pengaruh Ambang Lebar terhadap Debit Aliran Terukur Gambar 8 terlihat bahwa variasi ambang

lebar (A) menyebabkan debit aliran terukur

(Qterukur) mengalami fluktuasi (naik turun)

tetapi lebih cenderung menurun. y = -0,000x + 0,001 R² = 0,004 y = -0,003x + 0,001 R² = 0,220 y = -0,007x + 0,001 R² = 0,341 y = -0,011x + 0,001 R² = 0,575 0,00145 0,00150 0,00155 0,00160 0,00165 0,00170 0,00175 -0 ,0 0 1 0 ,0 0 0 0 ,0 0 1 0 ,0 0 2 0 ,0 0 3 0 ,0 0 4 0 ,0 0 5 0 ,0 0 6 0 ,0 0 7 0 ,0 0 8 0 ,0 0 9 0 ,0 1 0 0 ,0 1 1 Q te ru k u r (m ³/ d e t)

Kemiringan Dasar Saluran (I) I terhadap Qterukur A₁ = 6 cm A₂ = 9 cm A₃ = 12 cm A₄ = 15 cm y = -5E-06x + 0,001 R² = 0,111 y = -8E-06x + 0,001 R² = 0,434 y = -5E-06x + 0,001 R² = 0,653 y = -1E-05x + 0,001 R² = 0,878 y = -8E-06x + 0,001 R² = 0,841 y = -1E-05x + 0,001 R² = 0,581 y = -1E-05x + 0,001 R² = 0,656 y = -1E-05x + 0,001 R² = 0,802 y = -2E-05x + 0,001 R² = 0,900 y = -1E-05x + 0,001 R² = 0,821 0,00148 0,00151 0,00153 0,00156 0,00158 0,00161 0,00163 0,00166 0,00168 0,00171 0,00173 3 6 9 12 15 18 Q te ru k u r (m ³/ d e t)

Ambang Lebar (A, cm) A terhadap Qterukur I₁ = 0.001 I₂ = 0.002 I₃ = 0.003 I₄ = 0.004 I₅ = 0.005 I₆ = 0.006 I₇ = 0.007 I₈ = 0.008 I₉ = 0.009 I₁₀ = 0.010

(9)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

9

Gambar 9.PengaruhKemiringan Dasar Saluran terhadap

Debit Aliran Teoritis. Dari Gambar 9 terlihat bahwa pada A1

debit aliran teoritis saluran (Qteoritis)

mengalami penurunan di kemiringan dasar saluran I2 (0.002) kemudian debit aliran

teoritis (Qteoritis) meningkat di kemiringan

dasar I3 (0.003) dan cenderung konstan pada

variasi kemiringan dasar saluran lainnya. Sedangkan pada A2 debit aliran teoritis

(Qteoritis) cenderung meningkat kemudian

konstan walaupun tidak signifikan. Lalu pada A3 dengan variasi kemiringan dasar saluran (I)

debit aliran teoritis (Qteoritis) mengalami

fluktuasi (naik turun) tetapi lebih cenderung menurun. Sementara pada A4 debit aliran

teoritis (Qteoritis) mengalami peningkatan pada

kemiringan dasar saluran I2 (0.002) yang

kemudian debit aliran teoritis (Qteoritis)

mengalami penurunan di kemiringan dasar saluran I3 (0.003) setelah itu debit aliran

teoritis (Qteoritis) cenderung stabil / konstan

pada variasi kemiringan dasar saluran (I) lainnya. Dengan demikian hal tersebut menunjukkan bahwa semakin besar kemiringan dasar saluran (I) maka semakin besar debit aliran teoritisnya (Qteoritis) begitu

juga sebaliknya. Hal tersebut terlihat bahwa adanya variasi kemiringan dasar saluran (I), debit aliran teoritis (Qteoritis) cenderung

meningkat.

Gambar 10.PengaruhAmbang Lebar terhadap Debit Aliran Teoritis y = 0,002x + 0,001 R² = 0,206 y = 0,002x + 0,001 R² = 0,538 y = -0,006x + 0,001 R² = 0,253 y = -0,006x + 0,001 R² = 0,231 0,00145 0,00150 0,00155 0,00160 0,00165 0,00170 0 ,0 0 0 0 ,0 0 1 0 ,0 0 2 0 ,0 0 3 0 ,0 0 4 0 ,0 0 5 0 ,0 0 6 0 ,0 0 7 0 ,0 0 8 0 ,0 0 9 0 ,0 1 0 0 ,0 1 1 Q te o ri ti s (m ³/ d e t)

Kemiringan Dasar Saluran (I) I terhadap Qteoritis A₁ = 6 cm A₂ = 9 cm A₃ = 12 cm A₄ = 15 cm y = -3E-06x2+ 5E-05x + 0,001 R² = 0,922 y = -2E-06x2+ 5E-05x + 0,001 R² = 0,927 y = 1E-07x3- 5E-06x2+ 5E-05x + 0,001

R² = 1

y = -6E-07x3+ 2E-05x2- 0,000x + 0,002 R² = 1 y = 2E-07x3- 9E-06x2+ 9E-05x + 0,001

R² = 1 y = 2E-07x3- 1E-05x2+ 0,000x + 0,001 R² = 1 y = -6E-07x2- 2E-06x + 0,001 R² = 0,875 y = 2E-07x3- 1E-05x2+ 0,000x + 0,001 R² = 1 y = 2E-07x3- 1E-05x2+ 0,000x + 0,001 R² = 1 y = 2E-07x3- 1E-05x2+ 0,000x + 0,001 R² = 1 0,00145 0,00150 0,00155 0,00160 0,00165 0,00170 3 6 9 12 15 18 Qte or it is (m ³/ d e t)

Ambang Lebar (A, cm) A terhadap Qteoritis I₁ = 0.001 I₂ = 0.002 I₃ = 0.003 I₄ = 0.004 I₅ = 0.005 I₆ = 0.006 I₇ = 0.007 I₈ = 0.008 I₉ = 0.009 I₁₀ = 0.010

(10)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa |

10

Gambar 10 terlihat bahwa di kemiringan

dasar saluran I1 dan I2, debit aliran teoritis

(Qteoritis) meningkatan pada ambang lebar A2

dan A3 ( 9 cm dan 12 cm) yang kemudian

debit aliran teoritis (Qteoritis) mengalami

penurunan pada ambang lebar A4 (15 cm).

Sedangkan di kemiringan dasar saluran I3 –

I10, debit aliran teoritis (Qteoritis) meningkatan

pada ambang lebar A2 (9 cm) yang kemudian

mengalami penurunan pada ambang

selanjutnya. Dengan demikian semakin besar ambang lebar maka semakin kecil debit aliran teoritisnya (Qteoritis) begitu juga sebaliknya.

Gambar 11 terlihat bahwa distribusi kecepatan aliran ambang saluran (V2) dengan

angka Froude ambang (Frambang) adalah

berbanding lurus jadi apabila kecepatan aliran ambang saluran (V2) bertambah maka angka

Froude ambang (Fr) akan bertambah begitu

juga sebaliknya.

Gambar 11.PengaruhDistribusi Kecepatan diatas Ambang terhadap Angka Froude (Fr)

Gambar 12.PengaruhDistribusi Kecepatan Hilir terhadap Angka Froude (Fr) Gambar 12 terlihat bahwa distribusi kecepatan

aliran hilir saluran (V3) dengan angka Froude

(Fr) adalah berbanding lurus jadi apabila kecepatan aliran hilir saluran (V3) bertambah

maka angka Froude (Fr) akan bertambah begitu juga sebaliknya.

y = 0,293x - 0,074 R² = 0,985 0,075 0,083 0,091 0,099 0,107 0,115 0,123 0,131 0,139 0,500 0,550 0,600 0,650 0,700 A n g k a F ro u d e A m b a n g ( F ram b a n g ) V2 (m/det) V2terhadap Frambang y = 0,215x - 3E-14 R² = 1 0,250 0,270 0,290 0,310 0,330 0,350 1,150 1,250 1,350 1,450 1,550 A n g k a F ro u d e H il ir (F r h il ir ) V₃ (m/det) V₃ terhadap Frhilir

(11)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa

11

Gambar 13. Pengaruh Debit Aliran Terukur (Qterukur) terhadap

Angka Froude hilir (Frhilir)

Gambar 13 terlihat bahwa debit aliran terukur (Qterukur) dengan angka Froude hilir

(Frhilir) adalah berbanding lurus jadi apabila

debit aliran terukur (Qterukur) bertambah maka

angka Froude hilir (Frhilir) akan bertambah

begitu juga sebaliknya. Berdasarkan Tabel2. perhitungan data penelitian antara Qteoritis dan

Qterukur terjadi perbedaan besar debit aliran

yaitu deviasi rata-rata sebesar 1.84% dan deviasi absolut rata-rata sebesar 2.21% . Jadi penyimpangan data antara Qteoritis dan Qterukur

cukup kecil dengan penyimpangan kurang 5%, sehingga data penyimpangan yang terjadi bias diabaikan.

5. KESIMPULAN DAN SARAN a. Kesimpulan

Berdasarkan hasil analisa data dan pembahasan sebelumnya maka dapat disimpulkan bahwa :

1. Pada penelitian ini semakin besar kemiringan dasar saluran (I) distribusi kecepatan aliran hulunya (V1) tidak

mengalami perubahan pada setiap variasi ambang lebar (A). Sedangkan semakin besar kemiringan dasar saluran (I) maka semakin besar distribusi kecepatan aliran diatas ambang (V2), distribusi kecepatan

aliran hilirnya (V3) dan debit aliran

terukurnya (Qterukur) pada setiap variasi

ambang lebar (A).

2. Pada penelitian ini semakin tebal ukuran ambang lebar (A) maka semakin kecil debit aliran teoritis dan terukurnya

(Qteoritis dan Qterukur) pada setiap variasi

kemiringan dasar saluran (I).

3. Pada penelitian ini kecepatan aliran di titik bagian hulu, diatas ambang dan hilir mengalami perbedaan (kecepatan meningkat), karena ada energi potensial diatas ambang lebar dan hilir saluran sehingga kecepatan aliran meningkat. Hal ini karena ada perbedaan tinggi muka air di hulu, diatas ambang, dan hilir.

b. Saran

Berdasarkan hasil beberapa kesimpulan analisa diatas maka disarankan hal-hal sebagai berikut :

1. Sebelum melakukan penelitian sebaiknya perlu dilakukan kalibrasi alat dan debit aliran untuk mendapatkan hasil penelitian yang lebih sesuai.

2. Penelitian ini dapat dikembangkan lebih lanjut dengan memperhatikan variasi-variasi bentuk pelimpah, tinggi dan jenis material ambang.

3. Hasil penelitian ini akan lebih optimal dan berhasil apabila variasi dengan tebal ambang lebar dilakukan semakin banyak sehingga pengaruh yang optimal dapat diketahui, walaupun akan memerlukan waktu cukup lama.

6. DAFTAR PUSTAKA

Anonim. Regresi Linier, Regresi Eksponensial

dan Regresi Polinomial. Politeknik

Elektronika Negeri Surabaya–

y = -182,4x + 0,406 R² = 0,578 0,080 0,090 0,100 0,110 0,120 0,130 0,140 0 ,0 0 1 4 5 0 ,0 0 1 5 0 0 ,0 0 1 5 5 0 ,0 0 1 6 0 0 ,0 0 1 6 5 0 ,0 0 1 7 0 0 ,0 0 1 7 5 A n g k a F ro u d e A m b a n g ( F ram b a n g ) Qterukur(m³/det) Qterukurterhadap Frambang

(12)

Jurusan Teknik Sipil Universitas Sultan Ageng Tirtayasa

12

ITS.(online 27 Desember 2011 10.00

AM) available

athttp://www.4shared.com/get/R9Uu6bc D/bab9tm.html/

Bambang Triatmodjo. 1996. Hidraulika I. Beta Offset. Yogyakarta.

Bambang Triatmodjo. 1996. Hidraulika II. Beta Offset. Yogyakarta.

Cahyo Ikhlas. 2006. Analisis Distribusi

Kecepatan Aliran Seragam Pada

Saluran Terbuka Tampang Segiempat.

Universitas Sebelas Maret, Semarang. (online3 Mei 2011/11.48PM)availableat

http://media.sipil.ft.uns.ac.id/index.php/ mts/article/viewFile/16/16

Dirjen Pengairan Departemen Pekerjaan Umum. 1986. Metode Pengukuran Debit

Pada Saluran Terbuka Dengan Ambang

Tajam Persegi Panjang.

(SNI-03-6455.3-2000 dan SNI-03-6455.5-2000). CV. Galang Persada, Bandung. (online3 Mei 2011 10.23PM)available at

http://balitbang.pu.go.id/sni/list_kategori _sni_rekap.asp?kd_subpatek=02&kd_ba gian=14&kd_jenis=&kd_status=01

Dirjen Pengairan Departemen Pekerjaan Umum. 1986. Kriteria Perencanaan -

Bangunan Pengatur Debit. CV. Galang

Persada Bandung (online 3 Mei 2011 10.42 PM) available at

http://psda.jabarprov.go.id/data/arsip/KP %2004%202010.pdf

Mohab. 2008. Alat Ukur Ambang (online 9 Mei 2011 10.01 PM) available at

http://mohab.wordpress.com/2008/12/05/ alat-ukur-ambang-lebar/

Radinal. 2009. Bendung Untuk Channel Arus

pengukuran Buka. (online9 Mei 2011

10.35 PM) available at

http://radinal.wordpress.com/2009/8/25/b

endung-untuk-channel-arus-pengukuran-bu k a /

Rita Mulyandari. 2010. Kajian Gerusan Lokal

Pada Ambang Dasar Akibat Variasi Q (Debit), I (Kemiringan) dan T (Waktu).

Universitas Sebelas Maret, Surakarta.(online 5 Maret 2011 10.43

PM) available at

http://digilib.uns.ac.id/pengguna.php?mn =detail&d_id=17082

Ven Te Chow, 1985, Hidrolika Saluran

Terbuka (Open Cahannel Hydraulic),

Gambar

Gambar 1.Peluap Ambang Lebar
Tabel 1. Hasil uji aliran
Tabel 2. Analisa data
Gambar 4.PengaruhAmbang Lebar terhadap Distribusi  Kecepatan diatas Ambang (V 2 )
+5

Referensi

Dokumen terkait

Pengeluaran untuk memperoleh harta tak berwujud dan pengeluaran lainnya yang mempunyai masa manfaat lebih dari 1 (satu) tahun untuk mendapatkan, menagih, dan memelihara

Kombinasi sifat fisik dan mekanik yang meliputi kekuatan spesifik, ketahanan spesifik, kekerasan yang tinggi, ketahanan terhadap suhu tinggi, serta sifatnya yang

Perkembangan selanjutnya, poligami di- tanggapi berbagai organisasi wanita Islam dengan beragam: sebut saja organisasi ‘Aisyiyah yang merupakan bagian organisasi massa

Pada dasarnya untuk menentukan suatu jalur kritis dalam proyek pembangunan gedung Kantor Pertanahan Kabupaten Tanggamus ini, perlu dibuat terlebih dahulu suatu jaringan

Implementasi Pendidikan Islam Integratif Prespektif Universitas Islam Negeri Maulana Malik Ibrahim Malang Implementasi pola pendidikan Islam integratif untuk penyiapan ulul albab

Dalam penelitian ini dilakukan uji hipotesis dengan alat analisis data adalah regresi linier sederhana, yang menghasilkan nilai signifikansi sebesar 0,000 &lt; 0,05

meningkatkan kemampuan literasi sains siswa SMP pada tema pembelajaran penggunaan bahan. kimia pada makanan terhadap sistem pencernaan manusiadengan N-Gain sebesar 0,34

As expected, a repetitive reading is possible for all repetitive adverbials: (31) Feri closed the window.. Mari opened it, but Feri decided that it was too cold