• Tidak ada hasil yang ditemukan

TUGAS AKHIR PERBAIKAN UNJUK KERJA INVERTER SATU PHASA DENGAN MENGGUNAKAN KONTROL SINYAL MODULASI LEBAR PULSA

N/A
N/A
Protected

Academic year: 2021

Membagikan "TUGAS AKHIR PERBAIKAN UNJUK KERJA INVERTER SATU PHASA DENGAN MENGGUNAKAN KONTROL SINYAL MODULASI LEBAR PULSA"

Copied!
87
0
0

Teks penuh

(1)

TUGAS AKHIR

PERBAIKAN UNJUK KERJA INVERTER SATU PHASA

DENGAN MENGGUNAKAN KONTROL SINYAL MODULASI

LEBAR PULSA

Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana (S-1) pada Departemen Teknik Elektro

Oleh

BUDIMAN SARAGIH 020402018

DEPARTEMEN TEKNIK ELEKTRO

FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA

MEDAN

(2)

PERBAIKAN UNJUK KERJA INVERTER SATU PHASA DENGAN MENGGUNAKAN KONTROL SINYAL MODULASI LEBAR PULSA

Oleh:

BUDIMAN SARAGIH 020402018

Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana (S-1) pada Departemen Teknik Elektro

Disetujui oleh: Dosen Pembimbing

Ir. A. RACHMAN HASIBUAN NIP. 131127007

Diketahui oleh:

Ketua Departemen Teknik Elektro FT USU,

Ir. Nasrul Abdi, MT NIP. 131459555

DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK

UNIVERSITAS SUMATERA UTARA MEDAN

(3)

ABSTRAK

Inverter adalah suatu rangkaian yang berfungsi untuk mengubah tegangan masukan arus searah (DC) menjadi tegangan keluaran arus bolak-balik (AC) yang besar tegangan dan frekuensinya dapat diatur sesuai dengan yang diinginkan. Pada aplikasi-aplikasi industri, inverter digunakan secara luas seperti pada pengaturan kecepatan motor ac, pemanasan industri, ataupun pada catu daya tak terputus

Namun penggunaan komponen elektronika daya pada inverter tersebut didalam sistem tenaga listrik justru menimbulkan masalah baru yaitu gangguan harmonisa. Gangguan harmonisa pada keluaran inverter tersebut dapat dikurangi dengan menggunakan kontrol sinyal modulasi lebar pulsa (Pulse Width Modulation - PWM).

Dalam tugas akhir ini, akan dibahas bagaimana topologi dasar dan prinsip kerja inverter yang menggunakan teknik pengontrolan sinyal modulasi lebar pulsa (PWM) untuk mengurangi gangguan harmonisa pada keluaran inverter, serta menganalisa besar gangguan harmonisa keluaran yang dihasilkan tersebut. Sebagai perbandingan unjuk kerja, maka dibandingkan dengan parameter unjuk kerja Inverter tanpa menggunakan kontrol sinyal PWM. Untuk mempermudah evaluasi kerja dari PWM, dan juga untuk menampilkan bentuk gelombang tegangan dan arus keluaran beserta komponen harmonisanya digunakan bahasa pemrograman MATLAB ver.7.0.1.

(4)

KATA PENGANTAR

Segala hormat, pujian, dan kekaguman hanyalah bagi Dia yang memberikan hikmat dan kekuatan bagi saya untuk mengerjakan Tugas Akhir ini. Ada begitu banyak hal yang tidak dapat dimengerti, namun Dia buka jalan agar saya mendapatkan jawaban atas ketidaktahuan saya dalam menyelesaikan Tugas Akhir ini. Penulisan Tugas Akhir ini bertujuan untuk memenuhi syarat kurikulum Departmen Teknik Elektro, Fakultas Teknik, Universitas Sumatera Utara dalam menyelesaikan program studi strata satu (S1). Adapun judul Tugas Akhir ini adalah: ” Perbaikan Unjuk Kerja Inverter Satu Phasa Dengan Menggunakan Kontrol Sinyal Modulasi Lebar Pulsa”.

Selama penulisan Tugas Akhir ini, penulis mendapatkan bantuan baik berupa bimbingan, motivasi, dan kritikan sehingga dengan rasa syukur, penulis mengucapkan terima kasih kepada:

1. Bapak Ir. A. Rachman Hasibuan, selaku dosen pembimbing Tugas Akhir ini 2. Bapak Rahmad Fauzi,ST,MT, selaku dosen wali penulis dan juga sekretaris

Departemen Teknik Elektro yang telah membantu dari awal perkuliahan sampai penyelesaian Tugas Akhir ini.

3. Bapak Ir. Nasrul Abdi,MT selaku ketua Departemen Teknik Elektro.

4. Orang tua tercinta dan kakak-adik yang mengasihi saya, yang telah memberikan semua kemampuan mereka dalam menyediakan semua kebutuhan selama perkuliahan.

(5)

5. Teman-teman mahasiswa depertemen Teknik Elektro dan juga semua teman-teman st’02 atas dukungannya serta semua teman-teman-teman-teman yang lainnya.

Akhirnya penulis menyadari masih banyak kekurangan dalam penulisan Tugas Akhir ini. Oleh karena itu penulis sangat mengharapkan saran yang membangun demi penyempurnaan Tugas Akhir ini. Kiranya Tugas Akhir ini berguna bagi kita semua. Terima kasih

Medan, Maret 2008

(6)

DAFTAR ISI

KATA PENGANTAR ... i ABSTRAK ... iii DAFTAR ISI ... iv DAFTAR GAMBAR ... vi BAB I PENDAHULUAN I.1 Latar Belakang ... 1

I.2 Tujuan Penulisan ... 2

I.3 Batasan Masalah ... 3

I.4 Metode Penulisan ... 3

I.5 Sistematika Penulisan ... 4

BAB II METODE FOURIER UNTUK ANALISIS BENTUK GELOMBANG II.1 Umum ... 6

II.2 Syarat-syarat Dirichlet ... 7

II.3 Simetri Bentuk Gelombang ... 9

(7)

II.5 Sintesis Bentuk Gelombang ... 15

II.6 Penerapan Deret Fourier Dalam Analisis Gelombang Arus ... 19

II.6.1 Nilai Efektif Dari Gelombang Yang Mengandung Harmonisa ... 19

II.6.2 Total Distorsi Harmonisa ... 21

BAB III INVERTER SATU PHASA III.1 Umum ... 25

III.2 Inverter Satu Phasa Setengah Jembatan ... 27

III.3 Inverter Satu Phasa Jembatan Penuh ... 30

III.4 Parameter unjuk kerja Inverter Satu Phasa ... 32

III.5 Inverter Satu Phasa Dengan Kontrol PWM ... 33

III.5.1 Modulasi Lebar Pulsa Tunggal (Single Pulse-width Modulation) ... 34

III.5.2 Modulasi Lebar Pulsa Banyak (Multiple Pulse-width Modulation) ... 36

III.5.3 Modulasi Lebar Pulsa Sinusoidal (Sinusoidal Pulse-Width Modulation) ... 39

II.5.4 Modifiksi Modulasi Lebar Pulsa Sinusoidal (Modified Sinusoidal Pulse-Width Modulation) ... 41

(8)

BAB IV ANALISIS HARMONISA INVERTER

IV.1 Umum ... 42

IV.2 Metode Perhitungan Untuk Mendapatkan Komponen

Deret Fourier ... 44

IV.3 Simulasi Analisis Harmonisa Inverter Satu Phasa Tanpa

Menggunakan Kontrol Modulasi Lebar Pulsa ... 45

IV.4 Simulasi Analisis Harmonisa Inverter Satu Phasa dengan

Modulasi Lebar Pulsa ... 47 IV.5 Perbandingan Gangguan Harmonisa Inverter Tanpa Kontrol

Modulasi Lebar Pulsa dan Inverter dengan Kontrol Modulasi

Lebar Pulsa Banyak ... 51 IV.6 Pengaruh Sudut Beban Terhadap Besar Gangguan Harmonisa

pada Inverter ... 56 BAB V PENUTUP ... 60

DAFTAR PUSTAKA ... 62

(9)

DAFTAR GAMBAR

Gambar 2.1 Beberapa contoh fungsi periodik ... 6

Gambar 2.2 Gelombang segitiga dan spektrum garisnya ... 15

Gambar 2.3 Gelombang gigi gergaji dan spektrum garisnya ... 15

Gambar 2.4 Komponen deret Fourier dari gelombang segitiga ... 16

Gambar 2.5 Hasil sintesis deret Fourier dari gelombang segitiga ... 17

Gambar 2.6 Gambar 2.6 Hasil sintesis deret Fourier dari gelombang segitiga tanpa ……… 17

Gambar 2.7 Komponen deret Fourier dari gelombang gigi gergaji ... 18

Gambar 2.8 Hasil sintesis deret Fourier dari gelombang gigi gergaji ... 18

Gambar 2.9 Bentuk gelombang arus bolak-balik yang mengalami distorsi ... 21

Gambar 3.1 Rangkaian Inverter sederhana ... 25

Gambar 3.2 Inverter satu phasa setengah jembatan ... 26

Gambar 3.3 Bentuk gelombang arus dan tegangan keluaran dengan beban resistif ... 27

Gambar 3.4 Arus beban dengan beban induktif ... 28

Gambar 3.5 Inverter satu phasa jembatan penuh ... 29

Gambar 3.6 Bentuk gelombang tegangan keluaran ... 30

Gambar 3.7 Arus beban dengan beban induktif tinggi ... 31

(10)

Gambar 3.9 Modulasi lebar pulsa banyak ... 36

Gambar 3.10 Modulasi lebar pulsa sinusoidal ... 39

Gambar 3.11 Modifikasi modulasi lebar pulsa sinusoidal ... 40

Gambar 4.1 Fungsi y=f(x) yang telah dibagi dengan interval yang lebih kecil .... 42

Gambar 4.2 Pembentukan sinyal carrier dan pulsa switching ... 48

Gambar 4.3 Pengaruh jumlah pulsa terhadap arus keluaran ... 52

Gambar 4.4 Hubungan besar arus keluaran dan gangguan harmonisa pada

Inverter kontrol Modulasi Lebar Pulsa ... 52

Gambar 4.5 Pengaruh sudut beban terhadap terhadap gangguan harmonisa

(11)
(12)

BAB I

PENDAHULUAN

I.1 Latar Belakang

Pemanfaatan komponen elektronika daya didalam proses konversi energi listrik telah semakin berkembang dari tahun ke tahun. Untuk pengendalian daya dari satu bentuk ke bentuk yang lain menjadi sangat penting, dan karakteristik dari peralatan-peralatan elektronika daya telah memungkinkan hal tersebut. Selain bentuknya kompak dan relatif tidak memerlukan tempat yang luas, peralatan elektronika daya ini juga memiliki wilayah pengaturan yang begitu luas, sehingga banyak digunakan sebagai konverter untuk berbagai keperluan industri. Konverter yang digunakan untuk memperoleh tegangan keluaran ac variabel dari tegangan sumber dc dikenal dengan sebutan inverter.

Pada aplikasi-aplikasi industri, inverter digunakan secara luas seperti pada pengaturan kecepatan motor ac, pemanasan industri, ataupun pada catu daya tak terputus (Uninterruptible Power Supply - UPS). Peralatan-peralatan modern seperti: peralatan kedokteran, peralatan pengolah data, dan peralatan telekomunikasi kebanyakan memerlukan catu daya tak terputus dengan kualitas yang baik.

Namun penggunaan komponen elektronika daya didalam suatu sistem tenaga listrik justru menimbulkan masalah baru yaitu gangguan harmonisa. Berbeda dengan beban-beban linier seperti tahanan, induktor, ataupun kapasitor dimana bentuk gelombang yang dihasilkannya akan berbentuk sinusoidal, penggunaan komponen

(13)

elektronika daya justru membuat bentuk gelombang yang dihasilkan tidak sinusoidal murni (terdistorsi) sehingga menimbulkan harmonisa. Kehadiran harmonisa pada suatu sistem tenaga listrik dapat memperburuk kualitas daya sistem tersebut, karena dapat menyebabkan faktor daya sistem menjadi lebih rendah, distorsi gelombang tegangan, meningkatkan rugi-rugi sistem, pembebanan lebih pada peralatan, pergeseran titik netral sistem, ataupun peningkatan arus netral pada sistem.

Kinerja inverter terus mengalami perbaikan untuk mencapai persyaratan-persyaratan seperti tersebut diatas. Hal ini sejalan dengan perkembangan dalam bidang elektronika daya dan mikroprocessor yang dapat digunakan sebagai rangkaian kendali. Gangguan harmonisa pada keluaran inverter tersebut dapat dikurangi dengan menggunakan sinyal modulasi lebar pulsa (Pulse Width Modulation - PWM). Dalam tulisan ini, penulis mencoba membahas prinsip kerja inverter dengan menggunakan teknik pengontrolan sinyal modulasi lebar pulsa banyak untuk mengurangi gangguan harmonisa pada keluaran inverter, serta menganalisa besar gangguan harmonisa keluaran yang dihasilkan tersebut.

I.2 Tujuan Penulisan

Tujuan penulisan tugas akhir ini adalah:

1. mengetahui prinsip kerja dan parameter unjuk kinerja inverter

2. mempelajari teknik mengurangi harmonisa dengan menggunakan kontrol sinyal Modulasi Lebar Pulsa

(14)

I.3 Batasan Masalah

Agar pembahasan materi yang dipaparkan dalam tugas akhir ini lebih terarah, maka penulis perlu membuat batasan-batasan masalah. Masalah yang akan dibahas pada penulisan tugas akhir ini adalah:

1. inverter yang dibahas adalah inverter satu phasa jembatan penuh (single-phase full-bridge inverter)

2. transistor daya dan dioda yang digunakan dianggap ideal

3. tidak membahas teknik pembangkitan sinyal Modulasi Lebar Pulsa

4. menggunakan banyak sinyal Modulasi Lebar Pulsa dalam setiap setengah siklus

5. hanya membahas gangguan harmonisa pada sisi keluaran 6. beban yang digunakan adalah beban RL

I.4 Metode Penulisan

Metode yang digunakan dalam penulisan tugas akhir ini adalah sebagai berikut:

1. studi literatur, berupa studi kepustakaan dan kajian dari buku teks pendukung

2. studi bimbingan, berupa konsultasi dan tanya jawab dengan dosen pembimbing tentang permasalahan-permasalahan yang muncul selama penulisan tugas akhir ini

(15)

I.5 Sistematika Penulisan

Untuk memberikan gambaran mengenai tulisan ini, secara singkat dapat diuraikan sistematika pembahasan sebagai berikut:

BAB I PENDAHULUAN

Bab ini merupakan pendahuluan yang berisikan tentang latar belakang masalah, tujuan penulisan, batasan masalah, metode penulisan, dan sistematika penulisan.

BAB II METODE FOURIER UNTUK ANALISIS BENTUK GELOMBANG

Bab ini akan membahas mengenai Deret Fourier, syarat-syarat Dirichlet, simetri bentuk gelombang, spektrum garis, sintesis gelombang komponen deret fourier, penerapan deret fourier dalam penganalisaan gelombang arus dan tegangan.

BAB III INVERTER

Bab ini membahas tentang inverter secara umum, jenis-jenis inverter, prinsip kerja inverter satu phasa jembatan penuh, tegangan keluaran inverter dengan beban induktif, pengontrolan dengan sinyal Modulasi Lebar Pulsa

BAB IV ANALISIS HARMONISA INVERTER

Bab ini membahas analisis harmonisa keluaran inverter satu phasa tanpa menggunakan sinyal Modulasi Lebar Pulsa, dan inverter dengan

(16)

menggunakan sinyal Modulasi Lebar Pulsa, perbandingan gangguan harmonisa kedua jenis inverter, gangguan harmonisa untuk besar sudut beban yang bervariasi.

BAB V PENUTUP

Dalam bab ini dituliskan tentang hal-hal yang dianggap penting dalam tulisan ini yang dirangkumkan sebagai kesimpulan, dan saran dari penulis mengenai permasalahan di dalam penulisan tugas akhir ini.

(17)

METODE FOURIER UNTUK ANALISIS BENTUK GELOMBANG

II.1 Umum

Harmonisa tegangan keluaran inverter dapat ditentukan bila persamaan matematika dari tegangan keluaran tersebut telah ditentukan. Persamaan ini didapat dengan menguraikan bentuk gelombang tegangan dengan menggunakan deret Fourier. Setiap pengulangan fungsi kontinu dalam interval T dapat diwakili oleh penjumlahan dari suatu komponen s

komponen harmonisa orde lebih tinggi pada frekuensi yang merupakan perkalian integer dari frekuensi. Dengan kata lain suatu fungsi kontinu dalam interval T dapat dinyatakan sebagai suatu

berhingga. Pendekatan deret trigonometri inilah yang dikenal dengan

Karena fungsi-fungsi trigonometri merupakan fungsi periodik, maka salah satu syarat agar suatu fungsi dapat diekspresikan dalam deret Fourier

periodik. Suatu fungsi f(t) dikatakan periodik dengan periode T apabila f(t) = f(t+T) untuk semua nilai T. Beberapa contoh fungsi periodik ditunjukkan pada gambar

(a). Gelombang trapezoidal

BAB II

METODE FOURIER UNTUK ANALISIS BENTUK GELOMBANG

Harmonisa tegangan keluaran inverter dapat ditentukan bila persamaan dari tegangan keluaran tersebut telah ditentukan. Persamaan ini didapat dengan menguraikan bentuk gelombang tegangan dengan menggunakan deret Fourier. Setiap pengulangan fungsi kontinu dalam interval T dapat diwakili oleh penjumlahan dari suatu komponen sinusoidal fundamental, dengan rentetan orde lebih tinggi pada frekuensi yang merupakan perkalian integer dari frekuensi. Dengan kata lain suatu fungsi kontinu dalam interval T dapat suatu pendekatan deret trigonometri terbatas ataupun tak berhingga. Pendekatan deret trigonometri inilah yang dikenal dengan deret Fourier

fungsi trigonometri merupakan fungsi periodik, maka salah satu syarat agar suatu fungsi dapat diekspresikan dalam deret Fourier adalah fun

Suatu fungsi f(t) dikatakan periodik dengan periode T apabila f(t) = f(t+T) Beberapa contoh fungsi periodik ditunjukkan pada gambar

(a). Gelombang trapezoidal (b). Gelombang persegi (c). Gelombang segitiga

METODE FOURIER UNTUK ANALISIS BENTUK GELOMBANG

Harmonisa tegangan keluaran inverter dapat ditentukan bila persamaan dari tegangan keluaran tersebut telah ditentukan. Persamaan ini didapat dengan menguraikan bentuk gelombang tegangan dengan menggunakan deret Fourier. Setiap pengulangan fungsi kontinu dalam interval T dapat diwakili oleh engan rentetan orde lebih tinggi pada frekuensi yang merupakan perkalian integer dari frekuensi. Dengan kata lain suatu fungsi kontinu dalam interval T dapat terbatas ataupun tak deret Fourier. fungsi trigonometri merupakan fungsi periodik, maka salah satu syarat adalah fungsi itu harus Suatu fungsi f(t) dikatakan periodik dengan periode T apabila f(t) = f(t+T) Beberapa contoh fungsi periodik ditunjukkan pada gambar 2.1.

(18)

II.2 Syarat-syarat Dirichlet

Agar suatu fungsi dapat diekspresikan kedalam bentuk deret Fourier, maka fungsi tersebut harus memenuhi beberapa persyaratan yang disebut dengan syarat-syarat Dirichlet, antara lain:

1. f(x) kontinu, hanya terdapat sejumlah diskontinuitas yang terbatas dalam interval (-L,L).

2. f(x) periodik diluar (-L,L) dengan periode 2L.

3. f(x) mempunyai nilai yang berhingga (finite) didalam interval (-L,L)

Bila syarat-syarat Dirichlet ini dipenuhi, maka sebuah fungsi f(x) dapat diekspresikan kedalam bentuk deret Fourier seperti yang ditunjukkan pada persamaan (2.1).

Dimana koefisien Fourier a0, an, bn adalah

! " # $# ! % & # $# ! ' n = 1,2,3,…

(19)

dimana:

a0 = suku konstan

an = suku-suku cosinus deret Fourier

bn = suku-suku sinus deret Fourier

koefisien Fourier juga dapat dinyatakan dengan:

! ()*# ( + ()*# ( ! , & ()*# ( ! -

dimana: c = konstanta sembarang.

Bila ada suatu fungsi ./ dengan periode 0, maka L = 0. Dengan memasukkan nilai c = 0, maka persamaan deret Fourier juga dapat dituliskan:

./ 12 12 3

(20)

0 ./ !./ 4 5 0 ./ ./ *4 !./ & 0 ./ ./ *4 !./

II.3 Simetri Bentuk Gelombang

Pada persamaan (2.1) terlihat bahwa deret Fourier tersusun atas suku-suku sinus, suku-suku cosinus serta satu suku konstan. Dengan demikian suatu fungsi periodik dapat mengandung ketiga suku, kombinasi ketiga suku, atau bahkan hanya salah satu suku. Bila suku-suku ini disintesis secara terpisah ternyata menghasilkan suatu bentuk gelombang dengan simetri tertentu. Maka dengan melihat simetri suatu gelombang, perhitungan dapat disederhanakan untuk mendapatkan deret Fourier. Bentuk-bentuk simetri ini antara lain:

II.3.1 Simetri Fungsi Genap

Suatu fungsi f(x) disebut fungsi genap jika memenuhi persamaan f(x) = f(-x). Hal ini berarti fungsi tersebut simetri terhadap sumbu vertikal. Koefisien Bn dari fungsi ini adalah nol.

(21)

6 0 7 12 12 8 12 *4 6 0 7 12 12 8 12 4 $4 6 0 7 12 12 8 12 $4 0 7 12 12 8 12 4 6

Sehingga untuk simetri fungsi genap berlaku:

7 12 9 9

:

12

Dengan demikian fungsi genap hanya akan mengandung suku-suku cosinus. Penjumlahan atau perkalian dari dua fungsi genap atau lebih akan menghasilkan fungsi genap. Dengan penambahan sebuah konstanta, sifat-sifat genap dari fungsi tersebut masih dipertahankan.

II.3.2 Simetri fungsi ganjil

Suatu fungsi f(x) disebut sebagai fungsi ganjil jika f(x) = -f(-x). Koefisien An dari fungsi ganjil adalah samadengan nol atau komponen cosinusnya hilang.

9 0 7 12 12 8 12

*4

9 0 7 12 12 8 12

4

(22)

9 0 7 12 12 8 12

$4 0 7 12

12 8 12

4

9

Dengan cara yang sama dapat diturunkan bahwa:

9

Sehingga untuk fungsi ganjil berlaku:

7 12 6

:

12

dengan demikian sebuah fungsi ganjil hanya akan mengandung suku-suku sinus. Penjumlahan dari dua fungsi ganjil atau lebih akan menghasilkan fungsi ganjil. Tetapi penambahan suatu konstanta atau perkalian dua fungsi ganjil akan menghilangkan sifat-sifat ganjil dari fungsi tersebut.

II.3.3. Simetri setengah-gelombang

Suatu fungsi f(x) dikatakan mempunyai simetri setengah-gelombang jika f(x) = -f(x + T/2), dimana T adalah periode. Simetri ini akan mengandung suku-suku sinus dan cosinus tetapi hanya pada orde-orde ganjil saja. Dengan demikian an dan bn

akan sama dengan nol untuk n = 2,4,6,…. Pada suatu gelombang dengan simetri setengah-gelombang.

(23)

Dengan demikian deret Fourier dari fungsi-fungsi periodik seperti pada gambar 2.1 dapat disederhanakan dengan memperhatikan simetri bentuk gelombangnya.

a. Gelombang trapezoidal seperti yang ditunjukkan pada gambar 2.1(a) mempunyai simetri fungsi genap. Dengan demikian deret Fouriernya tidak memiliki suku-suku sinus. Selain itu karena luasan daerah yang dibentuk oleh fungsi terhadap sumbu horizontal kearah positif dan negatif tidak sama, maka deret fouriernya juga akan mengandung sebuah suku konstan yang merupakan nilai rata-rata (nilai dc) dari fungsi periodik tersebut. Dengan demikian deret Fouriernya dapat ditulis:

./ ./

Dengan n = 1,3,5,…

b. Gelombang persegi pada gambar 2.1(b) mempunyai simetri fungsi genap dan simetri setengah-gelombang. Dengan demikian deret Fouriernya hanya memiliki suku-suku sinus pada orde ganjil. Selain itu karena luasan daerah yang dibentuk oleh fungsi terhadap sumbu horizontal kearah positif dan negatif sama, maka deret fouriernya juga tidak mengandung suku konstan. Maka deret fouriernya dapat ditulis:

./ ./

(24)

c. Gelombang segi tiga pada gambar 2.1(c) hanya mempunyai simetri setengah-gelombang. Dengan demikian deret fouriernya hanya memiliki suku-suku sinus dan cosinus pada orde ganjil. Selain itu karena luasan daerah yang dibentuk oleh fungsi terhadap sumbu horizontal kearah positif dan negatif sama, maka deret fouriernya juga tidak mengandung suku konstan. Dengan demikian deret fouriernya dapat ditulis:

./ ./ ./

Dengan n = 1,3,5,…

II.4 Spektrum Garis

Sebuah kurva yang memperlihatkan masing-masing amplitudo harmonisa didalam gelombang disebut spektrum garis. Garis-garis berkurang secara cepat pada gelombang-gelombang dengan deret yang mengecil (konvergen) secara cepat. Gelombang-gelombang dengan diskontinuitas, seperti gelombang gigi gergaji dan gelombang persegi, memiliki spektra dengan amplitudo yang berkurang secara lambat karena deretnya mempunyai harmonisa-harmonisa yang kuat. Harmonisa-harmonisa ke-10 akan sering mempunyai amplitudo yang cukup tinggi jika dibandingkan dengan amplitudo dasar. Sebaliknya, deret untuk bentuk-bentuk gelombang tanpa diskontinuitas dan dengan penampilan yang umumnya lembut akan mengecil secara cepat, dan untuk membangkitkan gelombang hanya dibutuhkan beberapa orde. Konvergensi yang sedemikian cepat akan jelas terlihat dari garis

(25)

spektrum dimana amplitudo-amplitudo harmonisa berkurang secara cepat sehingga harmonisa dengan orde diatas 5 atau 6 tidak akan berpengaruh.

Kandungan harmonisa dan spektrum garis dari sebuah gelombang adalah bagian yang sangat alamiah dari gelombang tersebut dan tidak pernah berubah, tanpa memperhatikan metode analisa. Pergeseran titik asal memberikan suatu penampilan deret trigonometri yang sangat berbeda.

Dari persamaan (2.8) dapat juga ditulis dalam suatu bentuk deret sinus dengan menghilangkan deret cosinusnya menjadi persamaan dibawah ini:

./ ; ; ./ <

Dimana:

;= = %

; > * * '

< / $ ? @ +

Pada gambar 2.2 terlihat suatu gelombang segitiga beserta spektrum garis dari komponen-komponen harmonisanya. Gelombang tersebut tidak memiliki titik-titik diskontinuitas sehingga spektrumnya mengecil secara cepat. Amplitudo harmonisa orde-orde tingginya relatif lebih kecil dari amplitudo orde dasar.

(26)

Gambar 2.2.

Berbeda halnya dengan gelombang gigi gergaji seperti yang terdapat gambar 2.3. Karena gelombang ini memiliki diskontinuitas pada awal dan akhir periode, akibatnya spektrum harmoni

menyebabkan gangguan harmonisanya akan lebih besar daripada gelombang yang tidak memiliki diskontinuitas.

Gambar 2.3 Gelombang gigi gergaji dan spektrum garisnya

II.5 Sintesis Bentuk Gelombang

Sintesis adalah gabungan dari bagian

kesatuan. Sintesis deret Fourier adalah penggabungan kembali suku Gambar 2.2. Gelombang segitiga dan spektrum garisnya

Berbeda halnya dengan gelombang gigi gergaji seperti yang terdapat gambar 2.3. Karena gelombang ini memiliki diskontinuitas pada awal dan akhir

ode, akibatnya spektrum harmonisanya mengecil secara lambat.

menyebabkan gangguan harmonisanya akan lebih besar daripada gelombang yang tidak memiliki diskontinuitas.

Gambar 2.3 Gelombang gigi gergaji dan spektrum garisnya

Sintesis Bentuk Gelombang

adalah gabungan dari bagian-bagian sehingga membentuk satu kesatuan. Sintesis deret Fourier adalah penggabungan kembali suku

Berbeda halnya dengan gelombang gigi gergaji seperti yang terdapat pada gambar 2.3. Karena gelombang ini memiliki diskontinuitas pada awal dan akhir Hal ini akan menyebabkan gangguan harmonisanya akan lebih besar daripada gelombang yang

Gambar 2.3 Gelombang gigi gergaji dan spektrum garisnya

bagian sehingga membentuk satu kesatuan. Sintesis deret Fourier adalah penggabungan kembali suku-suku deret

(27)

trigonometri, lazimnya empat atau lima suku pertama agar menghasilkan bentuk gelombang semula. Dengan melihat hasil penyatuan beberapa suku pertama deret Fourier dari gelombang yang kita analisis akan dapat ditentukan apakah deret tersebut dapat mengekspresikan bentuk gelombang tersebut dengan benar.

Dengan demikian harmonisa yang paling mempengaruhi bentuk gelombang dari suatu fungsi adalah harmonisa dengan amplitudo yang paling besar. Pada umumnya harmonisa ke-3 memiliki amplitudo yang lebih tinggi jika dibandingkan dengan amplitudo harmonisa yang lain.

Dari bentuk gelombang segitiga dan spektrum garis yang terdapat pada gambar 2.2, dapat diperoleh bentuk deret Fouriernya:

/ AB 'AB0* 12 'AB50* %12 'AB +0* +12 C Terlihat bahwa gelombang tersebut memiliki simetri fungsi genap dan simetri setengah-gelombang, dengan demikian deret Fouriernya hanya mengandung suku-suku cosinus dan hanya pada orde-orde ganjilnya saja. Dengan mensistesis tiga orde pertamanya saja, bentuk gelombangnya sudah mendekati bentuk gelombang aslinya seperti yang terlihat pada gambar 2.5.

Jika suku 'A 50B * %12 dari deret Fourier gelombang segitiga pada gambar 2.2 tidak diikutsertakan, maka bentuk gelombang hasil sintesis deret Fouriernya adalah seperti yang ditunjukkan pada gambar 2.6. Sedangkan jika tersebut diikutsertakan maka bentuk gelombang deret Fouriernya ditunjukkan seperti pada gambar 2.5

(28)

Gambar 2.

Gambar 2.

Gambar 2.6 Hasil sintesis deret Fourier dari gelombang segitiga

Gambar 2.4 Komponen deret Fourier dari gelombang segitiga

Gambar 2.5 Hasil sintesis deret Fourier dari gelombang segitiga

Hasil sintesis deret Fourier dari gelombang segitiga tanpa 'A 5B *

Komponen deret Fourier dari gelombang segitiga

Hasil sintesis deret Fourier dari gelombang segitiga

(29)

Deret Fourier untuk gelombang gigi gergaji pada gambar 2.3 adalah:

/ AB D A 0B 12 D A 0B 12 D A %0B %12 D C

Pada gambar 2.8 terlihat bahwa hasil penyatuan empat orde harmonisa pertamanya belum mendekati bentuk gelombang gigi gergaji yang sempurna. Tetapi dengan melibatkan lebih banyak orde harmonik secara perlahan gelombang yang dihasilkan akan semakin menyerupai gelombang gigi gergaji.

Gambar 2.7 Komponen deret Fourier dari gelombang gigi gergaji

(30)

II.6 Penerapan Deret Fourier Dalam Analisis Gelombang Arus

II.6.1 Nilai Efektif Dari Gelombang Yang Mengandung Harmonisa

Nilai efektif (rms) dari suatu fungsi gelombang f(t) didefenisikan sebagai:

EFGH > IJ I K / D K / / *! J L M /N OPKIQ!P ,

Dari persamaan 2.12, co merupakan suatu konstanta sehingga nilainya sama

dengan nilai efektifnya. Sedangkan untuk menganalisis nilai efektif keseluruhan dari fungsi f(t), maka suku-suku yang mengandung fungsi sinus dimisalkan sebagai fungsi fx(t). Nilai kuadrat dari fungsi fx(t) adalah:

fx(t)2 = [c1 sin (./ < ) + c2 sin ( ./ <*) + c3 sin (%./ <R) + …]2 (2.17)

atau:

S / * * * 12 < ** * 12 <* R* * %12 <R C T* * 12 <T * 12 < 12 <*

R 12 < %12 <R U 3 Pada persamaan (2.18) diatas terdapat dua jenis suku-suku perkalian orde harmonik, yaitu:

1. Suku-suku yang mengandung perkalian antara orde harmonik yang sama, dinyatakan dengan: T* * 12 <T

(31)

T* * 12 <T *4 ! ./ T* 0 ? D ./ < @ *V ! ./ T* ' W./ D MI ./ < W *4 ;* ' D ; *

2. Suku-suku yang mengandung perkalian antara orde harmonik yang berbeda, dinyatakan dengan: X T Y12 <X 12 <T

Dimana: m = 1,2,3,…; n = 1,2,3,… dan mZ

Nilai rata-rata suku [ X T Y12 <X 12 <T ] adalah:

X T Y12 <X 12 <T *4 !./ ;G;* L ./ < G *4 ./ < !./

Dengan demikian diperoleh persamaan nilai rata-rata kuadrat dari keseluruhan fungsi f(t) adalah:

/ * ;*

S / *

(32)

Jika F adalah nilai efektif dari fungsi f(t), maka: E ];* ;* atau: E ];* ?; ^ @ * Dimana: co = nilai komponen dc

cn = nilai komponen harmonik orde ke-n

II.6.2 Total Distorsi Harmonisa

Misalkan bentuk gelombang arus jala-jala sistem tenaga listrik is terdistorsi seperti yang terlihat pada gambar 2.8. Umumnya pola gelombang arus bolak-balik is memiliki simetri setengah-gelombang, oleh karena itu komponen dc pada persamaan deret Fouriernya tidak ada.

Fungsi arus jala-jala dapat dituliskan sebagai berikut:

IH / _HG ./ < _HG* ./ <* _HGR %./ <R C

(33)

Gambar 2.9 Bentuk gelombang arus bolak-balik yang mengalami distorsi

Dimana:

Ism1 = nilai maksimum komponen fundamental arus jala-jala

Ism2 = nilai maksimum komponen arus harmonisa orde ke-2

Ism3 = nilai maksimum komponen arus harmonisa orde ke-3

Ismn = nilai maksimum komponen arus harmonisa orde ke-n

Dari persamaan 2.21, diperoleh nilai efektif arus jala-jala dari deret Fourier pada persamaan 2.22 yang dirumuskan dengan:

_H `?_HG ^ @ * ?_HG* ^ @ * ?_HGR ^ @ * C ?_HG ^ @ * % atau:

(34)

_H a_H* _H** _HR* C _H* ]_H* _H* b

'

Dimana:

Is1 = nilai efektif komponen fundamental arus jala-jala

Is2 = nilai efektif komponen arus harmonisa orde ke-2

Is3 = nilai efektif komponen arus harmonisa orde ke-3

Isn = nilai efektif komponen arus harmonisa orde ke-n

Semua komponen arus harmonisa diluar komponen arus fundamental, merupakan komponen pendistorsi arus jala-jala, yang dapat dirumuskan dengan:

IcdHe/ _HG* ./ <* _HGR %./ <R _HGf './ <f C

_HG ./ < +

Dengan demikian nilai efektif arus pendistorsi adalah:

_cdHe ] _H* b

,

Total Harmonic Distorsion (THD) didefenisikan sebagai perbandingan nilai efektif arus pendistorsi dengan nilai efektif arus fundamental, yaitu:

(35)

ghi >j b _H* >_H* - atau: ghi `? __H H @ * D 3 Dimana:

Is = nilai efektif arus jala-jala

(36)

BAB III

INVERTER SATU PHASA

III.1 Umum

Inverter adalah suatu rangkaian yang berfungsi untuk mengubah tegangan masukan arus searah (DC) menjadi tegangan keluaran arus bolak-balik (AC) yang besar tegangan dan frekuensinya dapat diatur sesuai dengan yang diinginkan.

Suatu tegangan variabel dapat diperoleh dengan mengatur tegangan masukan DC dan penguatan inverter dijaga konstan. Jika tegangan masukan (input) DC konstan, tegangan keluaran AC variabel dapat diperoleh dengan mengubah-ubah penguatan (gain) yang biasanya menggunakan kontrol modulasi lebar pulsa (Pulse Width Modulation - PWM) didalam inverter tersebut. Suatu inverter disebut sumber tegangan (Voltage Fed Inverter - VFI) jika tegangan masukannya dijaga konstan, sedangkan suatu inverter disebut sumber arus (Current Fed Inverter - CFI) jika arus masukannya dijaga konstan, serta disebut inverter hubungan DC variabel (DC Link Inverter) jika tegangan masukannya dapat diatur (controllable)

Pada aplikasi-aplikasi industri, inverter digunakan secara luas seperti pada pengaturan kecepatan motor AC, pemanasan industri, ataupun pada catu daya tak terputus (Uniterruptible Power Supply - UPS).

Prinsip kerja dari inverter secara sederhana dapat dijelaskan dengan menggunakan saklar mekanik, seperti yang ditunjukkan pada gambar 3.1.

(37)

A B B A S1 S2 load

A

B

Gambar 3.1. Rangkaian Inverter sederhana

Bila kedudukan S1 dan S2 pada A, beban L mendapat tegangan positif, dan

sebaliknya jika S1 dan S2 pada B, beban L mendapat tegangan positif dari arah yang

berlainan. Dengan demikian jika pemindahan saklar S1 dan S2 secara bergantian akan

menghasilkan tegangan bolak-balik, dengan amplitudo ditentukan oleh besarnya sumber, dan frekuensi ditentukan oleh perpindahan saklar.

Bentuk gelombang tegangan keluaran inverter ideal adalah sinusoidal. Namun dalam prakteknya bentuk gelombang keluaran inverter tidak sinusoidal dan mengandung harmonisa. Seiring dengan dinamika perkembangan teknologi dalam elektronika daya, sering dilakukan penelitian-penelitian untuk memperbaiki kualitas daya yang dihasilkan oleh inverter. Salah satunya adalah dengan menggunakan teknik pensaklaran dengan sinyal PWM.

Berdasarkan jumlah phasanya, inverter dapat dibedakan atas: (1) inverter satu phasa, dan (2)inverter tiga phasa. Sedangkan berdasarkan konfigurasinya, rangkaian daya inverter satu phasa dapat dibedakan atas: (1) inverter satu phasa setengah jembatan, (2) inverter satu phasa dengan beban tap tengah, dan (3) inverter satu phasa jembatan penuh.

(38)

III.2 Inverter Satu Phasa Setengah Jembatan

Prinsip kerja inverter satu phasa jembatan penuh dapat dijelaskan dengan menggunakan gambar 3.2.

Gambar 3.2. inverter satu phasa setengah jembatan

Inverter satu phasa setengah jembatan bekerja dengan menggunakan dua buah komponen elektronika daya, transistor Q1 dan Q2, untuk menguhubungkan titik

a dengan tegangan positif atau negatif. Jika transistor Q1 dinyalakan selama waktu

T0/2, maka tegangan sesaat beban V0 adalah Vs/2. Sedangkan jika hanya transistor Q2

yang dinyalakan selama waktu T0/2, maka tegangan yang melalui beban adalah -

Vs/2. Rangkaian logika didesain sedemikian rupa agar transistor Q1 dan Q2 tidak

menyala pada saat yang bersamaan. Bentuk gelombang tegangan keluaran dan arus transistor dengan beban resistif ditunjukkan pada gambar 3.3.

(39)

Gambar 3.3. Bentuk gelombang arus dan tegangan keluaran dengan beban resistif

Tegangan keluaran sesaat bila dinyatakan dalam deret fourier adalah:

Berdasarkan simetri seperempat gelombang sepanjang sumbu-x, nilai ao dan an

adalah nol. ! "'( #$ % & $ ( % & ) $ *

(40)

Sehingga tegangan keluaran sesaat yang dinyatakan dalam deret Fourier adalah: $+ $* , -.-/-0 & $+ + 1 12 - -3-

Dimana & *4+ adalah frekuensi dari tegangan keluaran dalam satuan radian per detik. Untuk n=1, harmonisa tidak muncul, dan besar harga efektif dari komponen dasar adalah:

5 +- 6

Sedangkan bentuk gelombang arus beban dan interval konduksi beban induktif murni ditunjukkan pada gambar 2.4 berikut ini:

Gambar 3.4. arus beban dengan beban induktif

Untuk beban RL, arus beban sesaat io dapat diperoleh dengan membagikan tegangan

keluaran sesaat dengan impedansi beban Z = R + jn&L, sehingga:

7 *89 &: , - -6-0 & ; < Dimana: < = > &: 9

(41)

III.3 Inverter Satu Phasa Jembatan Penuh

Inverter satu phasa jembatan penuh ditunjukkan pada gambar 3.5 dibawah:

Gambar 3.5. inverter satu phasa jembatan penuh

Ketika transistor Q1 dan Q2 dihidupkan secara bersamaan, tegangan masukan

Vs mengalir melalui beban. Sedangkan jika transistor Q3 dan Q4 dihidupkan secara

bersamaan, tegangan yang mengalir ke beban berlawanan arah dengan tegangan masukan yang mengalir ke beban ketika Q1 dan Q2 dihidupkan, yang besarnya -Vs.

Tegangan keluaran efektif (rms) diperoleh dari persamaan:

$

6

(42)

Gambar

Tegangan keluaran sesaat jika dinyatakan dalam deret fourier seperti pada pers. diatas adalah:

$+

Untuk n =1, dari persamaan diatas di

$

Seperti pada persamaan

Gambar 3.6. Bentuk gelombang tegangan keluaran

Tegangan keluaran sesaat jika dinyatakan dalam deret fourier seperti pada pers.

$ *

,

-.-/-0

&

Untuk n =1, dari persamaan diatas diperoleh harga efektif dari komponen dasar

$

5 * +-?+$

Seperti pada persamaan 3.4, arus beban sesaat i0 untuk beban RL adalah: 7

*89 &:

,

- -6-0

& ; <

Tegangan keluaran sesaat jika dinyatakan dalam deret fourier seperti pada pers. 3.2

3

onen dasar

@

adalah:

(43)

Ketika dioda D1 dan D2 konduksi, daya akan kembali kesumber DC melalui dioda

ini, sehingga dioda ini disebut dengan dioda feedback.

Gambar 3.7. arus beban dengan beban induktif tinggi

III.4 Parameter unjuk kerja Inverter Satu Phasa

Pada prakteknya keluaran inverter selalu mengandung harmonisa. Kualitas sebuah inverter biasanya dievaluasi dengan mengikuti ketentuan dari parameter unjuk kerja berikut ini, yakni:

a. Harmonic Factor (HFn)

Harmonic factor atau faktor harmonisa dari harmonisa ke-n merupakan ukuran kontribusi harmonisa ke-n tersebut, didefenisikan sebagai:

BC 77D

D 1 12 E ?

Dimana:

Vo1 = nilai efektif dari komponen fundamental

(44)

b. Total Harmonic Distortion (THD)

Merupakan ukuran bentuk pendekatan antara bentuk gelombang dengan komponen fundamentalnya yang menggambarkan kandungan total harmonisa dapat didefenisikan dengan:

7D F -.-07D G +

c. Distortion factor (DF)

Mengindikasikan jumlah gangguan harmonisa yang tersisa didalam gelombang utama setelah penurunan gelombang harmonisa.

DF dari masing-masing komponen harmonisa ke-n didefenisikan sebagai:

7D

7 H

III.5 Inverter Satu Phasa Dengan Kontrol PWM

Salah satu metode pengontrolan tegangan keluaran inverter satu phasa adalah dengan menggunakan teknik modulasi lebar pulsa (Pulse Width Modulation - PWM) dari tegangan sumber dc tetap. Metode yang sering digunakan adalah:

1. Modulasi lebar pulsa tunggal 2. Modulasi lebar pulsa banyak 3. Modulasi lebar pulsa sinusoidal

(45)

III.5.1 Modulasi Lebar Pulsa Tunggal (Single Pulse-width Modulation)

Dalam kontrol modulasi lebar pulsa tunggal, hanya terdapat satu pulsa per setengah siklus dan lebar pulsa divariasikan untuk mengontrol tegangan keluaran inverter. Gambar 3.8 menunjukkan pembangkitan sinyal gate dan tegangan keluaran dari inverter satu phasa jembatan penuh. Sinyal gate dibangkitkan dengan membandingkan amplitudo sinyal referensi dengan amplitudo gelombang pembawa. Frekuensi dari sinyal referensi menentukan frekuensi dasar dari tegangan keluaran. Tegangan keluaran sesaat adalah: Vo = Vs(g1 – g4). Rasio antara amplitudo

gelombang referensi Ar dengan amplitudo gelombang pembawa Ac disebut dengan Indeks Modulasi (M)

I JJK

Tegangan keluaran efektif (rms) diperoleh dari:

7D " ! 7L M NO (PQ

(>Q

)

7D 7LRS!

Dengan mengubah-ubah Ar dari 00 sampai Ac, lebar pulsa T dapat dimodifikasi dari 00 sampai 1800 dan tegangan keluaran efektif V0, dari 0 sampai Vs.

Deret Fourier dari tegangan keluaran menghasilkan:

7D O H!7L HS HNO ,

(46)

Gambar 3.8. Modulasi lebar pulsa tunggal

Berdasarkan simetri dari tegangan keluaran sepanjang sumbu-x, maka harmonisa ke-n (untuk n= 2,4,6,…) tidak ada. Waktu dan sudut pemotongan dapat diperoleh dari:

O UN # V WL =

O UN V WL

(47)

III.5.2 Modulasi Lebar Pulsa Banyak (Multiple Pulse-width Modulation)

Kandungan harmonisa dapat dikurangi dengan menggunakan beberapa pulsa dalam setiap setengah siklus dari tegangan keluaran. Pembangkitan sinyal gate untuk menghidupkan dan mematikan transistor ditunjukkan pada gambar 3.9a dengan membandingkan sebuah sinyal referensi dengan sebuah sinyal gergaji pembawa. Sinyal gate ditunjukkan pada gambar 3.9b. frekuensi sinyal referensi menentukan frekuensi keluaran fo dan frekuensi pembawa fc menentukan jumlah pulsa per

setengah siklus p. Sedangkan Indeks modulasi mengontrol tegangan keluaran. Tipe dari modulasi ini biasa dikenal dengan uniform Pulse width Modulation (UPWM). Jumlah pulsa dalam setengah siklus dapat diperoleh dari:

Y ZZ[ \] 6

Dimana mf = fc/fo didefenisikan sebagai rasio frekuensi modulasi (frequency modu-lation ratio).

Tegangan keluaran sesaat adalah Vo=Vs(g1-g4). Tegangan keluaran untuk

inverter satu phasa dengan kontrol UPWM ditunjukkan pada gambar 3.9c

Jika S lebar dari masing-masing pulsa, tegangan keluaran efektif dapat diperoleh dari:

7D ^ !Y 7L M NO ( _PQ `

( _>Q ` a

(48)

Gambar 3.9. Modulasi lebar pulsa banyak

Indeks modulasi yang divariasikan dari 0 sampai 1, mengakibatkan lebar pulsa bervariasi dari 0 sampai T/2p (0 sampai !`Y), dan tegangan keluaran Vo dari

nol sampai Vs. Bentuk umum dari deret Fourier untuk tegangan keluaran sesaat

adalah:

7D O b HNO ,

-.-/-0

@

Koefisien Bn dalam persamaan 3.17 dapat ditentukan dengan menganggap sebuah

(49)

pulsa negatif dengan lebar yang sama dimulai dari Nt = ! U. Hal ini ditunjukkan pada gambar 3.9c. Dampak dari semua pulsa dapat dikombinasikan secara bersama-sama untuk mendapatkan tegangan keluaran efektif.

Jika pulsa positif dari pasangan ke-m dimulai pada Nt = Uc dan berakhir pada Nt = Uc S. Koefisien Fourier untuk sebuah pasangan pulsa adalah:

! ^ HNO M NO dePQ dePQ # (PdePQ HNO M NO (Pde a 7L H! HSf H gUc Sh # H g! Uc Shi A

Koefisien Bn dari pers 3.17 dapat ditentukan dengan menambahkan dampak dari

semua pulsa:

b H!7L HSf H gUc Sh # H g! Uc Shi _

c

?

Waktu pemotongan ke-m tm dan sudut Uc dapat ditentukan dari:

Oc UNc \ # V WL +=

(50)

Karena semua lebar pulsa adalah sama, maka lebar pulsa d (atau sudut pulsa S) adalah:

M N OS c> # Oc VWL

Dimana: WL W Y

III.5.3 Modulasi Lebar Pulsa Sinusoidal (Sinusoidal Pulse-Width Modulation)

Dengan menggunakan modulasi lebar pulsa sinusoidal (Sinusoidal Pulse-Width Modulation) faktor Distorsi DF dan harmonisa orde rendah (LOH) dapat dikurangi secara signifikan. Sinyal gerbang seperti yang ditunjukkan pada gambar 3.10 dibawah ini dibangkitkan dengan membandingkan sinyal referensi sinusoidal dengan suatu gelombang pembawa (carrier) yang berbentuk pulsa gergaji dengan frekuensi fc. Frekuensi dari sinyal referensi fr menentukan frekuensi keluaran inverter

fo. Jika Tj adalah lebar pulsa ke-m, maka tegangan keluaran dapat dirumuskan

dengan:

Persamaan 3.19 dapat juga diaplikasikan untuk menentukan koefisien Fourier dari tegangan keluaran:

b H!7L HScf H gUc Sch # H g! Uc Schi _

(51)

Untuk n = 1,3,5,…

Gambar

(52)

III.5.4 Modifiksi Modulasi Lebar Pulsa

Width Modulation)

Modifikasi modulasi lebar pulsa sinusoidal ditunjukkan

Gambar 3.1

Modulasi Lebar Pulsa Sinusoidal (Modified Sinusoidal Pulse

Modifikasi modulasi lebar pulsa sinusoidal ditunjukkan seperti pada gambar

3.11. Modifikasi modulasi lebar pulsa sinusoidal

Modified Sinusoidal

Pulse-pada gambar 3.11.

(53)

BAB IV

ANALISIS HARMONISA INVERTER

IV.1 Umum

Perhitungan analisis harmonisa pada tulisan ini menggunakan bahasa pemrograman MATLAB ver 7.01. Bahasa pemrograman MATLAB merupakan salah satu bahasa pemrograman yang paling banyak digunakan dalam bidang aplikasi komputasi di bidang keteknikan.

Metode perhitungan yang dipergunakan adalah dengan menggunakan metode perhitungan definite integral. Konsep dasar definite integral adalah untuk mencari luas daerah yang dibentuk oleh suatu fungsi y = f(x) terhadap sumbu x, pada interval tertentu . Ada beberapa metode yang dapat digunakan untuk mendapatkan besar luasan tersebut. Salah satunya adalah dengan menggunakan metode pendekatan numerik, yaitu dengan membagi fungsi kedalam sub-interval yang lebih kecil kemudian menghitung luas daerah tersebut. Metode pendekatan numerik ini dapat dilakukan dengan tiga cara, yaitu: metode persegi, metode trapezoidal, dan metode kurva (Simpson’s rule).

Metode yang dipergunakan dalam tulisan ini adalah metode pendekatan numerik dengan metode persegi, karena metode inilah yang digunakan dalam Bahasa Pemrograman MATLAB dalam perhitungan-perhitungannya. Metode ini dapat dijelaskan dengan ilustrasi pada gambar 4.1 berikut ini.

(54)

Gambar 4.1 Fungsi

Dengan membagi fungsi :

Bila y1, y2, y3,..,y

maka jika luasan daerah dengan interval

Y1 + y2 + y

Dengan demikian pendekatan luas daerah yang dibentuk oleh fungsi terhadap sumbu x adalah:

Gambar 4.1 Fungsi y=f(x) yang telah dibagi dengan interval yang lebih kecil

gsi y = f(x) menjadi n buah daerah dengan interval yang sama

,..,yn merupakan nilai fungsi f(x) pada setiap titik

maka jika luasan daerah dengan interval dijumlahkan diperoleh:

+ y3 + …+ yn

Dengan demikian pendekatan luas daerah yang dibentuk oleh fungsi adalah:

yang telah dibagi dengan interval yang lebih kecil

buah daerah dengan interval yang sama

pada setiap titik x1, x2, …, xn

(4.2)

(55)

Jika diterapkan dalam perhitungan untuk mencari nilai efektif (nilai rms) suatu fungsi periodik y=f( t):

! !

" #

Dimana T = periode = n

Dengan mensubstitusi pers (4.3), diperoleh:

$%& ' ( ) *+

,

-.

*/

Bila y merupakan matriks array yang merupakan nilai fungsi f(x) pada setiap titik x dengan interval , dan n adalah panjang array matriks y ( jumlah data matriks y ), maka dalam Bahasa Pemrograman MATLAB persamaan (4.5b) dapat diekspresikan dengan:

Yrms=sqrt(sum(y.^2)/n)

IV.2 Metode Perhitungan Untuk Mendapatkan Komponen Deret Fourier

Dari persamaan (2.9), (2.10), dan (2.11):

+0 1 ! ! 2

(56)

+) 1 ! 34' ! 2 # ! /) 1 ! '5) ! 2 # !

Bila dengan T=26 = dan n adalah panjang array matriks y, maka a0 dapat

dicari dengan menggunakan persamaan (4.3):

# 7 ( 7

-.

8

Didalam MATLAB persamaan ini diekspresikan dengan:

a0=2*sum(y)/length(y)

IV.3 Simulasi Analisis Harmonisa Inverter Satu Phasa Tanpa Menggunakan Kontrol Modulasi Lebar Pulsa

Untuk menganalisa ganggugan harmonisa Inverter tanpa menggunakan kontrol PWM digunakan program inverter_tanpakontrolpwm.m (Lampiran 2). Agar mudah untuk dibaca dan dimengerti, struktur program dipilah menjadi beberapa bagian sesuai dengan fungsi dan tahapan prosesnya. Tahapan proses itu antara lain adalah sebagai berikut:

1. Memasukkan data-data yang diperlukan

Data-data yang diperlukan untuk proses analisis antara lain adalah: - Besar tegangan sumber dc, dalam satuan volt

(57)

- Pemilihan jenis data beban yang akan dianalisis, dapat berupa tahanan dan induktansi beban ataupun berupa impedansi dan sudut phasa beban. Dengan catatan bahwa program ini tidak dapat digunakan untuk beban resistif murni dan beban induktif murni.

2. Membentuk gelombang tegangan awal sebagai, meliputi pembentukan fungsi waktu ( t), tegangan sumber (Vin) dan tegangan referensi awal (Vout1 dan Vref1). Jika jumlah data yang digunakan untuk merepresentasikan satu periode gelombang adalah 3600 data, maka fungsi waktu t dapat dirumuskan dengan:

t(i) =i*2 /3600 untuk 1 i 3 600

tegangan sumber sebagai referensi terhadap t adalah:

Vin(i) = Vs

Tegangan keluaran awal dengan sudut penyalaan adalah:

Vout(i) = Vin(i) = Vs untuk t(i)

Vout(i) = 0 untuk 0 t(i)

Fungsi Vref merupakan fungsi logika. Nilai logika 1 menyatakan bahwa

rangkaian terhubung dengan sumber tegangan, sedangkan nilai logika 0 menyatakan bahwa rangkaian tidak terhubung dengan sumber tegangan.

3. Membentuk gelombang tegangan keluaran yang sebenarnya.

4. Menganalisis gelombang arus keluaran. Dengan mengambil asumsi bahwa rangkaian dalam keadaan steady state.

(58)

5. Membentuk gelombang komponen harmonisa, gelombang hasil sintesis serta spektrum harmonisa arus keluaran

6. Menampilkan nilai rms arus keluaran dan komponen fundamental arus keluaran serta besar gangguan harmonisa (THD)

Besar gangguan harmonisa(THD) dapat dihitung dengan menggunakan persamaan (2.28) 9:; <==' ' > 7 ? Atau @ A

7. Menampilkan bentuk gelombang arus keluaran, serta komponen harmonisa dari hasil sintesis deret Fourier.

IV.4 Simulasi Analisis Harmonisa Inverter Satu Phasa dengan Modulasi Lebar Pulsa

Untuk menganalisa gangguan harmonisa Inverter dengan Kontrol Modulasi lebar pulsa digunakan program inverter_pwmbanyak.m (Lampiran 1). Sama halnya dengan struktur program sebelumnya, agar mudah untuk dibaca dan dimengerti, struktur program dipilah menjadi beberapa bagian sesuai dengan fungsi dan tahapan

(59)

Tahapan proses itu antara lain adalah sebagai berikut:

1. Memasukkan data-data yang diperlukan

Data-data yang diperlukan untuk proses analisis antara lain adalah: - Besar tegangan sumber dc, dalam satuan volt

- Frekuensi tegangan keluaran, dalam satuan hertz

- Pemilihan jenis data beban yang akan dianalisis, dapat berupa tahanan dan induktansi beban ataupun berupa impedansi dan sudut phasa beban. Dengan catatan bahwa program ini tidak dapat digunakan untuk beban resistif murni dan beban induktif murni.

- Frekuensi sinyal carrier, dalam Hertz. Besar frekuensi sebaiknya merupakan kelipatan dari frekuensi tegangan keluaran

- Besar indeks modulasi amplitudo, merupakan perbandingan amplitudo sinyal carrier dengan amplitudo sinyal referensi. Besar indeks modulasi yang diizinkan adalah antara 0.1 sampai 0.9 dengan kenaikan 0.1

B+ C3D C%

- Besar indeks modulasi frekuensi yang merupakan perbandingan frekuensi sinyal carrier dengan dua kali sinyal tegangan keluaran.

BE E3D 7E0

- Jumlah pulsa per setengah siklus, dimana F BED 7

2. Membentuk gelombang awal sebagai referensi, yang meliputi pembentukan tegangan sumber (Vin), tegangan referensi awal(Vref dan Vout), dan juga

(60)

Fungsi Vref merupakan fungsi logika. Nilai logika 1 menyatakan bahwa

rangkaian terhubung dengan sumber tegangan, sedangkan nilai logika 0 menyatakan bahwa rangkaian tidak terhubung dengan sumber tegangan. Jika frekuensi sinyal carrier adalah fc, maka jumlah sinyal carrier dalam satu

periode gelombang adalah: GF E3 E 4

D .

Dari persamaan 3.15a diketahui bahwa E3 E 4

D BE. Dengan demikian jumlah

data dalam satu periode gelombang adalah: GF BE E3 E 4

D .

Sinyal carrier yang digunakan adalah sinyal segitiga, yang terdiri dari dua buah fungsi. Jika setiap fungsi terdiri dari j buah data, maka dari gambar diperoleh:

Vc = j untuk k = 1,3,5,... dan 1 j 50

Vc = 50 – j untuk k = 2,4,6,... dan 1 j 50

Dengan demikian, jumlah data dalam satu perioda gelombang adalah: i=2*Mf*50 = 100 Mf.

Fungsi waktu t dan tegangan sumber adalah: t(i) = i* /(Mf*50) untuk 1 j 100Mf

Vin(i) = Vdc(i)

Jika Vc 50*Ma, maka rangkaian akan terhubung dengan sumber tegangan

dan sumber tegangan keluaran akan sama dengan tegangan sumber. Vout(i) = Vin(i) = Vdc(i)

(61)

Sebaliknya jika V

sumber dan tegangan keluaran akan sama

3. Membentuk gelombang tegangan keluaran yang sebenarnya

4. Menganalisis gelombang arus keluaran. Dengan mengambil asumsi bah rangkaian dalam keadaan steady state.

5. Membentuk gelombang komponen harmonisa, gelombang hasil sintesis serta spektrum harmonisa arus keluaran

Gambar 4.2 Pembentukan sinyal carrier dan pulsa switching

6. Menampilkan nilai rms arus keluaran dan komp keluaran serta besar gangguan harmonisa (THD)

Besar gangguan harmonisa(THD) dapat dihitung dengan menggunakan persamaan (2.28) 9:; <==' ' > 7 ? Atau

Sebaliknya jika Vc 50*Ma, maka rangkaian akan terputus dari tegangan

sumber dan tegangan keluaran akan sama dengan nol. Membentuk gelombang tegangan keluaran yang sebenarnya

Menganalisis gelombang arus keluaran. Dengan mengambil asumsi bah rangkaian dalam keadaan steady state.

Membentuk gelombang komponen harmonisa, gelombang hasil sintesis serta spektrum harmonisa arus keluaran

Gambar 4.2 Pembentukan sinyal carrier dan pulsa switching

Menampilkan nilai rms arus keluaran dan komponen fundamental arus keluaran serta besar gangguan harmonisa (THD)

Besar gangguan harmonisa(THD) dapat dihitung dengan menggunakan persamaan (2.28)

< > ?

50*Ma, maka rangkaian akan terputus dari tegangan

Menganalisis gelombang arus keluaran. Dengan mengambil asumsi bahwa

Membentuk gelombang komponen harmonisa, gelombang hasil sintesis serta

Gambar 4.2 Pembentukan sinyal carrier dan pulsa switching

onen fundamental arus

(62)

@ A

7. Menampilkan bentuk gelombang tegangan keluaran, arus keluaran, serta komponen harmonisa dari hasil sintesis deret Fourier.

IV.5 Perbandingan Gangguan Harmonisa Inverter Tanpa Kontrol Modulasi Lebar Pulsa dan Inverter dengan Kontrol Modulasi Lebar Pulsa Banyak

Untuk mendapatkan perbandingan besar gangguan harmonisa antara inverter tanpa kontrol modulasi lebar pulsa dan inverter dengan kontrol modulasi lebar pulsa banyak, diambil contoh dengan kondisi sebagai berikut:

Tegangan sumber DC = 220 Volt

Frekuensi keluaran = 50 Hz

Tahanan beban = 2.5 Ohm

Induktansi beban = 31.5 mH

Impedansi beban = 10.2069 Ohm

(63)

Untuk mendapatkan performansi dari Inverter dengan Kontrol Modulasi Lebar Pulsa banyak dijalankan program inverter_pwmbanyak.m pada Lampiran 1. Dengan menggunakan pulsa sebanyak 5, 6, dan 7 per setengah siklus, diperoleh hasil analisis seperti yang ditunjukkan pada Tabel 4.1 - 4.3.

Tabel 4.1

Inverter Kontrol Modulasi Lebar Pulsa dengan menggunakan 5 pulsa per setengah siklus

P = 5; fc = 500 Hz

Ma arus keluaran (Amp) arus fundamental (Amp) THD (%)

0.1 5.6954 5.5736 21.0207 0.2 11.2747 11.1087 17.3512 0.3 16.7356 16.5673 14.2915 0.4 22.0762 21.9117 12.2778 0.5 27.2626 27.1055 10.782 0.6 32.2587 32.1136 9.5179 0.7 37.0297 36.9023 8.3175 0.8 41.5452 41.4398 7.1358 0.9 45.7768 45.6966 5.9239

THD dapat dihitung dengan menggunakan persamaan:

< >

Jika diambil contoh data diatas pada saat Ma = 0,6;

(64)

Tabel 4.2

Inverter Kontrol Modulasi Lebar Pulsa dengan menggunakan 6 pulsa per setengah siklus

P = 6; fc = 600 Hz

Ma arus keluaran (Amp) arus fundamental (Amp) THD (%)

0.1 5.6419 5.5474 18.531 0.2 11.2101 11.0683 16.0591 0.3 16.6922 16.5361 13.7714 0.4 22.0898 21.9248 12.2909 0.5 27.3798 27.2086 11.2348 0.6 32.5325 32.3627 10.2585 0.7 37.5249 37.3626 9.3299 0.8 42.3325 42.1852 8.3665 0.9 46.9332 46.808 7.3178 Tabel 4.3

Inverter Kontrol Modulasi Lebar Pulsa dengan menggunakan 7 pulsa per setengah siklus

P = 7; fc =700 Hz

Ma arus keluaran (Amp) arus fundamental (Amp) THD (%)

0.1 5.6123 5.5318 17.1251 0.2 11.171 11.044 15.2078 0.3 16.666 16.5174 13.4435 0.4 22.0988 21.9327 12.3286 0.5 27.4514 27.2709 11.5258 0.6 32.701 32.5133 10.7619 0.7 37.83 37.6417 10.015 0.8 42.8196 42.6385 9.2263 0.9 47.6517 47.4865 8.3494

Dari tabel 4.1, 4.2, dan 4.3 diperoleh pengaruh jumlah pulsa per setengah siklus terhadap besar arus keluaran Inverter satu phasa dengan menggunakan kontrol Modulasi Lebar Pulsa seperti yang ditunjukkan pada gambar 4.3 berikut ini.

(65)

Gambar 4.3 Pengaruh jumlah pulsa terhadap arus keluaran

(66)

Dari gambar 4.3 dan gambar 4.4 dapat diambil kesimpulan bahwa semakin besar indeks modulasi amplitudo, maka arus keluaran akan semakin besar. Contoh tampilan hasil keluaran dari program inverter_pwmbanyak.m ditunjukkan pada lampiran 1.

Dengan menggunakan data-data sumber tegangan dan beban yang sama dengan data-data tersebut diatas, dijalankan program inverter_tanpakontrolpwm.m pada lampiran 2 untuk mendapatkan performansi inverter satu phasa tanpa kontrol Modulasi Lebar Pulsa, diperoleh data-data sebagai berikut (list program dan contoh tampilan keluaran ditunjukkan pada lampiran 2):

arus keluaran (Amp) arus fundamental (Amp) THD (%)

27.6532 27.4434 12.3868

Tabel 4.4 Hasil keluaran Inverter satu phasa tanpa kontrol Modulasi Lebar Pulsa

Dari kurva yang ditunjukkan pada gambar 4.3 dan tabel 4.4 dapat ditarik beberapa kesimpulan sebagai berikut:

- Semakin kecil arus keluaran, maka gangguan harmonisa yang dihasilkan akan semakin besar

- Gangguan harmonisa yang dihasilkan oleh inverter satu phasa kontrol modulasi Lebar pulsa dengan indeks modulasi amplitudo lebih besar dari 0,4 akan lebih kecil dibandingkan dengan gangguan harmonisa inverter tanpa kontrol modulasi lebar pulsa.

(67)

- Semakin besar indeks modulasi amplitudo yang digunakan, maka gangguan harmonisa yang dihasilkan akan semakin kecil.

- Semakin banyak jumlah pulsa yang digunakan maka arus keluaran yang dihasilkan akan semakin besar

- Pada jumlah pulsa per setengah siklus yang berbeda, perbedaan arus keluaran yang dihasilkan inverter kontrol Modulasi Lebar Pulsa untuk Indeks Modulasi Amplitudo yang sama tidak terlalu signifikan dan cenderung konstan.

IV.6 Pengaruh Sudut Beban Terhadap Besar Gangguan Harmonisa pada Inverter

Untuk mendapatkan hubungan antara sudut phasa beban terhadap gangguan harmonisa yang dihasilkan oleh inverter, diambil contoh dengan kondisi beban sebagai berikut:

Tegangan sumber = 220 Volt Frekuensi keluaran = 50 Hz Impedansi beban = 10 Ohm

Data diambil untuk inverter tanpa kontrol modulasi lebar pulsa dan inverter kontrol modulasi lebar pulsa menggunakan 5 pulsa per setengah siklus dan indeks modulasi amplitudo 0,6. Masing-masing data dengan sudut fasa beban 30 deg, 45 deg, dan 60 deg.

(68)

Tabel 4.5

Inverter kontrol Modulasi Lebar Pulsa

p = 5 fc = 500 Hz Z = 10K300 Ohm

R = 8.6603 Ohm L = 15.9155 mH

Ma arus keluaran (Amp) arus fundamental (Amp) THD (%)

0.1 6.0912 5.6889 38.2653 0.2 11.8694 11.3386 30.9556 0.3 17.4263 16.9101 24.8984 0.4 22.8549 22.3651 21.0429 0.5 28.1271 27.6664 18.3252 0.6 33.2028 32.7781 16.1503 0.7 38.0405 37.6658 14.1392 0.8 42.6097 42.2973 12.1777 0.9 46.8817 46.6422 10.1465 Tabel 4.6

Inverter kontrol Modulasi Lebar Pulsa

p = 5 fc = 500 Hz Z = 10K450 Ohm

R = 7.0711 Ohm L = 22.5079 mH

Ma arus keluaran (Amp) arus fundamental (Amp) THD (%)

0.1 5.9105 5.6889 28.179 0.2 11.6371 11.3386 23.0959 0.3 17.2084 16.9101 18.8678 0.4 22.6538 22.3651 16.1195 0.5 27.9407 27.6664 14.1156 0.6 33.0313 32.7781 12.4532 0.7 37.8885 37.6658 10.8886 0.8 42.4819 42.2973 9.3535 0.9 46.7829 46.6422 7.7744

(69)

Tabel 4.7

Inverter kontrol Modulasi Lebar Pulsa

p = 5 fc = 500 Hz Z = 10K600 Ohm

R = 5 Ohm L = 27.5664 mH

Ma arus keluaran (Amp) arus fundamental (Amp) THD (%)

0.1 5.8423 5.6889 23.3742 0.2 11.5468 11.3386 19.2532 0.3 17.1203 16.9101 15.8196 0.4 22.57 22.3651 13.5684 0.5 27.8618 27.6664 11.9054 0.6 32.9586 32.7781 10.5077 0.7 37.8244 37.6658 9.1839 0.8 42.4285 42.2973 7.882 0.9 46.742 46.6422 6.5457 Tabel 4.8

Inverter tanpa kontrol Modulasi Lebar Pulsa

Vs = 220 Volt fo = 50 Hz Z = 10 Ohm

Sudut phasa

beban ( Deg.) arus keluaran (Amp)

arus fundamental

(Amp) THD (%)

30 24.8041 24.2585 21.3283

45 24.5803 24.2585 16.3433

60 24.487 24.2585 13.7583

Dari tabel 4.5-4.7 tersebut diperoleh hubungan besar sudut phasa beban dengan besar gangguan harmonisa pada inverter kontrol Modulasi Lebar Pulsa seperti ditunjukkan pada gambar berikut ini.

(70)

Gambar 4.5 Pengaruh sudut beban terhadap terhadap gangguan harmonisa Inverter kontrol Modulasi Lebar Pulsa

Dari kedua gambar diatas dapat ditarik kesimpulan bahwa:

- Semakin kecil arus keluaran, maka gangguan harmonisa yang dihasilkan akan semakin besar

- Semakin besar sudut phasa beban, maka gangguan harmonisa yang dihasilkan oleh inverter kontrol Modulasi Lebar Pulsa akan semakin kecil.

(71)

BAB V

PENUTUP

V.1 Kesimpulan

Dari hasil analisis dan uraian pada bab-bab sebelumnya, dapat diambil kesimpulan sebagai berikut:

- Pada jumlah pulsa per setengah siklus yang berbeda, perbedaan arus keluaran yang dihasilkan inverter kontrol Modulasi Lebar Pulsa untuk Indeks Modulasi Amplitudo yang sama tidak terlalu signifikan dan cenderung konstan.

- Semakin kecil arus keluaran, maka gangguan harmonisa yang dihasilkan akan semakin besar

- Gangguan harmonisa yang dihasilkan oleh inverter satu phasa kontrol modulasi Lebar pulsa dengan indeks modulasi amplitudo lebih besar dari 0,4 akan lebih kecil dibandingkan dengan gangguan harmonisa inverter tanpa kontrol modulasi lebar pulsa.

- Semakin besar indeks modulasi amplitudo yang digunakan dalam Inverter Kontrol Modulasi Lebar Pulsa, maka gangguan harmonisa yang dihasilkan akan semakin kecil.

- Semakin banyak jumlah pulsa yang digunakan maka arus keluaran yang dihasilkan akan semakin besar

(72)

- Semakin besar sudut phasa beban, maka gangguan harmonisa yang dihasilkan oleh inverter kontrol Modulasi Lebar Pulsa akan semakin kecil

V.2 Saran

Disamping kesimpulan di atas dapat pula diberikan beberapa saran sebagai berikut:

1. Perlu pembahasan lebih lanjut teknik kontrol sinyal modulasi lebar pulsa untuk jumlah pulsa tiap setengah periode dengan modifikasi lebar pulsa. 2. Perlu pembahasan lebih lanjut kemungkinan mendapatkan gangguan

(73)

DAFTAR PUSTAKA

1. Arrillaga J., Watson Neville R., “Power System Harmonics”, Second Edition, John Wiley & Son, 2004

2. Bradley D.A., “Power Electronic”, Second Edition, Chapman&Hall, 1995 3. Edminister, Joseph A., Nahvi, Mahood, “Schaum’s Outline of Theory and

Problem of Electric Circuits”, Third Edition, McGraw-Hill International Book Company, Singapore, 1997

4. Hart Daniel W., “Introduction To Power Electronics”, Prentice Hall, New Jersey, 1997

5. Thearaja, B.L., “A Text Book of Electrical Technology”, S.Chan&Company, New Delhi, 1986

6. Mohan, Ned, Tore M. Undeland, dan William P. Robbins, “Power Electronics: Converter, Aplication, and Design”, John Willey&Sons, New York, 1995

7. Rashid, Mhammad M., ”Power Electronics Circuits, Devices, and Applications”, Third Edition, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004

(74)

LAMPIRAN 1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % PROGRAM SIMULASI INVERTER MODULASI LEBAR PULSA BANYAK % % Program simulasi inverter satu phasa kontrol pwm banyak dengan beban RL,% % menampilkan bentuk gelombang arus keluaran, tegangan keluaran, serta % % perhitungan analisa harmonisanya % % BUDIMAN SARAGIH - 020402018 copyright@2007 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clc;

clear all;

% memasukkan data-data yang diperlukan

disp([' PROGRAM SIMULASI INVERTER DENGAN KONTROL PWM BANYAK ']); disp([' ']);

disp(['Masukkan data-data berikut ini: ']); Vs=input('Besar tegangan sumber dc (volt) = '); fo=input('Frekuensi tegangan keluaran (Hz) = '); w=2*pi*fo;

disp([' ']);

disp(['pilih jenis data beban (1 atau 2): ']); disp([' 1. Tahanan dan induktansi beban']); disp([' 2. Impedansi dan sudut phasa beban']); disp([' ']);

data_beban=input('jenis data beban: '); if data_beban==1;

R=input('besar tahanan beban (ohm) = '); L1=input('Besar induktansi beban (mH)= '); L=L1/1000;

Z=sqrt((R^2)+((w*L)^2));

%phi merupakan besarnya sudut beban phi=atan ((w*L)/R);

disp([' Besar Impedansi beban(ohm)= ',num2str(Z)]);

disp([' sudut phasa beban (deg) = ',num2str(phi*180/pi')]); elseif data_beban==2;

Z=input('besar Impedansi beban (ohm)= '); phi1=input('sudut phasa beban(deg)= '); phi=phi1*pi/180;

R=Z*cos(phi); L=Z*sin(phi)/w;

disp(['Besar tahanan beban = ',num2str(R),' ohm']); disp(['Besar induktansi beban = ',num2str(L*1000),' mH']); else

disp('DATA BEBAN YANG DIMASUKKAN SALAH, HARAP ULANG DARI AWAL..!!'); end

disp([' ']);

%pemilihan jenis pengaturan

disp(['Pilih jenis pengaturan berdasarkan data yang diketahui']) disp([' 1. Jumlah pulsa per setengah siklus']);

disp([' 2. Frekuensi sinyal carrier']); disp(['']);

data_atur=input('Jenis pengaturan : '); if data_atur==1;

Gambar

Gambar 2.7  Komponen deret Fourier dari gelombang gigi gergaji
Gambar 2.9 Bentuk gelombang arus bolak-balik yang mengalami distorsi
Gambar 3.1. Rangkaian Inverter sederhana
Gambar 3.2. inverter satu phasa setengah jembatan
+7

Referensi

Dokumen terkait

Kompetensi melakukan pembiakan tanaman secara generatif merupakan salah satu kemampuan untuk melaksanakan tugas pada suatu bidang pekerjaan dalam budidaya tanaman yang akan dikuasai

Agama Islam pertama kali masuk ke Laos pada abad ke-18.Orang-orang dari Tamil,selatan India ,yang pertama kali membawa islam ke Laos.Kebanyakan muslim Tamil adalah laki-laki

39 Tahun 1999 yang dimaksud dengan pelanggaran hak asasi manusia setiap perbuatan seseorang atau kelompok orang termasuk aparat negara, baik disengaja maupun tidak disengaja

Penggunaan pengobatan tradisional Gayo di Desa Tetingi masih banyak dilakukan oleh ibu nifas. Hal ini tentunya menimbulkan pertanyaan mengapa mereka masih menggunakan

Dalam rangka Pengembangan Desa Siaga, Puskesmas merupakan ujung tombak dan bertugas ganda, yaitu sebagai penyelenggara Pelayanan Obstetrik &amp; Neonatal Emergensi Dasar (PONED)

selaku Sekretaris Jurusan Administrasi Bisnis Politeknik Negeri Sriwijaya dan Dosen Pembimbing II yang telah membantu, mengarahkan dan membimbing penulis

Sehubungan dengan telah ditetapkan pemenang seleksi untuk pekerjaan Pengawasan Pembangunan Taman Permata, kami bermaksud melakukan klarifikasi dan negosiasi teknis dan biaya

Untuk mengetahui perbedaan keterlibatan konsumen pada isi iklan dan tingkat efektivitas iklan motor yamaha dan sabun lux, ada 6 pertanyaan yang diukur dengan menggunakan skala