• Tidak ada hasil yang ditemukan

laporan biologi.1

N/A
N/A
Protected

Academic year: 2021

Membagikan "laporan biologi.1"

Copied!
19
0
0

Teks penuh

(1)

Pengaruh Warna Cahaya Terhadap Banyaknya Gelembung Udara yang Dihasilkan

Hydrilla

1. Judul

Pengaruh Warna Cahaya dan Pemberian Soda Kue terhadap LBanyaknya Gelembung yang dihasilkan oleh Tanaman Hydrilla Verticillata

2. Latar Belakang

Dalam beberapa aspek fisiologi tumbuhan berbeda dengan fisiologi hewan atau fisiologi sel.

Tumbuhan dan hewan pada dasarnya telah berkembang melalui pola atau kebiasaan yang berbeda. Tumbuhan dapat tumbuh dan berkembang melalui pola atau kebiasaan yang berbeda. Tumbuhan dapat tumbuh dan berkembang sepanjang hidupnya. Kebanyakan tumbuhan tidak berpindah, memproduksi makanannya sendiri, menggantungkan diri pada apa yang diperolehnya dari lingkungannya sampai batas-batas yang tersedia. Hewan sebagian besar harus bergerak, harus mencari makan, ukuran tubuhnya terbatas pada ukuran tertentu dan harus menjaga integritas mekaniknya unntuk hidup dan pertumbuhan.

Suatu ciri hidup yang hanya dimiliki khusus oleh tumbuhan hijau adalah kemampuan dalam menggunakan zat karbon dari udara untuk diubah menjadi bahan organik serta diasimilasi dalam tubuh tumbuhan. Tumbuhan tingkat tinggi pada umumnya tergolong pada organisme autotrof, yaitu makhluk hidup yang dapat mensintesis sendiri senyawa organik yang dibutuhkannya. Senyawa organik yang baku adalah rantai karbon yang dibentuk oleh tumbuhan hijau dari proses

fotosintesis. Fotosintesis atau asimilasi karbon adalah proses pengoubahan zat-zat anorganik H2O dan CO2 oleh klorofil menjadi zat organik karbohidrat dengan bantuan cahaya. Proses fotosintesis hanya bisa dilakukan oleh tumbuhan yang mempunyai klorofil. Proses ini hanya akan terjadi jika ada cahaya dan melalui perantara pigmen hijau daun yaitu klorofil yang terdapat dalam kloroplas. Kalau fotosintesis adalah suatu proses penyusunan (anabolisme atau asimilasi) di mana energi diperoleh dari sumber cahaya dan disimpan sebagai zat kimia, maka proses respirasi adalah suatu proses pembongkaran (katabolisme atau disasimilasi) di mana energi yang tersimpan dibongkar kembali untuk menyelenggarakan proses – proses kehidupan.

3. Tujuan Penelitian

Tujuan dari penelitian ini adalah:

• Untuk membuktikan bahwa adanya oksigen yang dihasilkan dalam fotosintesis • Untuk mengetahui adanya pengaruh warna cahaya terhadap proses fotosintesis 4. Kajian Teori

Tumbuhan terutama tumbuhan tingkat tinggi, untuk memperoleh makanan sebagai kebutuhan pokoknya agar tetap bertahan hidup, tumbuhan tersebut harus melakukan suatu proses yang dinamakan proses sintesis karbohidrat yang terjadi dibagian daun satu tumbuhan yang memiliki kloropil, dengan menggunakan cahaya matahari. Cahaya matahari merupakan sumber energi yang diperlukan tumbuhan untuk proses tersebut. Tanpa adanya cahaya matahari tumbuhan tidak akan mampu melakukan proses fotosintesis, hal ini disebabkan kloropil yang berada didalam daun tidak dapat menggunakan cahaya matahari karena kloropil hanya akan berfungsi bila ada cahaya

matahari (Dwidjoseputro, 1986)

Karbohidrat merupakan senyawa karbon yang terdapat di alam sebagai molekul yang kompleks dan besar. Karbohidrat sangat beraneka ragam contohnya seperti sukrosa, monosakarida, dan

polisakarida. Monosakarida adalah karbohidrat yang paling sederhana. Monosakarida dapat diikat secara bersama-sama untuk membentuk dimer, trimer dan lain-lain. Dimer merupakan gabungan

(2)

antara dua monosakarida dan trimer terdiri dari tiga monosakarida (Kimball, 2002).

Fotosintesis berasal dari kata foton yang berarti cahaya dan sintesis yang berarti penyusunan. Jadi fotosintesis adalah proses penyusunan dari zat organic H2O dan CO2 menjadi senyawa organik yang kompleks yang memerlukan cahaya. Fotosintesis hanya dapat terjadi pada tumbuhan yang

mempunyai klorofil, yaitu pigmen yang berfungsi sebagai penangkap energi cahaya matahari (Kimball, 2002).

Energi foton yang digunakan untuk menggerakkan elektron melawanan gradient panas di dalam fotosistem I dari sebuah agen dengan tenaga reduksi kuat, yang secara termodinamis mampu mereduksi CO2 di dalam fotosistem II dari air dengan pelepasan O2, jika sebuah molekul pigmen menyerap sebuah foton masuk ke dalam sebuah keadaan tereksitasi, karena satu elektronnya pada keadaan dasar pindah ke orbit (Anwar, 1984).

Organisasi dan fungsi suatu sel hidup bergantung pada persediaan energi yang tak henti-hentinya. Sumber energi ini tersimpan dalam molekul-molekul organik seperti karbohidrat. Organisme heterotrofik, seperti ragi dan kita sendiri, hidup dan tumbuh dengan memasukan molekul-molekul organik ke dalam sel-selnya (Kimball, 1992).

Orang yang pertama kali menemukan fotosintesis adalah Jan Ingenhousz. Fotosintesis merupakan suatu proses yang penting bagi organisme di bumi, dengan fotosintesis ini tumbuhan menyediakan bagi organisme lain baik secara langsung maupun tidak langsung. Jan Ingenhosz melakukan

percobaan dengan memasukkan tumbuhan Hydrilla verticillata ke dalam bejana yang berisi air. Bejana gelas itu ditutup dengan corong terbalik dan diatasnya diberi tabung reaksi yang diisi air hingga penuh, kemudian bejana itu diletakkan di terik matahari. Tak lama kemudian muncul gelembung udara dari tumbuhan air itu yang menandakan adanya oksigen (Kimball, 1993). Pada tahun 1860, Sach membuktikan bahwa fotosintesis menghasilkan amilum. Dalam

percobaannya tersebut ia mengguanakan daun segar yang sebagian dibungkus dengan kertas timah kemudian daun tersebut direbus, dimasukkan kedalam alkoholdan ditetesi dengan iodium. Ia menyimpulkan bahwa warna biru kehitaman pada daun yang tidak ditutupi kertas timah menandakan adanya amilum (Malcome, 1990).

Fotosistem ada dua macam, yaitu fotosistem I dan fotosistem II. Fotosistem I tersusun oleh klorifil a dan klorifil b dengan perbandingan 12:1 dan tereksitasi secara maksimum oleh cahaya pada

panjang gelombang 700 nm. Pada fotosistem II perbandingan klorofil a dan klorofil b yaitu 1:2 dan tereksitasi secara maksimum oleh cahaya pada panjang gelombang 680 nm (Syamsuri, 2000). Fotosintesis merupakan proses sintesis senyawa organik (glukosa) dari zat anorganik (CO2 dan H2O) dengan bantuan energi cahaya matahari. Dalam proses ini energi radiasi diubah menjadi energi kimia dalam bentuk ATP dan NADPH + H yang selanjutnya akan digunakan untuk mereduksi CO2 menjadi glukosa. Maka persamaan reaksinya dapat dituliskan :

Kloropil

6CO2 + 6H2O C6H12O6 + 6O2 + Energi Sinar matahari

Tergantung pada bahan yang digunakan, maka jumlah mol Co2 yang dilepaskan dan jumlah mol O2 yang diperlukan tidak selalu sama. Persamaan reaksi kimia respirasi merupakan kebalikan dari reaksi kimia fotosintesis (Syamsuri, 2000).

Cahaya yang nampak mempunyai bagian kecil yang disebut spektrum elektromagnetik, dimana termasuk gelombang radio, gelombang mikro dan sinar x. Cahaya putih terdiri dari beberapa jumlah panjang gelombang cahaya, setiap gelombang mewakili satu warna tertentu. Hal ini dapat dilihat dari pelangi yang tercipta dari tetesan air, memecah sinar matahari menjadi beberapa gelombang cahaya dan nampak warna yang berbeda. Panjang gelombang cahaya biasa diukur dengan satuan nanometer (nm). Sinar yang bisa dilihat oleh mata manusia hanya di kisaran 380-700 nm. Sinar dengan gelombang lebih pendek disebut ultraviolet (UV) yang mempunyai panjang

(3)

300-350 nm, sedangkan gelombang yang lebih panjang disebut infra merah dengan panjang 700-750 nm. Contoh, lampu yang nampak berwarna biru memproduksi spektrum antara 400-500 nm, sedangkan lampu yang nampak berwarna merah memproduksi spektrum antara 650-700 nm. 5. Perumusan Masalah

1) Mengapa adanya gelembung gas yang dihasilkan?

2) Mengapa warna cahaya mempengaruhi banyaknya gelembung gas yang dihasilkan? 3) Mengapa soda kue mempengaruhi adanya gelembung gas yang dihasilkan?

4) Warna apa yang menghasilkan gelembung gas paling banyak? 6. Pembatasan Masalah

1) Mengapa warna cahaya mempengaruhi banyaknya gelembung gas yang dihasilkan? 2) Mengapa soda kue mempengaruhi adanya gelembung gas yang dihasilkan?

7. Hipotesis

• Banyaknya gelembung gas yang dihasilkan dipengaruhi oleh warna cahaya dan pemberian soda kue.

8. Variabel

• Variabel Kontrol : air, cahaya

• Variabel Bebas : Warna cahaya dan soda kue • Variabel Terikat : tanaman Hydrilla verticillata 9. Alat dan Bahan:

Alat :

1. Gelas Kimia 500 ml 2. Corong Gelas 3. Tabung Reaksi

4. Kawat berukuran 15 cm berbentuk S sebanyak 4 buah

5. Plastik Jilid berwarna merah, jinggga, kuning, hijau, biru, nila, ungu 6. Kursi Laboratorium

7. Baskom 8. Sendok Teh 9. Straples Bahan :

1. Soda Kue (baking soda) 2. Air yang jernih

3. Tumbuhan air Hydrilla verticillata

10. Cara Kerja

• Tidak Menggunakan Soda Kue

1) Memasukkan beberapa cabang Hydrilla verticillata sepanjang kira-kira 15 cm ke dalam corong kaca.

2) Memasukkan corong kaca ke dalam beaker glass yang berisi air. 3) Menyanggah corong kaca dengan menggunakan 4 kawat

(4)

5) Letakkan transparansi warna merah yang berbentuk kerucut.

6) Mengamati timbulnya gelembung-gelembung gas yang muncul dari potongan cabang /ranting yang terjadi selama lima menit.

7) Catat hasil penelitian ke dalam table

8) Lakukan langkah no.5 dengan menggunakan plastic transparansi warna jingga, kuning, hijau,biru,nila,ungu.

• Menggunakan Soda Kue

1) Memasukkan beberapa cabang Hydrilla verticillata sepanjang kira-kira 15 cm ke dalam corong kaca

2) Memasukkan corong kaca ke dalam beaker glass yang berisi air. 3) Menyanggah corong kaca dengan menggunakan 4 kawat.

4) Diamkan selama satu menit untuk menetralkan 5) Tambahkan satu sendok teh soda kue.

6) Letakkan transparasi warna merah yang berbentuk kerucut.

7) Mengamati timbuknya gelembung-gelembung gas yang muncul dari potangan cabang yang terjadi selama lima menit.

8) Catat hasil penelitian ke dalam tabel.

9) Lakukan langkah no.6 menggunakan plastic transparansi warna jingga, kuning, hijau, biru, nila dan ungu.

11. Tabel Pengamatan

• Banyaknya gelembung sebelum menggunakan soda kue Menit ke- Warna cahaya

merah jingga kuning hijau biru nila ungu 1 23 80 66 94 123 102 146

2 46 160 132 188 246 204 292 3 69 240 198 282 369 306 438 4 92 320 264 376 492 408 584 5 115 400 330 470 615 510 730

• Banyaknya gelembung sesudah menggunakan soda kue Menit ke- Warna cahaya

merah jingga kuning hijau biru nila ungu 1 71 90 95 112 138 144 162 2 142 180 190 224 276 288 324 3 213 270 285 336 414 432 486 4 284 360 380 448 552 576 648 5 355 450 475 560 690 720 810 12. Analisis Data

Berdasarkan hasil pengamatan diatas dapat dilihat bahwa banyaknya gelembung yang tidak menggunakan soda kue lebih sedikit daripada yang menggunakan soda kue. Hal ini dapat terjadi karena soda kue adalah bikarbonat soda yang bersifat basa. Soda kue ini akan mengeluarkan

(5)

gelembung-gelembung udara jika ditambahkan dengan cairan yang bersifat asam. Pada tumbuhan, soda kue dapat mempercepat laju reaksi fotosintesis. Dapat dilihat pada reaksi dibawah ini:

Reaksi Soda Kue:

CO32- + H2O OH- + CO2 + H2O

Reaksi diatas tersebut merupakan penguraian dari soda kue jika ditambah air. Hasilnya berupa CO2 yang merupakan factor utama dari pembentukan reaksi fotosintesis. Jadi semakin banyak soda kue yang diberikan semakin banyak CO2 yang dihasilkan dan semakin cepat proses fotosintesis yang dilakukannya sehingga hasil dari fotosintesis yang berupa oksigen akan banyak yang dihasilkan.

Reaksi fotosintesis:

CO2 + H2O C6H12O6 + O2 + Energi

Selain soda kue yang mempengaruhi banyaknya gelembung gas yang dihasilkan, ternyata perbedaan warna cahaya juga mempengaruhi banyaknya gelembung gas yang dihasilkan. Warna-warna cahaya yang menggunakan plastik transparan merupakan spectrum warna. Spektrum warna terjadi dari gelombang electromagnet yang memiliki panjang gelombang yang besar dan frekuensi yang kecil, sehingga gelombang electromagnet di udara merambat dengan laju yang sama dan menghasilkan warna-warna yang berbeda-beda.

Pada percobaan diatas spectrum warna yang digunakan adalah sinar tampak (merah jingga kuning hijau biru nila ungu). Cahaya yang nampak mempunyai bagian kecil yang disebut spektrum elektromagnetik. Panjang gelombang cahaya biasa diukur dengan satuan nanometer (nm). Sinar yang bisa dilihat oleh mata manusia hanya di kisaran 380-700 nm. Sinar dengan gelombang lebih pendek disebut ultraviolet (UV) yang mempunyai panjang 300-350 nm, sedangkan gelombang yang lebih panjang disebut infra merah dengan panjang 700-750 nm.

Gelombang cahaya yang pendek <400 nm (biru-ultraviolet) akan cepat terserap oleh pigmen klorofil untuk melakukan fotosintesis. Pada Hydrilla verticillata cahaya biru-ultraviolet digunakan lebih banyak dari pada cahaya merah karena lebih mudah didapatkannya, lebih kuat di cahaya matahari dan lebih mudah melewati air. Spektrum merah tidak digunakan pada proses fotosintesis karena spectrum merah sangat sensitive.

Dalam reaksi fotosintesis akan lebih baik menggunakan cahaya biru-ultraviolet, maka otomatis kerja system pada reaksi terang (membutuhkan cahaya) akan maksimum dan menghasilkan glukosa yang lebih dari cukup dan melepaskan udara (oksigen) yang lebih dari cukup pula. Akan lebih banyak hasil udara yang dihasilkan pada yang membuat tumbuhan semakin produktif. Pada daun, cahaya akan diserap oleh molekul klorofil untuk dikumpulkan pada pusat-pusat reaksi.

Kedua fotosistem yang terdapat pada tumbuhan bekerja secara simultan dalam fotosintesis, seperti dua baterai dalam senter yang bekerja saling memperkuat. lalu, Fotosintesis dimulai ketika cahaya mengionisasi molekul klorofil pada fotosistem II, membuatnya melepaskan elektron yang akan ditransfer sepanjang rantai transpor elektron. Energi dari elektron ini digunakan untuk fotofosforilasi yang menghasilkan ATP, satuan pertukaran energi dalam sel. Reaksi ini

menyebabkan fotosistem II mengalami defisit atau kekurangan elektron yang harus segera diganti. Pada tumbuhan dan alga, kekurangan elektron ini dipenuhi oleh elektron dari hasil ionisasi air yang terjadi bersamaan dengan ionisasi klorofil. Hasil ionisasi air ini adalah elektron dan oksigen.

(6)

Jadi dari hasil penelitian diatas terbukti bahwa Hydrilla verticillata yang menggunakan plastic transparan berwarna ungu menghasilkan banyak gelembung gas.

13. Kesimpulan

1) Fotosintesis adalah proses pembentukan bahan organik dari bahan anorganik dengan bantuan cahaya dan kloroplas.

2) Warna yang memiliki panjang gelombang pendek sangat cepat mempengaruhi laju fotosintesis sehingga menghasilkan banyak gelembung gas.

3) Penambahan soda kue sangat mempengaruhi laju fotosintesis sehingga mengasilkan banyak gelembung gas.

4) Gelembung-gelembung udara yang dihasilkan membuktikan bahwa adanya oksigen yang dihasilkan selama proses fotosintesis.

14. Saran

1) Percobaan seperti ini memerlukan pengamatan yang harus benar-benar diperhatikan, terlebih lagi saat memperhatikan gelembung udara yang dihasilkan dari proses fotosintesis.

(7)

Fotosintesis

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Daun, tempat berlangsungnya fotosintesis pada tumbuhan.

Fotosintesis adalah suatu proses biokimia pembentukan zat makanan atau energi yaitu glukosa yang dilakukan tumbuhan, alga, dan beberapa jenisbakteri dengan menggunakan zat hara, karbondioksida, dan air serta dibutuhkan bantuan energi cahaya matahari.[1] Hampir semua makhluk hidup bergantung dari energi yang dihasilkan dalam fotosintesis. Akibatnya fotosintesis menjadi sangat penting bagi kehidupan

di bumi.[1] Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat

di atmosfer bumi.[1] Organisme yang menghasilkan energi melalui fotosintesis (photosberarti cahaya) disebut sebagai fototrof.[1] Fotosintesis merupakan salah satu cara asimilasi karbon karena dalam fotosintesis karbon bebas dari CO2diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi.[1] Cara lain yang ditempuh organisme untuk mengasimilasi karbon adalah melaluikemosintesis, yang dilakukan oleh sejumlah

(8)

Daftar isi [sembunyikan]  1 Sejarah  2 Pigmen o 2.1 Kloroplas  3 Fotosistem

 4 Fotosintesis pada tumbuhan

 5 Fotosintesis pada alga dan bakteri

 6 Proses

o 6.1 Reaksi terang

o 6.2 Reaksi gelap

 6.2.1 Siklus Calvin-Benson

 6.2.2 Siklus Hatch-Slack

 7 Faktor penentu laju fotosintesis

 8 Lihat pula

 9 Referensi

 10 Pranala luar

[sunting]

Sejarah

Meskipun masih ada langkah-langkah dalam fotosintesis yang belum dipahami, persamaan umum fotosintesis telah diketahui sejak tahun 1800-an.[2] Pada awal tahun 1600-an, seorang dokter dan ahli kimia, Jan van Helmont, seorang Flandria (sekarang bagian dari Belgia), melakukan percobaan untuk mengetahui faktor apa yang menyebabkan massa tumbuhan bertambah dari waktu ke waktu.[2]Dari penelitiannya, Helmont

menyimpulkan bahwa massa tumbuhan bertambah hanya karena pemberian air.[2] Namun, pada tahun 1727, ahli botani Inggris, Stephen Hales berhipotesis bahwa pasti ada faktor lain selain air yang berperan. Ia mengemukakan bahwa sebagian makanan tumbuhan berasal dari atmosfer dan cahaya yang terlibat dalam proses tertentu.[2] Pada saat itu belum diketahui bahwa udara mengandung unsur gas yang berlainan.[1]

Pada tahun 1771, Joseph Priestley, seorang ahli kimia dan pendeta berkebangsaan Inggris, menemukan bahwa ketika ia menutup sebuah lilin menyala dengan sebuah toples terbalik, nyalanya akan mati sebelum lilinnya habis terbakar.[3] Ia kemudian menemukan bila ia meletakkan tikus dalam toples terbalik bersama lilin, tikus itu akan mati lemas. Dari kedua percobaan itu, Priestley menyimpulkan bahwa nyala lilin telah

(9)

yang telah “dirusak” oleh lilin tersebut dapat “dipulihkan” oleh tumbuhan.[3]

Ia juga menunjukkan bahwa tikus dapat tetap hidup dalam toples tertutup asalkan di dalamnya juga terdapat tumbuhan.[3]

Pada tahun 1778, Jan Ingenhousz, dokter kerajaan Austria, mengulangi eksperimen Priestley.[4] Ia

memperlihatkan bahwa cahaya matahari berpengaruh pada tumbuhan sehingga dapat "memulihkan" udara yang "rusak".[5] Ia juga menemukan bahwa tumbuhan juga 'mengotori udara' pada keadaan gelap sehingga ia lalu menyarankan agar tumbuhan dikeluarkan dari rumah pada malam hari untuk mencegah kemungkinan meracuni penghuninya.[5]

Akhirnya di tahun 1782, Jean Senebier, seorang pastorPerancis, menunjukkan bahwa udara yang “dipulihkan”

dan “merusak” itu adalah karbon dioksida yang diserap oleh tumbuhan dalam fotosintesis.[1]

Tidak lama kemudian, Theodore de Saussure berhasil menunjukkan hubungan antara hipotesis Stephen Hale dengan percobaan-percobaan "pemulihan" udara.[1] Ia menemukan bahwa peningkatan massa tumbuhan bukan hanya karena penyerapan karbon dioksida, tetapi juga oleh pemberian air.[1] Melalui serangkaian eksperimen inilah akhirnya para ahli berhasil menggambarkan persamaan umum dari fotosintesis yang menghasilkan makanan (seperti glukosa).

[sunting]

Pigmen

Struktur kloroplas: 1. membran luar 2. ruang antar membran

3. membran dalam (1+2+3: bagian amplop) 4. stroma

5. lumen tilakoid (inside of thylakoid) 6. membran tilakoid

7. granum (kumpulan tilakoid) 8. tilakoid (lamella)

9. pati 10. ribosom

(10)

11. DNA plastida 12. plastoglobula

Proses fotosintesis tidak dapat berlangsung pada setiap sel, tetapi hanya pada sel yang

mengandung pigmen fotosintetik.[6] Sel yang tidak mempunyai pigmen fotosintetik ini tidak mampu melakukan proses fotosintesis.[6] Pada percobaan Jan Ingenhousz, dapat diketahui

bahwaintensitascahaya memengaruhi laju fotosintesis pada tumbuhan.[5] Hal ini dapat terjadi karena perbedaan energi yang dihasilkan oleh setiapspektrumcahaya.[5] Di samping adanya perbedaan energi tersebut, faktor lain yang menjadi pembeda adalah kemampuan daun dalam menyerap berbagai spektrum cahaya yang berbeda tersebut.[5] Perbedaan kemampuan daun dalam menyerap berbagai spektrum cahaya tersebut disebabkan adanya perbedaan jenis pigmen yang terkandung pada jaringan daun.[5]

Di dalam daun terdapat mesofil yang terdiri atas jaringan bunga karang dan jaringan pagar.[7] Pada kedua jaringan ini, terdapat kloroplas yang mengandung pigmen hijau klorofil.[7] Pigmen ini merupakan salah satu dari pigmen fotosintesis yang berperan penting dalam menyerap energimatahari.[7]

[sunting]

Kloroplas

Hasil mikroskop elektron dari kloroplas

Kloroplas terdapat pada semua bagian tumbuhan yang berwarna hijau, termasuk batang dan buah yang belum matang.[8] Di dalam kloroplas terdapat pigmenklorofil yang berperan dalam proses fotosintesis.[9]Kloroplas mempunyai bentuk seperti cakram dengan ruang yang disebut stroma.[8] Stroma ini dibungkus oleh dua lapisan membran.[8] Membran stroma ini disebut tilakoid, yang didalamnya terdapat ruang-ruang antar membran yang disebut lokuli.[8] Di dalam stroma juga terdapat lamela-lamela yang bertumpuk-tumpuk

membentuk grana (kumpulan granum).[8] Granum sendiri terdiri atas membran tilakoid yang merupakan tempat terjadinya reaksi terang dan ruang tilakoid yang merupakan ruang di antara membran tilakoid.[8] Bila sebuah granum disayat maka akan dijumpai beberapa komponen seperti protein, klorofil a, klorofil b, karetonoid, dan lipid.[10] Secara keseluruhan, stroma berisi protein, enzim, DNA, RNA, gula fosfat, ribosom, vitamin-vitamin, dan juga ion-ion logam seperti mangan (Mn), besi (Fe), maupun perak (Cu).[7] Pigmen fotosintetik terdapat

(11)

pada membrantilakoid.[7] Sedangkan, pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid dengan produk akhir berupa glukosa yang dibentuk di dalam stroma.[7] Klorofil sendiri sebenarnya hanya merupakan sebagian dari perangkat dalam fotosintesis yang dikenal sebagai fotosistem.[7]

[sunting]

Fotosistem

Fotosistem adalah suatu unit yang mampu menangkap energi cahaya matahari yang terdiri dari klorofil a, kompleks antena, dan akseptor elektron.[7] Di dalam kloroplas terdapat beberapa

macamklorofil dan pigmen lain, seperti klorofil a yang berwarna hijau muda, klorofil b berwarna hijau tua, dan karoten yang berwarna kuning sampai jingga.[7] Pigmen-pigmen tersebut mengelompok dalam membran tilakoid dan membentuk perangkat pigmen yang berperan penting dalam fotosintesis.[11]

Klorofil a berada dalam bagian pusat reaksi.[12] Klorofil ini berperan dalam menyalurkan elektron yang berenergi tinggi ke akseptor utama elektron.[12] Elektron ini selanjutnya masuk ke sistemsikluselektron.[12] Elektron yang dilepaskan klorofil a mempunyai energi tinggi sebab memperoleh energi dari cahaya yang berasal

dari molekul perangkat pigmen yang dikenal dengan kompleks antena.[11]

Fotosistem sendiri dapat dibedakan menjadi dua, yaitu fotosistem I dan fotosistem II.[11] Pada fotosistem I ini penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif terhadap cahaya dengan panjang gelombang 700 nm sehingga klorofil a disebut juga P700.[13] Energi yang diperoleh P700 ditransfer dari kompleks

antena.[13] Pada fotosistem II penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif

terhadap panjang gelombang 680 nm sehingga disebut P680.[14] P680 yang teroksidasi merupakan agen pengoksidasi yang lebih kuat daripada P700.[14] Dengan potensialredoks yang lebih besar, akan cukup elektron negatif untuk memperoleh elektron dari molekul-molekul air.[7]

[sunting]

Fotosintesis pada tumbuhan

Tumbuhan bersifat autotrof.[4] Autotrof artinya dapat mensintesis makanan langsung dari senyawa

anorganik.[4] Tumbuhan menggunakan karbon dioksida dan air untuk menghasilkan gula dan oksigenyang diperlukan sebagai makanannya. Energi untuk menjalankan proses ini berasal dari fotosintesis. Perhatikan persamaan reaksi yang menghasilkan glukosa berikut ini:

6H2O + 6CO2 + cahaya → C6H12O6 (glukosa) + 6O2

Glukosa dapat digunakan untuk membentuk senyawa organik lain seperti selulosa dan dapat pula digunakan sebagai bahan bakar.[4] Proses ini berlangsung melalui respirasi seluler yang terjadi baik pada hewan maupun tumbuhan.[4] Secara umum reaksi yang terjadi pada respirasi seluler berkebalikan dengan persamaan di atas.[4] Pada respirasi, gula (glukosa) dan senyawa lain akan bereaksi dengan oksigen untuk menghasilkan karbon dioksida, air, dan energi kimia.[4]

(12)

Tumbuhan menangkap cahaya menggunakan pigmen yang disebut klorofil.[4] Pigmen inilah yang memberi warna hijau pada tumbuhan. Klorofil terdapat dalam organel yang disebut kloroplas.[4] klorofil menyerap cahaya yang akan digunakan dalam fotosintesis.[4] Meskipun seluruh bagian tubuh tumbuhan yang berwarna hijau mengandung kloroplas, namun sebagian besar energi dihasilkan di daun.[4]Di dalam daun terdapat lapisan sel yang disebut mesofil yang mengandung setengah juta kloroplas setiap milimeter perseginya.[4] Cahaya akan melewati lapisan epidermis tanpa warna dan yang transparan, menuju mesofil, tempat terjadinya sebagian besar proses fotosintesis.[4] Permukaan daun biasanya dilapisi oleh kutikula dari lilin yang bersifat anti air untuk mencegah terjadinya penyerapan sinar matahari ataupun penguapan air yang berlebihan.[4]

[sunting]

Fotosintesis pada alga dan bakteri

Alga terdiri dari alga multiseluler seperti ganggang hingga alga mikroskopik yang hanya terdiri dari satu sel.[15] Meskipun alga tidak memiliki struktur sekompleks tumbuhan darat, fotosintesis pada keduanya terjadi dengan cara yang sama.[15] Hanya saja karena alga memiliki berbagai jenis pigmen dalam kloroplasnya, maka panjang gelombang cahaya yang diserapnya pun lebih bervariasi.[15]Semua alga

menghasilkan oksigen dan kebanyakan bersifat autotrof.[15] Hanya sebagian kecil saja yang bersifat heterotrof yang berarti bergantung pada materi yang dihasilkan oleh organisme lain.[15]

[sunting]

Proses

Hingga sekarang fotosintesis masih terus dipelajari karena masih ada sejumlah tahap yang belum bisa dijelaskan, meskipun sudah sangat banyak yang diketahui tentang proses vital ini.[16] Proses fotosintesis sangat kompleks karena melibatkan semua cabang ilmu pengetahuan alam utama, seperti fisika, kimia, maupun biologi sendiri.[16]

Pada tumbuhan, organ utama tempat berlangsungnya fotosintesis adalah daun.[16] Namun secara umum, semua sel yang memiliki kloroplas berpotensi untuk melangsungkan reaksi ini.[17] Di organel inilah tempat berlangsungnya fotosintesis, tepatnya pada bagian stroma.[16] Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu.[16]

Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida).[18]

Reaksi terang terjadi pada grana (tunggal: granum), sedangkan reaksi gelap terjadi di dalam stroma.[18] Dalam reaksi terang, terjadi konversi energi cahaya menjadi energi kimia dan

menghasilkanoksigen (O2). [18]

Sedangkan dalam reaksi gelap terjadi seri reaksi siklik yang membentuk gula dari bahan dasar CO2 dan energi (ATP dan NADPH).

[18]

Energi yang digunakan dalam reaksi gelap ini diperoleh dari reaksi terang.[18] Pada proses reaksi gelap tidak dibutuhkan cahaya matahari. Reaksi gelap bertujuan untuk mengubah senyawa yang mengandung atom karbon menjadi molekul gula.[18]Dari

(13)

untuk proses fotosintesis, yaitu panjang gelombang yang berada pada kisaran cahaya tampak (380-700 nm).[18] Cahaya tampak terbagi atas cahaya merah (610 - 700 nm), hijau kuning (510 - 600 nm), biru (410 - 500 nm) dan violet (< 400 nm).[19] Masing-masing jenis cahaya berbeda pengaruhnya terhadap fotosintesis.[19] Hal ini terkait pada sifat pigmen penangkap cahaya yang bekerja dalam fotosintesis.[19] Pigmen yang terdapat pada membran grana menyerap cahaya yang memiliki panjang gelombang tertentu.[19] Pigmen yang berbeda menyerap cahaya pada panjang gelombang yang berbeda.[19]Kloroplas mengandung beberapa pigmen. Sebagai contoh, klorofil a terutama menyerap cahaya biru-violet dan merah.[19] Klorofil b menyerap cahaya biru dan oranye dan memantulkan cahaya kuning-hijau. Klorofil a berperan langsung dalam reaksi terang,

sedangkan klorofil b tidak secara langsung berperan dalam reaksi terang.[19] Proses absorpsi energi cahaya menyebabkan lepasnya elektron berenergi tinggi dari klorofil a yang selanjutnya akan disalurkan dan ditangkap oleh akseptor elektron.[12] Proses ini merupakan awal dari rangkaian panjang reaksi fotosintesis.

[sunting]

Reaksi terang

Reaksi terang dari fotosintesis pada membran tilakoid

Reaksi terang adalah proses untuk menghasilkan ATP dan reduksiNADPH2. [20]

Reaksi ini memerlukan molekul airdan cahaya matahari. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena.[20]

Reaksi terang melibatkan dua fotosistem yang saling bekerja sama, yaitu fotosistem I dan II.[21] Fotosistem I (PS I) berisi pusat reaksi P700, yang berarti bahwa fotosistem ini optimal menyerap cahaya pada panjang gelombang 700 nm, sedangkan fotosistem II (PS II) berisi pusat reaksi P680 dan optimal menyerap cahaya pada panjang gelombang 680 nm.[21]

Mekanisme reaksi terang diawali dengan tahap dimana fotosistem II menyerap cahaya matahari sehingga elektron klorofil pada PS II tereksitasi dan menyebabkan muatan menjadi tidak stabil.[21] Untuk menstabilkan

(14)

kembali, PS II akan mengambil elektron dari molekul H2O yang ada disekitarnya. Molekul air akan dipecahkan

oleh ion mangan (Mn) yang bertindak sebagai enzim.[21] Hal ini akan mengakibatkan pelepasan H+ di lumen tilakoid. Dengan menggunakan elektron dari air, selanjutnya PS II akan mereduksi plastokuinon (PQ) membentuk PQH2.

[21]

Plastokuinon merupakan molekul kuinon yang terdapat pada membran lipid bilayer tilakoid. Plastokuinon ini akan mengirimkan elektron dari PS II ke suatu pompa H+ yang disebut sitokrom b6-f

kompleks.[20] Reaksi keseluruhan yang terjadi di PS II adalah[21]:

2H2O + 4 foton + 2PQ + 4H - → 4H+

+ O2 + 2PQH2

Sitokrom b6-f kompleks berfungsi untuk membawa elektron dari PS II ke PS I dengan mengoksidasi PQH2 dan

mereduksi protein kecil yang sangat mudah bergerak dan mengandung tembaga, yang dinamakan plastosianin (PC).[21] Kejadian ini juga menyebabkan terjadinya pompa H+ dari stroma ke membran tilakoid.[21] Reaksi yang terjadi pada sitokrom b6-f kompleks adalah

[21]

:

2PQH2 + 4PC(Cu

2+) → 2PQ + 4PC(Cu+

) + 4 H+ (lumen)

Elektron dari sitokrom b6-f kompleks akan diterima oleh fotosistem I. [21]

Fotosistem ini menyerap energi cahaya terpisah dari PS II, tapi mengandung kompleks inti terpisahkan, yang menerima elektron yang berasal dari H2O

melalui kompleks inti PS II lebih dahulu.[21] Sebagai sistem yang bergantung pada cahaya, PS I berfungsi mengoksidasi plastosianin tereduksi dan memindahkan elektron ke protein Fe-S larut yang disebut feredoksin.[21] Reaksi keseluruhan pada PS I adalah[21]:

Cahaya + 4PC(Cu+) + 4Fd(Fe3+) → 4PC(Cu2+) + 4Fd(Fe2+)

Selanjutnya elektron dari feredoksin digunakan dalam tahap akhir pengangkutan elektron untuk mereduksi NADP+ dan membentuk NADPH.[21] Reaksi ini dikatalisis dalam stroma oleh enzim

feredoksin-NADP+ reduktase.[21] Reaksinya adalah[21]:

4Fd (Fe2+) + 2NADP+ + 2H+ → 4Fd (Fe3+) + 2NADPH

Ion H+ yang telah dipompa ke dalam membran tilakoid akan masuk ke dalam ATP sintase.[1] ATP sintase akan menggandengkan pembentukan ATP dengan pengangkutan elektron dan H+ melintasi membran

tilakoid.[1] Masuknya H+ pada ATP sintase akan membuat ATP sintase bekerja mengubah ADP dan fosfat anorganik (Pi) menjadi ATP.[1] Reaksi keseluruhan yang terjadi pada reaksi terang adalah sebagai berikut[1]:

Sinar + ADP + Pi + NADP+ + 2H2O → ATP + NADPH + 3H +

(15)

[sunting]

Reaksi gelap

Reaksi gelap pada tumbuhan dapat terjadi melalui dua jalur, yaitu siklus Calvin-Benson dan siklus Hatch-Slack.[22] Pada siklus Calvin-Benson tumbuhan mengubah senyawa ribulosa 1,5 bisfosfat menjadi senyawa dengan jumlah atom karbon tiga yaitu senyawa 3-phosphogliserat.[22] Oleh karena itulah tumbuhan yang menjalankan reaksi gelap melalui jalur ini dinamakan tumbuhan C-3.[22]Penambatan CO2 sebagai sumber

karbon pada tumbuhan ini dibantu oleh enzim rubisco.[22] Tumbuhan yang reaksi gelapnya mengikuti jalur Hatch-Slack disebut tumbuhan C-4 karena senyawa yang terbentuk setelah penambatan

CO2 adalah oksaloasetat yang memiliki empat atom karbon. Enzim yang berperan adalah

phosphoenolpyruvate carboxilase.[22]

[sunting]

Siklus Calvin-Benson

Siklus Calvin-Benson

Mekanisme siklus Calvin-Benson dimulai dengan fiksasi CO2 oleh ribulosa difosfat karboksilase (RuBP)

membentuk 3-fosfogliserat.[22] RuBP merupakan enzimalosetrik yang distimulasi oleh tiga jenis perubahan yang dihasilkan dari pencahayaan kloroplas. Pertama, reaksi dari enzim ini distimulasi oleh

peningkatan pH.[22] Jika kloroplas diberi cahaya, ion H+ ditranspor dari stroma ke dalam tilakoid menghasilkan peningkatan pH stroma yang menstimulasi enzim karboksilase, terletak

(16)

sebagai ion H+, jika kloroplas diberi cahaya.[22] Ketiga, reaksi ini distimulasi oleh NADPH, yang dihasilkan oleh fotosistem I selama pemberian cahaya.[22]

Fiksasi CO2 ini merupakan reaksi gelap yang distimulasi oleh pencahayaan

kloroplas.[12] Fikasasi CO2 melewati proseskarboksilasi, reduksi, dan regenerasi.[23] Karboksilasi melibatkan penambahan CO2 dan H2O ke RuBP membentuk duamolekul 3-fosfogliserat(3-PGA).

[23]

Kemudian pada fase reduksi, gugus karboksil dalam 3-PGA direduksi menjadi 1 gugus aldehida dalam 3-fosforgliseradehida (3-Pgaldehida).[23] Reduksi ini tidak terjadi secara langsung, tapi gugus karboksil dari 3-PGA pertama-tama diubah menjadi ester jenis anhidridaasam pada asam 1,3-bifosfogliserat (1,3-bisPGA) dengan penambahan gugus fosfat terakhir dari ATP.[23] ATP ini timbul dari fotofosforilasi dan ADP yang dilepas ketika 1,3-bisPGA terbentuk, yang diubah kembali dengan cepat menjadi ATP oleh reaksi fotofosforilasi tambahan.[23] Bahan pereduksi yang sebenarnya adalah NADPH, yang menyumbang 2 elektron.[23] Secara bersamaan, Pi dilepas dan digunakan kembali untuk mengubah ADP menjadi ATP.[23]

Pada fase regenerasi, yang diregenerasi adalah RuBP yang diperlukan untuk bereaksi dengan CO2 tambahan

yang berdifusisecara konstan ke dalam dan melalui stomata.[24] Pada akhir reaksi Calvin, ATP ketiga yang diperlukan bagi tiap molekul CO2yang ditambat, digunakan untuk mengubah ribulosa-5-fosfat menjadi RuBP,

kemudian daur dimulai lagi.[24]

Tiga putaran daur akan menambatkan 3 molekul CO2 dan produk akhirnya adalah 1,3-Pgaldehida. [12]

Sebagian digunakan kloroplas untuk membentuk pati, sebagian lainnya dibawa keluar.[12] Sistem ini membuat

jumlah total fosfat menjadi konstan di kloroplas, tetapi menyebabkan munculnya triosafosfat di sitosol.[12] Triosa fosfat digunakan sitosol untuk membentuksukrosa.[12][24]

(17)

Siklus Hatch-Slack

Berdasarkan cara memproduksi glukosa, tumbuhan dapat dibedakan menjadi tumbuhan C3 dan C4.[25] Tumbuhan C3 merupakan tumbuhan yang berasal dari daerah subtropis.[25] Tumbuhan ini

menghasilkan glukosa dengan pengolahan CO2 melalui siklus Calvin, yang melibatkan enzim Rubisco sebagai

penambat CO2. [25]

Tumbuhan C3 memerlukan 3 ATP untuk menghasilkan molekul glukosa.[25] Namun, ATP ini dapat terpakai sia-sia tanpa dihasilkannya glukosa.[26] Hal ini dapat terjadi jika ada fotorespirasi, di mana enzim Rubisco tidak menambat CO2 tetapi menambat O2.

[26]

Tumbuhan C4 adalah tumbuhan yang umumnya ditemukan di daerahtropis.[26] Tumbuhan ini melibatkan dua enzim di dalam pengolahan CO2 menjadi

glukosa.[26] Enzim phosphophenol pyruvat carboxilase (PEPco) adalah enzim yang akan mengikat CO2 dari

udara dan kemudian akan menjadi oksaloasetat.[26] Oksaloasetat akan diubah menjadi malat.[26] Malat akan terkarboksilasi menjadi piruvat dan CO2.

[26]

Piruvat akan kembali menjadi PEPco, sedangkan CO2 akan masuk

(18)

dinamakan siklus Hatch Slack, yang terjadi di sel mesofil.[27] Dalam keseluruhan proses ini, digunakan 5 ATP.[27]

[sunting]

Faktor penentu laju fotosintesis

Proses fotosintesis dipengaruhi beberapa faktor yaitu faktor yang dapat memengaruhi secara langsung seperti kondisi lingkungan maupun faktor yang tidak memengaruhi secara langsung seperti terganggunya beberapa fungsi organ yang penting bagi proses fotosintesis.[1] Proses fotosintesis sebenarnya peka terhadap beberapa kondisi lingkungan meliputi kehadiran cahaya matahari, suhulingkungan,

konsentrasi karbondioksida (CO2). [1]

Faktor lingkungan tersebut dikenal juga sebagai faktor pembatas dan berpengaruh secara langsung bagi laju fotosintesis.[28]

Faktor pembatas tersebut dapat mencegah laju fotosintesis mencapai kondisi optimum meskipun kondisi lain untuk fotosintesis telah ditingkatkan, inilah sebabnya faktor-faktor pembatas tersebut sangat memengaruhi laju fotosintesis yaitu dengan mengendalikan laju optimum fotosintesis.[28] Selain itu, faktor-faktor

seperti translokasikarbohidrat, umur daun, serta ketersediaan nutrisi memengaruhi fungsi organ yang penting pada fotosintesis sehingga secara tidak langsung ikut memengaruhi laju fotosintesis.[29]

Berikut adalah beberapa faktor utama yang menentukan laju fotosintesis[29] :

1. Intensitas cahaya

Laju fotosintesis maksimum ketika banyak cahaya. 2. Konsentrasi karbon dioksida

Semakin banyak karbon dioksida di udara, makin banyak jumlah bahan yang dapt digunakan tumbuhan untuk melangsungkan fotosintesis.

3. Suhu

Enzim-enzim yang bekerja dalam proses fotosintesis hanya dapat bekerja pada suhu optimalnya. Umumnya laju fotosintensis meningkat seiring dengan meningkatnya suhu hingga

batastoleransi enzim. 4. Kadar air

Kekurangan air atau kekeringan menyebabkan stomata menutup, menghambat penyerapan karbon dioksida sehingga mengurangi laju fotosintesis.

5. Kadar fotosintat (hasil fotosintesis)

Jika kadar fotosintat seperti karbohidrat berkurang, laju fotosintesis akan naik. Bila kadar fotosintat bertambah atau bahkan sampai jenuh, laju fotosintesis akan berkurang.

6. Tahap pertumbuhan

(19)

berkecambah ketimbang tumbuhan dewasa. Hal ini mungkin dikarenakan tumbuhan berkecambah memerlukan lebih banyak energi dan makanan untuk tumbuh.

Referensi

Dokumen terkait

Proses pertama merupakan proses yang tergantung pada cahaya matahari, yaitu reaksi terang yang membutuhkan energi cahaya matahari langsung dan molekul-molekul energi

Fotosintesis merupakan suatu proses biologi yang kompleks, proses ini menggunakan energi dan cahaya matahari yang dapat dimanfaatkan oleh klorofil yang terdapat dalam

Amilum merupakan salah satu hasil dari proses fotosintesis, yang berarti pada bagian daun yang terkena cahaya matahari terjadi proses fotosintesis, sedangkan pada

Reaksi gelap adalah reaksi pada fotosintesis yang berlangsung di dalam stroma dan tidak memerlukan cahaya matahari sebagai sumber energinya.. Lalu, dari manakah energi

Reaksi gelap tidak membutuhkan cahaya matahari, tetapi tidak dapat berlangsung jika belum terjadi siklus terang karena energi yang dipakai berasal dari reaksi

Bahan yang diperlukan pada fase gelap fotosintesis yang dihasilkan selama reaksi terang adalah….. ATP

A. Latar Belakang Fotosintesis dapat diartikan sebagai suatu penyusunan senyawa kimia kompleks yang memerlukan energi cahaya.

tinggi tanaman normal, karena defisiensi magnesium pada nutrien tanaman berpengaruh pada berkurangnya efisiensi fotosintesis yang artinya konsentrasi glukosa pada