• Tidak ada hasil yang ditemukan

DAFTAR PUSTAKA. 1. Cotton, F.Albert., Wilkinson,G., (1989), Kimia Anorganik Dasar, Penerbit Universitas Indonesia, Jakarta,

N/A
N/A
Protected

Academic year: 2021

Membagikan "DAFTAR PUSTAKA. 1. Cotton, F.Albert., Wilkinson,G., (1989), Kimia Anorganik Dasar, Penerbit Universitas Indonesia, Jakarta,"

Copied!
11
0
0

Teks penuh

(1)

DAFTAR PUSTAKA

1. Cotton, F.Albert., Wilkinson,G., (1989), Kimia Anorganik Dasar, Penerbit Universitas Indonesia, Jakarta, 477-482

2. Mehtar,S., Wiid I., Todorov,S.D.,(2008),The Antimicrobial Activity of Copper and Copper Alloys Against Nonsomical Pathogens and Mycobacterium Tubercolosis Isolated from Helthcare Facilities in the Western Cap: an in vitro study, J. Hosp. Infect 68(1),45-51

3. Lee,W.,Li,S,E.,Lee,C.H.,Eds.,(2001), A chelating resin containing 1-(2-thioazolylazo)-2-naphtol as the functional group; synthesis and sorption behaviour for trace metal ions, Microchemical Journal, 70,195-203

4. Memon Q.S.,Bhanger,I.M.,Hasany,S.M.,Eds.,(2007).,The Efficacy of Nitrosonaphtol Functionalized XAD-16 Resin For The Preconcentration/ Sorption of Ni(II) and Cu(II) Ions,Elsevier Talanta,72,1738-1745

5. Burguera,J.L.,(1989), Flow Injection Atomic Spectrometry, Marcel Dekker,Inc, New York, 1-6

6. Cortina,N.M.,(1997), Kinetic Studies on Heavy Metal Ion Removal by Impregnated Resin Containing di-(2,4,4,-Trimethylpenyl) Phosphinic Acid, 167-183

7. Ensafi,Ali.A; Kayamian,Taghi,Karbasi,Eds.,(2003),On Line Preconcentration System for Lead (II) Determination in Wast Water by Atomic Absorption Spectrometry Using Active Carbon Loaded with Pyrogallol Red, Analytical Science, 19, 952-956

8. Dr.B.Saha,M.D.G.,and Mr.R.J.Gill Bailey,the Removal of Chromium (VI) Ion From Aqueous Solutions Using Solvent Impregnated Resin

(2)

11. Akerkar,V.G.,Karalkar,N.B.,Sharma,R.K.,Eds.,(1998),Synthesis and properties of new chelating resin with a spacer containing α-Nitroso-β-Naphtol as the functional group, Elsevier Science B.V., 46, 1461-1467

12. Fang,Z.L.,(1993),Flow Injection Separation and Preconcentration,VCH Publishers,Inc.,New York,10,169-215

13. Adamson,Arthur.W.,Alice P.,(1997), Physical Chemistry of Surfaces,6th edition,John wiley and Sons,New York

(3)
(4)

LAMPIRAN A

Hasil FTIR NITROSONAPHTOL

500 750 1000 1250 1500 1750 2000 2500 3000 3500 4000 4500 1/cm 30 40 50 60 70 80 90 100 %T 3250. 05 3093. 82 2974 .23 2 926. 01 2856. 58 1668. 43 1593. 20 1548. 84 1435. 04 1382 .96 1311. 59 110 9. 07 1066. 6 4 931. 62 794. 67 678. 94 1-nitroso-2-naphtol

Gambar A.1 Spektrum FTIR Nitrosonaphtol

ν

(cm

-1

)

%T

794,67 71,998 931,62 40,702 1066,64 45,884 1109,07 62,983 1311,59 71,824 1382,96 54,055 1435,04 49,701 1548,84 72,503 1593,20 55,929 1668,43 47,406 2856,58 69,926 2926,01 70,173 2974,23 68,112 3093,82 63,667 3250,05 50,445

(5)

LAMPIRAN B

Pembuatan Kurva Kalibrasi Larutan Standar Cu

2+

[Cu],ppm A1 A2 A3 A 0,5 0,0174 0,0163 0,0171 0,0170 1 0,0528 0,0552 0,0561 0,0547 2 0,1405 0,1417 0,1403 0,1409 4 0,2961 0,2993 0,3035 0,2996 6 0,4558 0,4523 0,4490 0,4524

Tabel B.1 Korelasi konsentrasi larutan standar cu terhadap absorban

Kurva Kalibrasi Larutan Standar Cu

y = 0.0795x - 0.0217 R2 = 0.9997 0 0.1 0.2 0.3 0.4 0.5 0 1 2 3 4 5 6 7 [Cu], ppm A

Gambar B.1 Kurva kalibrasi Larutan Standar

Persamaan garis

y

=

0

,

0795

x

0

,

0127

selanjutnya dipakai dalam perhitungan untuk

(6)

LAMPIRAN C

Penentuan pH optimum

pH A [Cu]sisa,ppm % Retensi 5 0,0447 0,8354 91,6 6 0,0167 0,483 95,17 7 0,0033 0,3145 96,8 8 0,0399 0,775 92,25

Tabel C.1 Pengaruh pH terhadap retensi ion logam Cu2+

pH optimum terbentuknya kompleks dengan ion logam Cu2+t pH 7

0127

,

0

x

0795

,

0

y

=

awal sisa awal sisa

[Cu]

]

Cu

[

[Cu]

Retensi

%

ppm

0,3145

[Cu]

3145

,

0

0217

,

0

07948

,

0

0033

,

0

=

=

=

=

x

x

96,8%

%

100

10

0,3145

-10

=

=

x

(7)

LAMPIRAN D

Pengaruh Waktu Kontak

Tabel D.1 Pengaruh waktu kontak terhadap retensi ion Cu2+

t (menit)

A

% Retensi

5 0,6811

55,79

10 0,0481

95,61

30 0,0104

97,98

60 0,007

98,19

150 0,031 96,68

Dengan waktu kontak 60 menit memberikan absorbansi sebesar 0,007

awal sisa awal sisa

[Cu]

]

Cu

[

[Cu]

Retensi

%

ppm

0,361

[Cu]

361

,

0

0217

,

0

07948

,

0

007

,

0

=

=

=

=

x

x

%

98,19

%

100

10

0,361

-10

=

=

x

(8)

LAMPIRAN E

Penentuan Kapasitas Retensi

Tabel E.1 Pengaruh konsentrasi Cu2+ terhadap kapasitas retensi

[Cu],

ppm

[Cu]sisa,ppm

mg Cu teretensi

mg Cu teretensi/ g resin

2 0,3107 0,00338

0,337

4 0,5208 0,06958

0,6958

6 0,8025 0,1039

1,039

8 2,605 0,1078

1,078

0,0421

A

ppm

6

[Cu]

=

=

mg

0,12

L

0,02

L

mg

6

ppm

6

=

x

=

0217

,

0

07948

,

0

0421

,

0

=

x

8025

,

0

=

x

mg 0,0161 L 0,02 L mg 0,8025 ppm 0,8025 ppm 0,8025 [Cu]sisa = = = x

mg

0,0161

-mg

0,12

terserap

yang

Cu

mg

2+

=

=

0,1039

mg

resin g terserap yang Cu mg penyerapan Kapasitas 2+ =

resin

g

/

Cu

mg

1,039

g

0,1

mg

0,1039

=

2+

=

(9)

LAMPIRAN F

Perhitungan Presisi Pengukuran

F.1.

Pengaruh konsentrasi eluen

Tabel F.1 Tabel korelasi [HNO3] terhadap tinggi puncak

[eluen],M

Tinggi puncak (AU)

0,5 121,39

1 105,34

2 133,14

3 122,2

Pengaruh konsentrasi larutan asam nitrat

0 20 40 60 80 100 120 140 160 1 2 3 4 [asam ],M Ti ng gi p un c a k

(10)

F.2.

Pengaruh volume eluen

Tabel F.2 Kurva korelasi antara volume HNO3 terhadap tinggi puncak

Volume eluen

(mL)

Tinggi puncak

(AU)

0,1 89,47

0,3 89,86

0,5 101,90

1 91,50

Pengaruh volume injeksi eluen terhadap tinggi puncak 0 20 40 60 80 100 120 1 2 3 4 Volume eluen, mL Ti nggi punc a k

(11)

F.3. Kebolehulangan

Tabel F.3 Kebolehulangan pengukuran

Puncak Xi Xi-

X

Xi 2 1 111,58 2,592 12450,10 2 118,74 9,752 14099,19 3 104,83 -4,158 10989,33 4 103,4 -5,588 10691,56 5 106,39 -2,598 11318,83

Jumlah (

Xi) = 544,94

Rata-rata (

X

) = 108,988

n

= 5

(

Xi)

2

= 296959,6

(Xi

2)

= 59549,01

Standar Deviasi =

1

)

(

1 1 2 2

= =

n

n

X

X

n i n i i i

= 6.27

% 100 KV : Variansi Koevisien x X SD =

%

75

.

5

%

100

988

.

108

2667

,

6

=

=

x

Gambar

Gambar A.1  Spektrum FTIR Nitrosonaphtol
Gambar B.1 Kurva kalibrasi Larutan Standar
Tabel C.1 Pengaruh pH terhadap retensi ion logam Cu 2+
Tabel D.1 Pengaruh waktu kontak terhadap retensi ion Cu 2+ t (menit)  A  % Retensi  5 0,6811  55,79  10 0,0481  95,61  30 0,0104  97,98  60 0,007  98,19  150 0,031 96,68
+5

Referensi

Dokumen terkait