• Tidak ada hasil yang ditemukan

Adjust Fuzzy Overlap in Fuzzy C-Means Clustering - MATLAB & Simulink.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Adjust Fuzzy Overlap in Fuzzy C-Means Clustering - MATLAB & Simulink."

Copied!
2
0
0

Teks penuh

(1)

Adjust Fuzzy Overlap in Fuzzy C­Means

Clustering

This example shows how to adjust the amount of fuzzy overlap when performing fuzzy c­means clustering. Create a random data set. For reproducability, initialize the random number generator to its default value.

rng 'default' data = rand 00, ;

Specify fuzzy partition matrix exponents.

M = [ .   .0  .0  .0];

The exponent values in M must be greater than  , with smaller values specifying a lower degree of fuzzy overlap. In other words, as M approaches  , the boundaries between the clusters become more crisp.

For each overlap exponent: Cluster the data.

Classify each data point into the cluster for which it has the highest degree of membership.

Find the data points with maximum membership values below 0. . These points have a more fuzzy classification. Calculate the average maximum membership value across all data points to quantify the degree of fuzzy overlap. A higher average maximum membership value indicates that there is less fuzzy overlap.

Plot the clustering results.

for i =  :

    % Cluster the data.

    options = [M i  NaN NaN 0];

    [centers,U] = fcm data, ,options ;

    % Classify the data points.

    maxU = max U ;

    index  = find U ,:  == maxU ;     index  = find U ,:  == maxU ;

    % Find data points with lower maximum membership values.

    index  = find maxU < 0. ;

    % Calculate the average maximum membership value.

    averageMax = mean maxU ;

    % Plot the results.

    subplot , ,i

    plot data index , ,data index , ,'ob'     hold on

    plot data index , ,data index , ,'or'

    plot data index , ,data index , ,'xk','LineWidth',

    plot centers , ,centers , ,'xb','MarkerSize', ,'LineWidth',     plot centers , ,centers , ,'xr','MarkerSize', ,'LineWidth',     hold off

(2)

A given data point is classified into the cluster for which it has the highest membership value, as indicated by maxU. A maximum membership value of 0.  indicates that the point belongs to both clusters equally. The data points marked with a black x have maximum membership values below 0. . These points have a greater degree of uncertainty in their cluster membership.

More data points with low maximum membership values indicates a greater degree of fuzzy overlap in the clustering result. The average maximum membership value, averageMax, provides a quantitative description of the overlap.

An averageMax value of   indicates completely crisp clusters, with smaller values indicating more overlap.

See Also

fcm

Related Examples

Cluster Quasi­Random Data Using Fuzzy C­Means Clustering

Referensi

Dokumen terkait

Our proposed algorithm is more superior to the conventional FCM in the construction of balanced clusters in three aspects, which are: the member nodes in each cluster,

Finally, the experimental clustering results of meteorological data are given, which can exactly prove that our proposed algorithm will generate better clustering

In this paper, we propose a genetic interval type-2 fuzzy c-means GIT2FCM algorithm, which is developed and applied to the segmentation and classification of M-FISH images.. Chromosome

Visualization Results Using Genetic Programming Fuzzy C-Means Furthermore, an assessment process will be carried out to determine the segment of the customer by taking the minimum and

Start Data Collection: Area, Production Results Pre-processed data Determine the centroid value: area, production yield determine the number of clusters K Determine the distance

This clustering uses 34 data so this can be used as material for evaluation for the government in increasing the availability of food production to minimize rice imports, especially

Description Page 2.1 Overview structure of human brain, left side: 10 an axial slice mr image, right side: the colour coded version of image left side 2.2 The major subdivision of